珠江口盆地白云西凹古近纪沉积古环境重建及其油气地质意义

蔡嵩, 彭光荣, 郑金云, 李振升, 陈兆明, 朱定伟

蔡嵩,彭光荣,郑金云,等. 珠江口盆地白云西凹古近纪沉积古环境重建及其油气地质意义[J]. 海洋地质与第四纪地质,2025,45(2): 133-145. DOI: 10.16562/j.cnki.0256-1492.2023110102
引用本文: 蔡嵩,彭光荣,郑金云,等. 珠江口盆地白云西凹古近纪沉积古环境重建及其油气地质意义[J]. 海洋地质与第四纪地质,2025,45(2): 133-145. DOI: 10.16562/j.cnki.0256-1492.2023110102
CAI Song,PENG Guangrong,ZHENG Jinyun,et al. Paleogene sedimentary paleoenvironmental reconstruction and its petroleum geological significance in Western Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2025,45(2):133-145. DOI: 10.16562/j.cnki.0256-1492.2023110102
Citation: CAI Song,PENG Guangrong,ZHENG Jinyun,et al. Paleogene sedimentary paleoenvironmental reconstruction and its petroleum geological significance in Western Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2025,45(2):133-145. DOI: 10.16562/j.cnki.0256-1492.2023110102

珠江口盆地白云西凹古近纪沉积古环境重建及其油气地质意义

基金项目: 中国海洋石油有限公司生产性科研项目“开平凹陷-白云西凹成盆、成烃及沉积演化研究”(SCKY-2024-SZ-01)
详细信息
    作者简介:

    蔡嵩(1986—),男,博士研究生,工程师,主要从事油气勘探研究,E-mail:caisong@cnooc.com.cn

  • 中图分类号: P736

Paleogene sedimentary paleoenvironmental reconstruction and its petroleum geological significance in Western Baiyun Sag, Pearl River Mouth Basin

  • 摘要:

    近年来,珠江口盆地白云西凹不断有勘探发现,但对沉积古环境的特征研究较少,缺乏针对古近纪沉积古环境的系统重建,不利于研究区下一步的勘探评价。为系统恢复研究区古近纪的古气候、古水深、古地貌等古环境信息,利用研究区内古生物、地球物理测井、地球化学及岩石物性等资料建立定量恢复古环境 的方法。结果表明,在文昌组到珠海组时期,古降水及古气温均下降,受拆离断层活动由强变弱的影响,古地貌不断夷平变缓,古水深中心也不断减少并向白云主洼迁移,整体表现为窄深湖-宽缓湖-广浅湖的演化模式。文昌组时期,白云西凹气候温暖潮湿,有机质供给充足,地貌较陡,早期发育多个深水洼陷,物源供给呈多点联合近源供源,多个水深中心均可发育中深湖相烃源岩,晚期水深中心向洼陷中心汇聚,物源供给呈双向联合相对远源供给特征,具备发育汇聚型水深中心的中浅湖相烃源岩条件。恩平组到珠海组时期,气温下降后期转为温凉气候,地貌夷平,水体变浅,水深中心进一步汇聚,物源供给由盆内供给向盆内盆外联合远源供给转变,有机质供给相对较弱,水深中心发育浅湖相烃源岩。古环境的定量重建成果对研究白云西凹湖盆演化、源汇系统以及优质烃源岩预测具有重要意义,为后期区域油气勘探提供一定理论依据。

    Abstract:

    In recent years, there have been continuous discoveries and exploration in the Western Baiyun Sag, PRMB (The Pearl River Mouth Basin). However, few studies have been conducted on the characteristics of sedimentary paleoenvironment and there is a lack of systematic reconstruction, which could hinder future exploration of the study area. To systematically reconstruct the Paleogene paleoenvironment including paleoclimate, paleowater depth, and ancient landform, quantitative paleoenvironmental recovery methods were developed based on the paleontology, geophysical logging, geochemical and rock physical properties data of the study area. Results show that, from the Wenchang Formation to the Zhuhai Formation, both paleoprecipitation and paleotemperature decreased, ancient landforms continue to flatten and then stabilized due to the weakening detachment fault activity, and the paleowater depth centers were gradually reduced and migrated to the Baiyun Sag, showing an evolution pattern of from narrow deep basin to wide gentle basin and to wide shallow basin. During the period of the Wenchang Formation, the climate of the Western Baiyun Sag was warm and humid, the supply of organic matter was sufficient. Steeper terrain and several deep-water lakes were developed in the early stage. Material supply is from multi-point combined with near-source supply, which resulted in hydrocarbon sources in medium-deep multi-deepwater-centered lake facies, while in the late stage, the deep-water centers merged, and the supply of sources showed a bi-directional source joined with relatively far sources, which resulted in the medium-shallow lake-facies hydrocarbon source rocks with converging deep-water centers. During the period from the Enping Formation to the Zhuhai Formation, the temperature decreased, and a cooler climate occurred in the late stage. The landform underwent flattening, while the water became shallower. The paleowater depth centers further converged. Source supply changes from intra-basin to intra-and-inter-basin distant source, with relatively less organic matter supply. As a result, there were poorly developed, shallow lake-facies hydrocarbon source rocks in paleowater depth centers. The quantitative reconstruction of paleoenvironment have significant implications for studying the evolution of the lake basin, the source-sink system, and predicting high-quality hydrocarbon source rocks in the Western Baiyun Sag, which will serve as a theoretical foundation for the later stages of regional oil and gas exploration.

  • 图  1   珠江口盆地白云西凹构造位置(a)及基底高程[7](b)

    Figure  1.   Structural location (a) and basement elevation [7](b) of the Western Baiyun Sag, PRMB

    图  2   珠江口盆地白云西凹地层柱状图[7]

    Figure  2.   Stratigraphic column and sedimentary facies of the Western Baiyun Sag, PRMB[7]

    图  3   沉积古地貌定量恢复流程[7]

    Figure  3.   Quantitative restoration of sedimentary paleogeomorphology [7]

    图  4   白云西凹古气候恢复结果

    a:PY25井古气候定量恢复曲线,b:白云西凹古气温恢复结果趋势图,c:白云西凹古降水恢复结果趋势图。

    Figure  4.   Paleoclimatic restoration in the Western Baiyun Sag

    a: Quantitative paleoclimatic restoration curve of well PY25, b: trend chart of paleotemperature restoration in the Western Baiyun Sag, c: trend chart of paleoprecipitation restoration in the Western Baiyun Sag.

    图  5   白云西凹古水深恢复结果

    a:早文昌组时期,b:晚文昌组时期,c:恩平组时期,d:珠海组时期。

    Figure  5.   Paleowater depth restoration in the Western Baiyun Sag

    a: The early Wenchang Stage, b: the late Wenchang Stage, c: Enping Stage, d: Zhuhai Stage.

    图  6   白云西凹古地貌恢复结果

    a:早文昌组时期,b:晚文昌组时期,c:恩平组时期,d:珠海组时期。

    Figure  6.   Paleogeomorphology restoration in the Western Baiyun Sag

    a: The early Wenchang Stage, b: the late Wenchang Stage, c: Enping Stage, d: Zhuhai Stage.

    图  7   古气候-古水深-古地貌一体化耦合图

    a:张裂期(文昌组早期),b:拆离期(文昌组晚期),c:断拗转换-裂后热沉降期(恩平组-珠海组期)。

    Figure  7.   Integrated coupled paleoclimate-paleohydrology-paleomorphology map

    a:Rifting stage (early Wenchang), b: detachment stage (late Wenchang), c: fault-depression transition stage (Enping to Zhuhai periods).

    表  1   白云西凹及周缘钻井孢粉-古气候恢复结果统计

    Table  1   Statistics of palynological-paleoclimatic recovery results from drilling wells in Western Baiyun Sag and surrounding areas

    井名 层段 古气温平均值/℃ 年降水平均值/mm
    BY13珠海组19.71361
    恩平组22.51375
    BY7珠海组18.71403
    恩平组22.51549
    EP30珠海组19.31272
    恩平组19.51274
    KP11珠海组18.81444
    恩平组22.31447
    文昌组231450
    LF7珠海组15.41075
    恩平组19.91321
    文昌组23.51457
    PY25珠海组17.31443
    恩平组21.21446
    文昌组23.21368
    PY33珠海组181199
    恩平组20.91356
    PY5珠海组15.11487
    恩平组25.61760
    文昌组26.71785
    下载: 导出CSV
  • [1] 陈洁, 温宁, 李学杰. 南海油气资源潜力及勘探现状[J]. 地球物理学进展, 2007, 22(4):1285-1294

    CHEN Jie, WEN Ning, LI Xuejie. The status of the resource potential and petroleum exploration of the South China Sea[J]. Progress in Geophysics, 2007, 22(4):1285-1294.]

    [2]

    Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318:1-14. doi: 10.1016/j.margeo.2012.05.003

    [3] 吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6):146-155

    WU Xiaozhi, LIUZHUANG Xiaoxue, WANG Jian, et al. Petroleum resource potential, distribution and key exploration fields in China[J]. Earth Science Frontiers, 2022, 29(6):146-155.]

    [4] 罗东红, 梁卫, 李熙盛, 等. 珠江口盆地陆丰13-1油田古近系恩平组突破及其重要意义[J]. 中国海上油气, 2011, 23(2):71-75

    LUO Donghong, LIANG Wei, Li Xisheng, et al. A breakthrough at Paleogene Enping Formation and its important significance in Lufeng13-1 oilfield, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(2):71-75.]

    [5] 田立新, 施和生, 刘杰, 等. 珠江口盆地惠州凹陷新领域勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(4):22-30

    TIAN Lixin, SHI Hesheng, LIU Jie, et al. Great discovery and significance of new frontier exploration in Huizhou Sag, Pearl River Mouth Basin[J]. China Petroleum Exploration, 2020, 25(4):22-30.]

    [6] 高阳东, 彭光荣, 陈兆明, 等. 珠江口盆地开平凹陷油气地质新认识与勘探突破[J]. 中国海上油气, 2023, 35(1):1-13

    GAO Yangdong, PENG Guangrong, CHEN Zhaoming, et al. New understanding and exploration breakthrough of petroleum geology in Kaiping Sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2023, 35(1):1-13.]

    [7] 刘军, 彭光荣, 郑金云, 等. 珠江口盆地白云凹陷西区始新世张裂-拆离作用下沉积转换及源-汇响应[J]. 石油与天然气地质, 2023, 44(3):600-612

    LIU Jun, PENG Guangrong, ZHENG Jinyun, et al. Sedimentary transformation and source-to-sink response to the Eocene rifting-detachment in the western Baiyun Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2023, 44(3):600-612.]

    [8]

    Ma M, Lei C, Rahman M J J. Paleoenvironmental reconstruction of the Eocene sediments in the Baiyun Sag of the Pearl River Mouth Basin[J]. Frontiers of Earth Science, 2023, 11:1177240. doi: 10.3389/feart.2023.1177240

    [9]

    Wang C, Zeng J H, Zhang Z T, et al. Origin and distribution of natural gas and oil in the Baiyun Depression, Pearl River Mouth Basin, South China Sea[J]. Journal of Petroleum Science and Engineering, 2018, 170:467-475. doi: 10.1016/j.petrol.2018.06.056

    [10] 文静, 赵靖舟, 李军, 等. 白云凹陷中深层古近系砂岩储层特征及溶蚀作用对优质储层的控制作用[J]. 特种油气藏, 2022, 29(6):47-55

    WEN Jing, ZHAO Jingzhou, LI Jun, et al. Characteristics of Mid-Deep Paleogene sandstone reservoirs in Baiyun Sag and controlling effect of Dissolution on high-quality reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(6):47-55.]

    [11] 谢世文, 柳保军, 庞雄, 等. 珠江口盆地白云凹陷裂陷期沉积环境演化与控烃作用[J]. 天然气地球科学, 2023, 34(2):296-311

    XIE Shiwen, LIU Baojun, PANG Xiong, et al. Sedimentary environment evolution and hydrocarbon control in Baiyun Sag of Pearl River Mouth Basin during rifting Period[J]. Natural Gas Geoscience, 2023, 34(2):296-311.]

    [12]

    Sun Q L, Alves T M, Wu S G, et al. Early Miocene magmatism in the Baiyun Sag (South China Sea): a view to the origin of intense post-rift magmatism[J]. Gondwana Research, 2023, 120:127-144. doi: 10.1016/j.gr.2022.05.013

    [13]

    Chen C, Zhang X T, Peng G R, et al. Controlling factors on the charging process of oil and gas in the eastern main Sub-Sag of the Baiyun Sag, Zhujiang River (Pearl River) Mouth Basin[J]. Acta Oceanologica Sinica, 2023, 42(3):189-200. doi: 10.1007/s13131-022-2140-z

    [14] 刘豪, 徐长贵, 高阳东, 等. 断陷湖盆低勘探区源-汇系统与烃源岩预测: 以珠江口盆地珠一坳陷北部洼陷区为例[J]. 石油与天然气地质, 2023, 44(3):565-583

    LIU Hao, XU Changgui, GAO Yangdong, et al. Source-to-sink system and hydrocarbon source rock prediction of underexplored areas in rifted lacustrine basins: a case study on northern lows in Zhu I Depression, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2023, 44(3):565-583.]

    [15] 何雁兵, 雷永昌, 邱欣卫, 等. 珠江口盆地陆丰南地区文昌组沉积古环境及烃源岩有机质富集主控因素研究[J/OL]. 地学前缘.

    3-03-31). https: //doi. org/10.13745/j. esf. sf. 2023.2. 74. [HE Yanbing, LEI Yongchang, QIU Xinwei, et al. Study on sedimentary paleoenvironment and main controlling factors of organic matter enrichment in source rocks of Wenchang Formation in the southern Lufeng area, Pearl River Mouth Basin[J/OL]. Earth Science Frontiers. (2023-03-31).https://doi.org/10.13745/j.esf.sf.2023.2.74.

    [16] 石创, 龙祖烈, 朱俊章, 等. 珠江口盆地白云凹陷恩平组泥岩元素地球化学特征及环境指示意义[J]. 海洋地质与第四纪地质, 2020, 40(5):79-86

    SHI Chuang, LONG Zulie, ZHU Junzhang, et al. Element geochemistry of the Enping Formation in the Baiyun Sag of Pearl River Mouth Basin and their environmental implications[J]. Marine Geology & Quaternary Geology, 2020, 40(5):79-86.]

    [17] 柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区沉积充填演化及控制因素分析[J]. 中国海上油气, 2011, 23(1):19-25

    LIU Baojun, PANG Xiong, YAN Chengzhi, et al. An analysis of depositional evolution and its controls in Baiyun deep-water area, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(1):19-25.]

    [18] 陈留勤, 刘鑫, 李鹏程. 古土壤: 沉积环境和古气候变化的灵敏指针[J]. 沉积学报, 2018, 36(3):510-520

    CHEN Liuqin, LIU Xin, LI Pengcheng. Paleosols: sensitive indicators of depositional environments and paleoclimate[J]. Acta Sedimentologica Sinica, 2018, 36(3):510-520.]

    [19] 侯光良, 鄂崇毅, 肖景义, 等. 重建古气温的环境证据-方法差异性分析[J]. 地球学报, 2011, 32(4):455-462

    HOU Guangliang, E Chongyi, XIAO Jingyi, et al. The sensitivity analysis of reconstructing ancient temperatures by different circumstantial evidence and methods[J]. Acta Geoscientica Sinica, 2011, 32(4):455-462.]

    [20] 侯学文, 施泽进, 孙泽轩, 等. 川北苍溪地区白垩系红层沉积孢粉组合及其地质意义[J]. 地质论评, 2020, 66(3):727-738

    HOU Xuewen, SHI Zejin, SUN Zexuan, et al. The sporopollen assemblages in the Early Cretaceous red sediments in Cangxi area, northern Sichuan Basin and their geological significance[J]. Geological Review, 2020, 66(3):727-738.]

    [21] 史德锋, 祝幼华. 缅甸英雄岛始新世孢粉组合及其古环境意义[J]. 石油实验地质., 2024, 46(1):136-145

    SHI Defeng, ZHU Youhua. Eocene sporopollen assemblage from Ramree Island, Burma and its palaeoenvironment significance[J]. Petroleum Geology & Experiment, 2024, 46(1):136-145.]

    [22] 罗伦德. 第四纪孢粉分析中古气温、古降水指数的计算方法: 以成都锦江一级阶地研究为例[J]. 贵州师范大学学报:自然科学版, 1996, 14(3):42-50

    LUO Lunde. The method for calculating Quaternary air-temperature and water-precipitation index in the pollen-spore analysis—for example to study I-step terrace of Jinjiang River, Chengdu Plain[J]. Journal of Guizhou Normal University:Natural Science, 1996, 14(3):42-50.]

    [23] 舒梁锋, 代一丁, 朱明, 等. 基于沉积构型半定量化恢复古水深: 以珠江口盆地白云凹陷为例[J]. 海洋地质前沿, 2022, 38(5):51-59

    SHU Liangfeng, DAI Yiding, ZHU Ming, et al. Semi-quantitative restoration of paleobathymetric of Baiyun Sag of Pearl River Mouth Basin based on depositional architecture[J]. Marine Geology Frontiers, 2022, 38(5):51-59.]

    [24] 吴智平, 周瑶琪. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法[J]. 沉积学报, 2000, 18(3):395-399

    WU Zhiping, ZHOU Yaoqi. Using the characteristic elements from Meteoritic Must in Strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 2000, 18(3):395-399.]

    [25] 雷华蕊, 姜在兴, 周红科. 早古近纪极热时期古气候演化分析: 以东营凹陷为例[J]. 地学前缘, 2018, 25(4):176-184

    LEI Huarui, JIANG Zaixing, ZHOU Hongke. Analysis of paleoclimate evolution of the hyperthermal Period in the Early Paleogene: taking the Dongying Depression as an example[J]. Earth Science Frontiers, 2018, 25(4):176-184.]

    [26] 徐长贵, 龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质, 2023, 44(3):521-538

    XU Changgui, GONG Chenglin. Predictive stratigraphy: from sequence stratigraphy to source-to-sink system[J]. Oil & Gas Geology, 2023, 44(3):521-538.]

    [27] 聂银兰, 朱筱敏, 董艳蕾, 等. 陆相断陷盆地源—汇系统要素表征及研究展望[J]. 地质论评, 2022, 68(5):1881-1896

    NIE Yinlan, ZHU Xiaomin, DONG Yanlei, et al. Characterization and research prospect of source-to-sink system elements in continental rift Basin[J]. Geological Review, 2022, 68(5):1881-1896.]

    [28] 米立军, 张功成, 沈怀磊, 等. 珠江口盆地深水区白云凹陷始新统—下渐新统沉积特征[J]. 石油学报, 2008, 29(1):29-34

    MI Lijun, ZHANG Gongcheng, SHEN Huailei, et al. Eocene-Lower Oligocene sedimentation characteristics of Baiyun Sag in the deep water area of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2008, 29(1):29-34.]

    [29] 郭帅, 杨海长, 曾清波, 等. 白云凹陷恩平组南部物源研究及其油气地质意义[J]. 海洋地质前沿, 2020, 36(6):56-63

    GUO Shuai, YANG Haizhang, ZENG Qingbo, et al. Provenance of Enping Formation in the southern Baiyun Sag, Pearl River Mouth Basin and its implications for petroleum geology[J]. Marine Geology Frontiers, 2020, 36(6):56-63.]

    [30] 侯元立, 邵磊, 乔培军, 等. 珠江口盆地白云凹陷始新世— 中新世沉积物物源研究[J]. 海洋地质与第四纪地质, 2020, 40(2):19-28

    HOU Yuanli, SHAO Lei, QIAO Peijun, et al. Provenance of the Eocene-Miocene sediments in the Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(2):19-28.]

    [31]

    Meng Q T, Liu Z J, Bruch A A, et al. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun Basin, China[J]. Journal of Asian Earth Sciences, 2012, 45:95-105. doi: 10.1016/j.jseaes.2011.09.021

    [32] 陈斌, 李勇, 邓涛, 等. 晚三叠世龙门山前陆盆地须家河组泥页岩沉积环境及有机质富集模式[J]. 地质科学, 2019, 54(2):434-451

    CHEN Bin, LI Yong, DENG Tao, et al. The sedimentary environment and organic matter enrichment pattern of Xujiahe Formation shale in the Late Triassic Longmenshan foreland Basin, SW China[J]. Chinese Journal of Geology, 2019, 54(2):434-451.]

  • 期刊类型引用(1)

    1. 林金鑫,吴建中,赵卿. 越南红河三角洲地面沉降防治对策研究. 海洋地质前沿. 2025(04): 27-36 . 百度学术

    其他类型引用(0)

图(7)  /  表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  4
  • PDF下载量:  39
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-01-03
  • 录用日期:  2024-01-03
  • 网络出版日期:  2024-07-02
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回