Loading [MathJax]/jax/output/SVG/jax.js

海底峡谷浊流汇流后含沙量与速度变化研究

张子涵, 任宇鹏, 陶威, 许国辉, 靳梓堃

张子涵,任宇鹏,陶威,等. 海底峡谷浊流汇流后含沙量与速度变化研究[J]. 海洋地质与第四纪地质,2024,44(4): 78-87. DOI: 10.16562/j.cnki.0256-1492.2023032301
引用本文: 张子涵,任宇鹏,陶威,等. 海底峡谷浊流汇流后含沙量与速度变化研究[J]. 海洋地质与第四纪地质,2024,44(4): 78-87. DOI: 10.16562/j.cnki.0256-1492.2023032301
ZHANG Zihan,REN Yupeng,TAO Wei,et al. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology,2024,44(4):78-87. DOI: 10.16562/j.cnki.0256-1492.2023032301
Citation: ZHANG Zihan,REN Yupeng,TAO Wei,et al. Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon[J]. Marine Geology & Quaternary Geology,2024,44(4):78-87. DOI: 10.16562/j.cnki.0256-1492.2023032301

海底峡谷浊流汇流后含沙量与速度变化研究

基金项目: 国家自然科学基金“海底峡谷弱稳定沉积物推动式剪切破坏传播及其对沉积地层的影响”(42206055), “风暴浪作用下海底高浓度含沙层形成过程的观测研究”(41976049)
详细信息
    作者简介:

    张子涵(1998—),女,硕士研究生,从事海洋工程地质研究,E-mail:zihanzhang513@163.com

    通讯作者:

    许国辉(1972—),男,博士,教授,主要从事海洋工程地质研究,E-mail:xuguohui@ouc.edu.cn

  • 中图分类号: P736

Variations in sediment concentration and velocity after turbidity current confluence in submarine canyon

  • 摘要:

    高速的浊流具有强大的破坏力,威胁着海底结构物的安全。海底峡谷是浊流向深海运动的重要通道,其中许多海底峡谷具有多条分支峡谷,而分支峡谷与主干峡谷浊流发生汇流后,含沙量、速度可能会增加,进而破坏力增强。本文通过室内水槽试验和数值模拟,研究了分支峡谷中的浊流汇流到主干峡谷中含沙量和速度的变化,并与仅有主干峡谷浊流的情景进行了对比。研究发现,发生汇流时,浊流的高度、含沙量和速度在头部均有增加,在汇流发生过后会有所减小,但含沙量和速度仍大于不发生汇流时的情况。本文试验结果可为有分支峡谷发生浊流汇流的现场监测位置及项目、速度推算提供指引。

    Abstract:

    High-speed turbidity currents are very destructive and threaten the safety of seabed constructions. An important channel for turbidity currents to move to the deep sea is submarine canyons, of which many have multiple branches. Once a branch meets the canyon with turbidity currents, the sand content and the velocity of turbidity currents could be increased, and so the destructive power. We studied the changes in sand content and movement velocity of turbidity currents in branch canyons converging into the main canyon, to which the scenario of turbidity currents in main-canyon-only was compared. Result show that the height, sand content and velocity of turbidity currents were increased at the head when confluence occurred, and decreased after the confluence occurred. However, the sand content and the velocity were still larger than those without confluence. This study provided guidelines for site selection and velocity calculation for field monitoring when turbidity currents confluence occurs in branch canyons.

  • 图  1   海底峡谷汇流模型概况图

    a:模型平面布置图,b:模型地形等高线图。

    Figure  1.   Image of the submarine canyon confluence model

    a: top view of the model, b: model terrain contours.

    图  2   取样盒示意图

    Figure  2.   The sampling box

    图  3   试验土样的粒度级配曲线

    Figure  3.   Particle size gradation curve of the soil sample tested

    图  4   总含沙量随初始配置浊流含沙量的变化

    a:汇流点S1, b:继续流动点S2

    Figure  4.   Variation in total sand content with initial configurated turbidity currents sand content

    a: Confluence point S1, b: continued flow point S2.

    图  5   主流和汇流情景下浊流各层含沙量随初始浊流含沙量的变化

    a:100 g/L,b:200 g/L,c:300 g/L,d:400 g/L,e:500 g/L。

    Figure  5.   Variation in sand content in each layer of turbidity currents with initial turbidity currents sand content in main flow and confluence scenarios

    图  6   数值模拟模型构建

    a:模型立体图,b:网格划分。

    Figure  6.   Construction of numerical simulation model

    a: model stereogram, b: meshing.

    图  7   初始含沙量为200 g/L的浊流模拟流速与实测流速对比

    a:vA处主流情景,b:vB处主流情景,c:vA处汇流情景,d:vB处汇流情景。

    Figure  7.   Comparison of simulated current velocity and measured current velocity for turbidity currents with initial sand content of 200 g/L

    a: Main current scenario at vA, b: main current scenario at vB, c: confluence scenario at vA, d: confluence scenario at vB.

    图  8   浊流在取样点S1、S2处的垂向速度剖面

    a、c、e、g、i:S1处的垂向速度剖面;b、d、f、h、j:S2处垂向速度剖面。速度负值代表反向流动。

    Figure  8.   Vertical velocity profiles of turbidity currents at sampling points S1 and S2

    a, c, e, g, i: Vertical velocity profile at S1; b, d, f, h, j: vertical velocity profile at S2. The negative values of velocity represent reverse flow.

    图  9   200 g/L的浊流在主流情景时的模拟结果

    a:浊流到达S1处,b:浊流到达S2处。

    Figure  9.   Simulation results of turbidity flow at 200 g/L in the main currents scenario

    a: turbidity currents arrives at S1, b: turbidity currents arrives at S2.

    图  10   浊流运动中的头部流场(x方向)图

    Figure  10.   Diagram of the head current field (x-direction) in turbidity currents motion

    表  1   试验浊流初始含沙量配置表

    Table  1   Configuration in initial sand content in the turbidity current experiment

    序号试验情景浊流含沙量/(g/L)
    主流支流
    1主流1000
    2汇流100100
    3主流2000
    4汇流200200
    5主流3000
    6汇流300300
    7主流4000
    8汇流400400
    9主流5000
    10汇流500500
    下载: 导出CSV

    表  2   含沙量样品编号与取样盒层位对应关系

    Table  2   Correspondence between sand content sample serial number and sampling box layer

    取样盒分
    层名称
    距底高度
    范围/cm
    S1处各层
    样品编号
    S2处各层
    样品编号
    上层8~12S1-3S2-3
    中层4~8S1-2S2-2
    底层0~4S1-1S2-1
    下载: 导出CSV

    表  3   初始含沙量为200 g/L的浊流模拟流速最大值与试验流速最大值对比

    Table  3   Comparison between the maximum simulated currents velocity and the maximum experimental flow velocity for turbidity flow with initial sand content of 200 g/L

    项目 主流情景
    vA
    主流情景
    vB
    汇流情景
    vA
    汇流情景
    vB
    试验值/(m/s) 0.275 0.304 0.306 0.356
    模拟值/(m/s) 0.270 0.291 0.305 0.351
    绝对误差/(m/s) 0.005 0.013 0.001 0.006
    相对误差/% 1.91 4.42 0.42 1.63
    注:相对误差的计算方法为相对误差=|模拟值试验值|试验值
    下载: 导出CSV
  • [1] 徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10):98-105

    XU Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10):98-105.]

    [2]

    Heerema C J, Talling P J, Cartigny M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532:116023. doi: 10.1016/j.jpgl.2019.116023

    [3] 许莎莎, 冯秀丽, 冯利, 等. 南海西北部莺琼陆坡36.6 ka以来的浊流沉积[J]. 海洋地质与第四纪地质, 2020, 40(5):15-24

    XU Shasha, FENG Xiuli, FENG Li, et al. Turbidite records since 36.6 ka at the Yingqiong continental slope in the Northwest of South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5):15-24.]

    [4]

    Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8):675-678. doi: 10.1130/G45178.1

    [5] 郑旭峰, 李安春, 万世明, 等. 冲绳海槽中全新世的浊流沉积及其控制因素[J]. 第四纪研究, 2014, 34(3):579-589 doi: 10.3969/j.issn.1001-7410.2014.03.12

    ZHENG Xufeng, LI Anchun, WAN Shiming, et al. The turbidity events in Okinawa trough during middle Holocene and its potential dominating mechanisms[J]. Quaternary Sciences, 2014, 34(3):579-589.] doi: 10.3969/j.issn.1001-7410.2014.03.12

    [6]

    Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8:275-310. doi: 10.1146/annurev.fl.08.010176.001423

    [7] 徐景平. 科学与技术并进: 近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5):552-558

    XU Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5):552-558.]

    [8]

    Carter L, Gavey R, Talling P J, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2):58-67. doi: 10.5670/oceanog.2014.40

    [9]

    Wang X X, Cai F, Sun Z L, et al. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha Slope, South China Sea[J]. Geomorphology, 2022, 410:108285. doi: 10.1016/j.geomorph.2022.108285

    [10] 李梦君, 毕乃双, 胡丽沙, 等. 南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义[J]. 海洋地质与第四纪地质, 2019, 39(4):23-33

    LI Mengjun, BI Naishang, HU Lisha, et al. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV "Jiaolong" in the Taiwan Submarine Canyon, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(4):23-33.]

    [11] 王长盛, 朱俊江, 赵冬冬, 等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿, 2021, 37(3):1-15

    WANG Changsheng, ZHU Junjiang, ZHAO Dongdong, et al. Origin and evolution of submarine canyons[J]. Marine Geology Frontiers, 2021, 37(3):1-15.]

    [12]

    Yu H S, Chiang C S, Shen S M. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon[J]. Journal of Marine Systems, 2009, 76(4):369-382. doi: 10.1016/j.jmarsys.2007.07.010

    [13]

    Li S, Li W, Alves T M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, Northeast South China Sea[J]. Marine Geology, 2020, 424:106158. doi: 10.1016/j.margeo.2020.106158

    [14]

    Talling P J, Baker M L, Pope E L, et al. Longest sediment flows yet measured show how major rivers connect efficiently to deep sea[J]. Nature Communications, 2022, 13(1):4193. doi: 10.1038/s41467-022-31689-3

    [15]

    Forel F A. Les ravins sous-lacustres des fleuves glaciaires[J]. Comptes Rendus de l’Académie des Sciences Paris, 1885, 101:725-728.

    [16]

    Kuenen P H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen, 1937, 8(2):327-351.

    [17]

    Felix M, Sturton S, Peakall J. Combined measurements of velocity and concentration in experimental turbidity currents[J]. Sedimentary Geology, 2005, 179(1-2):31-47. doi: 10.1016/j.sedgeo.2005.04.008

    [18]

    Nogueira H I S, Adduce C, Alves E, et al. Analysis of lock-exchange gravity currents over smooth and rough beds[J]. Journal of Hydraulic Research, 2013, 51(4):417-431. doi: 10.1080/00221686.2013.798363

    [19]

    Ho V L, Dorrell R M, Keevil G M, et al. Pulse propagation in turbidity currents[J]. Sedimentology, 2018, 65(2):620-637. doi: 10.1111/sed.12397

    [20]

    Bowen A J, Normark W R, Piper D J W. Modelling of turbidity currents on Navy submarine fan, California continental borderland[M]//Stow D A V. Deep‐Water Turbidite Systems. International Association of Sedimentologists, 1991: 7-23.

    [21]

    Stacey M W, Bowen A J. The vertical structure of turbidity currents and a necessary condition for self‐maintenance[J]. Journal of Geophysical Research:Oceans, 1988, 93(C4):3543-3553. doi: 10.1029/JC093iC04p03543

    [22]

    Abd El-Gawad S M, Pirmez C, Cantelli A, et al. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta[J]. Marine Geology, 2012, 326-328:55-66. doi: 10.1016/j.margeo.2012.06.003

    [23]

    Salles T, Mulder T, Gaudin M, et al. Simulating the 1999 Capbreton canyon turbidity current with a Cellular Automata model[J]. Geomorphology, 2008, 97(3-4):516-537. doi: 10.1016/j.geomorph.2007.09.005

    [24]

    Basani R, Janocko M, Cartigny M J B, et al. MassFLOW‐3DTM as a simulation tool for turbidity currents: some preliminary results[M]//Martinius A W, Ravnås R, Howell J A, et al. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Chichester: Wiley Blackwell, 2014: 587-608.

    [25]

    Sun Y N, Li J, Cao Z X, et al. Effect of tributary inflow on reservoir turbidity current[J]. Environmental Fluid Mechanics, 2023, 23(2):259-290. doi: 10.1007/s10652-022-09856-3

    [26]

    Heimsund S. Numerical simulation of turbidity currents: a new perspective for small-and large-scale sedimentological experiments[D]. Master Dissertation of the University of Bergen, 2007.

    [27]

    Heimsund S, Xu J P, Nemec W. Numerical simulation of recent turbidity currents in the Monterey Canyon system, offshore California[C]//AGU Fall Meeting Abstracts. 2007.

    [28] 栾坤祥. 南海北部海底峡谷识别方法构建与峡谷特征分析[D]. 国家海洋局第一海洋研究所硕士学位论文, 2017

    LUAN Kunxiang. The construction identification method of submarine canyon and characteristics analysis of northern South China sea[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2017.]

    [29] 张春生, 刘忠保, 施冬, 等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报, 2002, 20(1):25-29

    ZHANG Chunsheng, LIU Zhongbao, SHI Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1):25-29.]

图(10)  /  表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  2
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 修回日期:  2023-11-26
  • 刊出日期:  2024-08-25

目录

    JIN Zikun

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回