中国西北地区中晚全新世火历史集成重建与气候演化

刘剑波, 李建勇, 韩岳婷, 杨锐, 韩潇潇, 徐浩

刘剑波,李建勇,韩岳婷,等. 中国西北地区中晚全新世火历史集成重建与气候演化[J]. 海洋地质与第四纪地质,2024,44(1): 156-169. DOI: 10.16562/j.cnki.0256-1492.2023022302
引用本文: 刘剑波,李建勇,韩岳婷,等. 中国西北地区中晚全新世火历史集成重建与气候演化[J]. 海洋地质与第四纪地质,2024,44(1): 156-169. DOI: 10.16562/j.cnki.0256-1492.2023022302
LIU Jianbo,LI Jianyong,HAN Yueting,et al. Integrated reconstruction of fire history and climatic changes in Northwest China since mid-late Holocene[J]. Marine Geology & Quaternary Geology,2024,44(1):156-169. DOI: 10.16562/j.cnki.0256-1492.2023022302
Citation: LIU Jianbo,LI Jianyong,HAN Yueting,et al. Integrated reconstruction of fire history and climatic changes in Northwest China since mid-late Holocene[J]. Marine Geology & Quaternary Geology,2024,44(1):156-169. DOI: 10.16562/j.cnki.0256-1492.2023022302

中国西北地区中晚全新世火历史集成重建与气候演化

基金项目: 国家自然科学基金“新疆西部博尔塔拉河流域相对花粉产量估算及其应用”(41801090)
详细信息
    作者简介:

    刘剑波(1999—),男,硕士研究生,主要从事第四纪环境研究, E-mail:2410386566@qq.com

    通讯作者:

    李建勇(1987—),男,教授,主要从事气候变化与植被生态恢复、人类活动与环境相互作用等方面的研究,E-mail: lijy@nwu.edu.cn

  • 中图分类号: P532

Integrated reconstruction of fire history and climatic changes in Northwest China since mid-late Holocene

  • 摘要:

    为了探讨西北地区古火演化及其驱动机制,基于28个样点的炭屑和黑碳记录,集成重建该区8 kaBP的古火变化序列;同时结合古植被、古气候、历史文献等记录,分析了古火活动与气候变化和人类活动之间的关系。结果表明:西北地区中晚全新世火历史可以划分为4个阶段;① 火活动波动阶段(8~6 kaBP),古火事件发生频繁,主要受气候变化的影响;② 火活动平稳阶段(6~4 kaBP),气候趋于暖湿化,植被有所发展,贮藏了一定的燃烧质;③ 火活动快速上升阶段(4~2 kaBP),人类活动成为火事件的主要影响因素,古火活动频率呈现不断上升的趋势;④ 火活动大范围发生阶段(2~0 kaBP),气候由湿冷向干冷转化,生物质干燥易燃,农业快速发展,朝代更替和战争频繁,火活动异常剧烈。

    Abstract:

    A total of 28 records of charcoal and black carbon were used to reconstruct the evolution and driving mechanism of paleofire events in Northwest China in the past 8 ka. Combined with paleovegetation, paleoclimate, and historical records, relationship among paleofire activity, climate change, and human impact was analyzed. Results show that during the middle and late Holocene, fire history in Northwest China can be divided into four stages: (1) the fluctuation stage of fire activity (8~6 kaBP), paleofire events occurred frequently and were mainly affected by climate change; (2) the stable stage of fire activity (6~4 kaBP), when the climate tended to be warm and humid, vegetation developed and stored a certain amount of combustible material; (3) the rapid rise stage of fire activity (4~2 kaBP), human activities became the main influencing factor for fire events, and the frequency of fire activities showed a rising trend; (4) the stage of large-scale fire activity (2~0 kaBP), the climate changed from wet-cold to dry-cold, biomass was dry and flammable, agriculture developed rapidly, dynasty changed and frequent wars occurred, and the fire activity was exceptionally intense.

  • 烃源岩时空分布是影响并控制油气资源分布的主要因素[],但由于沉积环境变化导致烃源岩时空分布存在明显差异。前人对于湖相烃源岩的研究[-],普遍认为强烈裂陷期古水体深,湖泊底部较易形成欠补偿的还原环境,有利于有机质保存。但对于拗陷期是否具备优质湖相烃源岩发育条件缺乏系统研究和认识,普遍认为拗陷期湖水浅、风大、湖底充氧,有机质可能难以保存[]。本文针对桑托斯盆地盐下拗陷期开展古生物学与地球化学研究,探讨古湖泊的沉积古地理-古气候背景以及沉积水介质的物理化学条件,从而重建烃源岩沉积环境,并总结拗陷期烃源岩发育模式,为拗陷期湖泊烃源岩发育条件提供新的案例。

    桑托斯盆地位于巴西东南部海域,北邻坎波斯盆地,南邻佩洛塔斯盆地,盆地面积约32.7万km2,水深0~3200 m(图1)。桑托斯盆地与北部的坎波斯盆地和埃斯皮里图桑托盆地共同构成大坎波斯盆地,它们具有相似的构造演化和沉积充填史,为典型的被动大陆边缘盆地,石油地质条件均十分优越,目前已获得大量油气发现[-]

    图 1 桑托斯盆地地理位置及重点井位
    图  1  桑托斯盆地地理位置及重点井位
    Figure  1.  Location of the Santos Basin and key wells

    桑托斯盆地是一个典型的被动大陆边缘盆地,其形成演化与中生代以来冈瓦纳大陆的解体以及大西洋的扩张有关。构造演化和沉积充填可以划分为3个沉积构造演化阶段[-]:早白垩世裂谷期湖相沉积、Aptian过渡期盐岩沉积和晚白垩世—新生代漂移期海相沉积(图2)。

    图 2 桑托斯盆地地层-构造演化综合柱状图
    图  2  桑托斯盆地地层-构造演化综合柱状图
    Figure  2.  An integrated stratigraphic column showing tectonic evolution of the Santos Basin

    其中早白垩世裂谷期,盆地构造活动强烈,断裂普遍发育,形成了多个东北走向的大型隆起和坳陷带,表现出隆坳相间的断陷结构。盆地总体较为宽缓,表现出湖广水深的特征,主要沉积了一套厚层的陆相河湖体系。整体上,裂谷期经历了4个演化阶段(图3):

    图 3 研究区盐下裂谷期构造演化剖面图
    图  3  研究区盐下裂谷期构造演化剖面图
    Figure  3.  Tectonic evolution profile of pre-salt rift in the study area

    (1)初始断陷阶段(Neocomian-Barremian早期):以发育小位移的板状基底断层为主,地壳均匀伸展,且断层活动性差异小。同时伴随着多区带强烈火山活动,地层充填整体上以Camboriu组喷发玄武岩为主,这也为晚期生物灰岩发育提供了古构造背景,局部地区为湖泊、冲积扇相的砂泥岩沉积。

    (2)强烈断陷阶段(Barremian中期):断层活动强烈,基底断块差异升降和掀斜变形,表现出垒堑相间的断陷结构。区域伸展速率和沉降幅度大,沉积环境呈现湖广水深的特点,以发育巨厚的Picarras组(PIC组)湖相地层为主。

    (3)断拗转换阶段(Barremian晚期—Aptian早期):断裂活动整体减弱,伸展位移相对均匀地分布在不同断层上,地形高差小,表现出坳陷的结构。沉积充填Itapema组(ITP组),浅水区发育贝壳灰岩,深水区为湖相页岩、泥灰岩沉积。

    (4)拗陷阶段(Aptian中—晚期):区内断裂发育少且活动微弱,发育稳定分布的Barra Velha组(BV组),岩性以藻叠层石灰岩为主,较深水区则发育湖相页岩和泥灰岩。

    其中在Camboriu组、ITP组、BV组沉积时期,盆地内多区带均伴随着强烈火山活动,发育大量喷发溢流相玄武岩,局部发育侵入岩,以辉绿岩为主,局部发育辉长岩、煌斑岩(图4)。

    图 4 研究区典型岩浆岩薄片
    图  4  研究区典型岩浆岩薄片
    Figure  4.  Typical thin section images of magmatic rocks in the study area

    区域钻井证实断陷期PIC组—断拗转换期ITP组深湖相泥页岩和泥灰岩为一套广泛分布的优质湖相烃源岩,而关于拗陷期BV组是否广泛具备优质烃源岩发育条件,有待进一步证实。

    桑托斯盆地在裂谷期整体处于微咸水-半咸水环境,有机质以蓝藻类和细菌为主,无定型有机质占有机质总量的90%以上(图5)。整体上具有有机质类型好、丰度高、生烃潜力大的特点。

    图 5 研究区盐下断陷湖相烃源岩有机质组成
    图  5  研究区盐下断陷湖相烃源岩有机质组成
    Figure  5.  Organic matter composition of pre-salt lacustrine source rock in study area

    裂谷期沉积时期,盆地整体气候干燥,沉积物中以代表干旱环境的克拉梭粉、阔三沟粉、似木贼孢、三气囊花粉为主,仅近岸存在小范围湿润环境,河流体系整体不发育,陆源碎屑供给少,这正是桑托斯盆地盐下裂谷期湖相碳酸盐岩发育的有利条件[-]

    BV组沉积时期,地球化学分析显示,水体营养丰富,营养物质输入丰富[]。这主要是由于盆地及周缘火山岩发育,同时伴随着间歇性火山活动,而干燥的气候背景下,湖盆主要依赖地下水进行补给,地下水流经火山岩会溶解其营养元素,携带至湖盆中,同时间歇性火山活动也会不定期带来丰富的火山灰等营养物质[],具备了藻类勃发的古地理背景与物源供给条件。

    湖相烃源岩的发育与湖泊古水体盐度关系密切,主要是由于古盐度可直接影响古湖泊水体分层,从而影响有机质保存条件,强烈的水体分层可以在浅水背景下的湖底形成强还原环境[-]。本文通过对桑托斯盆地盐下湖相介形虫盐度标志种和水深标志种的分析,重建沉积时期古水体盐度和深度变化。

    湖水盐度会影响沉积期湖盆中造礁或成滩生物的繁盛程度,其中贝壳类等软体动物在低盐度淡水水体中较为繁盛,而各类造礁微生物在盐度相对较高的半咸水-咸水水体中更为繁盛。

    从贝壳灰岩至微生物礁灰岩存在一个氧同位素正偏的趋势(图6),表明自贝壳灰岩至微生物礁灰岩沉积时期,蒸发作用逐渐增强。其中在ITP组贝壳灰岩样品中,以偏负的碳氧同位素指标为主,这表明在沉积贝壳灰岩时期,沉积水体盐度相对较低,为正常盐度水体,适于贝壳类生物群落发育;而在BV组微生物礁灰岩样品中,以显著正偏的氧同位素指标为特征,指示水体中因轻同位素组分流失而使得沉积物中富集重同位素组分,也即在微生物礁灰岩沉积时期,由于蒸发作用和海侵作用导致湖盆水体咸化,盐度相对较高,而这样的水体环境不适宜贝壳类生物的生存,但可以促进造礁微生物的繁盛。同时,在两期沉积内部同位素变化不大,表明水体盐度在两个沉积时期均较为稳定,适于发育湖相生物灰岩沉积。

    图 6 研究区典型井碳氧同位素特征图
    图  6  研究区典型井碳氧同位素特征图
    Figure  6.  Carbon-oxygen isotope features in typical wells

    随后,基于对盐下碳酸盐岩样品中介形虫化石古生态学分析[],进一步确定了沉积时期古水深及盐度。介形虫对盐度反应非常敏感,随着盐度升高,仅能在淡水和低盐度水体中生存的淡水种-微咸水种快速消失,取而代之为半咸水种和咸水种。在巴西盐下湖相生物灰岩中的介形虫化石,根据盐度指标可分为淡水种、微咸水种、半咸水种和咸水种四类。在贝壳灰岩沉积期介形虫以淡水种—微咸水种占绝对优势,指示ITP组贝壳灰岩沉积期为淡水—微咸水环境;而叠层石灰岩沉积期则以半咸水—咸水种占明显优势(图7),指示BV组微生物礁灰岩沉积期为半咸水—咸水环境。

    图 7 研究区典型井盐下地层介形虫分布特征
    图  7  研究区典型井盐下地层介形虫分布特征
    Figure  7.  The distribution of ostracods in pre-salt strata in typical wells

    此外,盐下生物灰岩沉积时期整体为浅湖环境,且呈现水退的趋势,但在断陷晚期ITP组贝壳灰岩的发育初期和末期,以及拗陷期BV组的发育中期,发生多期较大规模的幕式海侵。这一论断已被学者通过多种资料证实,如Mello和Hessel[]从贝壳灰岩地层中的生物标识化合物、地质和古微生物等数据推断了在早Barremian时期就存在海侵作用;Silva-Telles Jr等[]在贝壳灰岩与泥岩互层中识别出了螺旋锥状有孔虫,提出坎波斯盆地在OS-1010至OS-1100生物带地层中存在海侵现象;同时,通过钻井岩芯分析发现多井段存在海绿石。海侵作用导致水体盐度增加,并带来丰富的营养物质。

    前人通过对国内外不同盆地优质烃源岩研究分析,发现优质烃源岩形成的必要条件是湖泊具有一定的生物生产力[-],从而为优质烃源岩发育提供物质基础。

    桑托斯盆地盐下裂谷期沉积时期,盆地整体气候干旱,沉积物中以代表干旱环境的克拉梭粉-阔三沟粉-似木贼孢-三气囊花粉为主,仅含少量代表潮湿环境的孢粉,指示近岸小范围的湿润环境。干旱气候背景下,河流水系不发育,陆源碎屑供给较少,这正是桑托斯盆地盐下发育大规模碳酸盐岩的原因之一。地球化学分析结果显示[]图8),沉积时期水体营养丰富,但其中Al含量整体相对较小,仅局部含量相对较高,而Al被认为是陆源物质输入的代表元素,低含量指示陆源物质输入较少,主要以地下的水化学输入为主。

    图 8 研究区盐下地层化学元素含量分析 [21]
    图  8  研究区盐下地层化学元素含量分析 []
    Figure  8.  The analysis of chemical element content in the pre-salt strata []

    桑托斯盆地及周边早白垩世火山岩发育,且干旱的气候背景下,古湖盆主要依靠地下水对湖泊进行补给,此外,在ITP组和BV组沉积时期,湖盆发育了多期海侵,海侵事件同样会带来大量营养元素,丰富的营养供给使得造礁生物、浮游生物藻类勃发,由此可见,在拗陷期BV组沉积时期,水体营养丰富,藻类勃发,古生产力较高。

    区域钻井揭示断陷期PIC组-断拗转换期ITP组深湖相泥页岩和泥灰岩烃源岩干酪根类型主要为Ⅰ型,TOC含量1%~15.9%,平均可达5.1%,HI可达500~1084 mg HC/g TOC,S1+S2平均可达37 mg/g(图9)。而对于拗陷期BV组烃源岩,目前仅有5个样品点,均位于构造高部位叠层石灰岩发育区,为泥质微生物灰岩(图10),其TOC为1.7%~3.77%,生烃潜力及干酪根类型与断陷期烃源岩类似,体现了优质湖相烃源岩的特点。

    图 9 研究区盐下湖相烃源岩地化指标关系图
    图  9  研究区盐下湖相烃源岩地化指标关系图
    A:S1+S2与TOC关系图,B:HI与OI关系图。
    Figure  9.  Geochemical indicators of lacustrine source rock in study area
    A: diagram of SI+S2 vs. TOC, B: diagram of HI vs. OI
    图 10 研究区BV组烃源岩岩芯样品照片
    图  10  研究区BV组烃源岩岩芯样品照片
    Figure  10.  Core samples photos of source rocks in the BV Formation in study area

    高的古生产力,并不代表沉积物中有机质丰度高,沉积下来的有机质经历氧化消耗而残存下来的方可被埋藏保存。可见,有机质能否得以保存对烃源岩的形成至关重要。

    古生物分析显示,拗陷期BV组沉积时期,为宽浅、半咸水—咸水环境,从而可形成稳定的盐度分层,在湖泊顶部为低盐度富氧层,而在底部形成的高盐度缺氧层则为强还原环境,有利于有机质保存。较高的古生产力、良好的保存条件为拗陷期烃源岩发育提供了可能。由于目前盐下钻井主要钻探高部位碳酸盐岩发育区,目前掌握资料中尚未有钻井揭示洼陷区BV组烃源岩,但从地震上可见典型的盐下优质湖相烃源岩反射特征——低频连续强反射(图11)。同时,桑托斯盆地共轭的西非宽扎盆地,已有钻井揭示近200 m拗陷期优质湖相烃源岩,TOC为3%~6%,部分可达9.5%。

    图 11 研究区盐下拗陷期BV组湖相烃源岩典型地震相特征
    图  11  研究区盐下拗陷期BV组湖相烃源岩典型地震相特征
    Figure  11.  Typical seismic characteristics of the source rock in BV Formation

    拗陷期BV组烃源岩发育是否在一定程度上拓宽了桑托斯盐下勘探潜力,早期认为裂陷期PIC-ITP组烃源岩为盆地盐下主力烃源岩,主要发育于深洼区,拗陷期烃源岩发育在一定程度上扩展了烃源岩的平面分布范围。

    桑托斯盆地盐下拗陷期BV组沉积时期,整体构造稳定,为宽浅湖盆。

    地化分析显示,反映陆源输入的Al含量整体偏低,指示陆源输入较少,主要以地下水化学输入为主。同时由于周缘周期性火山活动及间接性海侵为湖泊提供了丰富的营养元素,沉积时期古水体整体营养丰富,藻类勃发,古生产力高。

    在干旱气候背景下,蒸发作用对古水体盐度增加有一定影响。桑托斯盆地碳、氧同位素的分析结果显示,从ITP组贝壳灰岩至BV组微生物礁灰岩存在一个氧同位素正偏的趋势,表明自贝壳灰岩至微生物礁灰岩沉积时期,蒸发作用逐渐增强。同时,古水体盐度敏感介形虫种属显示,在拗陷期BV组沉积时期,整体以半咸水—咸水种占明显优势,指示沉积时期为半咸水—咸水环境,使得湖泊水体有了稳定的盐度分层,坳陷沉积中心较易形成高盐度缺氧还原环境,利于有机质保存,从而发育相对优质的拗陷期湖相烃源岩(图12)。

    图 12 研究区盐下拗陷期BV组烃源岩发育模式
    图  12  研究区盐下拗陷期BV组烃源岩发育模式
    Figure  12.  The development model for the source rock of the BV Formation in study area

    (1)桑托斯盆地盐下拗陷期BV组沉积时期,湖泊水体营养丰富,藻类勃发,古生产力高。同时由于沉积时期水体盐度较高,为半咸水—咸水环境,虽为宽浅湖泊,但干旱的气候背景下,较易形成盐度分层,从而在湖泊底层形成稳定的强还原环境,利于有机质保存。整体上,桑托斯盆地盐下拗陷期BV组具备优质烃源岩发育条件。

    (2)研究区拗陷期烃源岩发育不仅拓宽了桑托斯盐下优质湖相烃源岩发育层系,同时由于断陷期优质湖相烃源岩主要分布于深洼区,而拗陷期优质烃源岩分布相对更为广泛,这在一定程度上扩展了盐下优质湖相烃源岩平面展布范围,提升了盆地勘探潜力。同时本文相关研究在一定程度上完善了湖相烃源岩发育沉积模式,填补了前人关于拗陷期是否发育烃源岩认识的空白。

  • 图  4   西北季风区与西风区火活动标准化指数对比

    a:高陵杨官寨[25],b:东夏丰北[26],c:陕西白水尧禾村[24],d:青海共和盆地[34],e:可鲁克湖[30],f:新疆天山[33]

    Figure  4.   Comparison of fire activity standardization index between northwest monsoon region and westerly region

    a: Yangguanzhai in Gaoling[25], b: DongXiaFengbei[26], c: Yaohe Village in Baishui, Shaanxi[24], d: Gonghe Basin in Qinghai[34], e: Keruk Lake in Xinjian[35], f: Tianshan Mountain in Xinjiang[38].

    图  1   本文综述的中国西北地区全新世炭屑、黑碳、孢粉沉积记录研究点位分布示意图

    审图号 GS(2019)1823号。

    Figure  1.   Schematic diagram of the distribution of research sites on the Holocene charcoal, black carbon, and sporopollen deposition records in Northwest China

    Drawing review number: GS(2019)1823.

    图  2   西北地区火活动及气候指标对比

    A:西北地区8 kaBP炭屑记录归一化指数(本文);B:黑碳标准化指数(本文);C:西北地区与中国全域温度距平[56-59];D:西北地区湿度变化模式[55],其中a为湿度变化曲线,b为西风模式,c为东亚季风模式,d为太阳辐射。

    Figure  2.   Comparison of fire activity and climate index in Northwest China

    A: Normalization index of 8 kaBP charcoal recorded in Northwest China (this paper); B: carbon black standardization index (this paper); C: global temperature anomaly between Northwest China and entire China[56-59]; D: humidity change model in Northwest China[55], a: humidity change curve; b: westerly wind model; c: East Asian monsoon model; d: solar radiation.

    图  3   氧同位素及碳酸盐指数对比

    a: 董哥洞[60],b: 敦德冰芯[32],c: 古里雅冰芯[32],d: 玛纳斯湖[55],e: 乌伦古湖[55],f: 青海湖[55],g: 岱海碳酸盐含量[55]

    Figure  3.   Comparison of oxygen isotope (δ18O) and carbonate index

    a: Dongge Cave[60], b: Dunde Ice Core[32], c: Guriya Ice Core [32], d: Manas Lake[55], e: Wulungu Lake[55], f: Qinghai Lake[55], g: carbonate content in Daihai Lake[55].

    图  5   西北地区火历史与全国火历史及气候、植被指数对比

    a:8 kaBP炭屑归一化指数(本文),b:全国火历史趋势[38],c:黑碳标准化指数(本文),d:孢粉浓度标准化指数(本文),e:温度距平[56-59]

    Figure  5.   Comparison of fire history in Northwest China with China’s national fire history and climate vegetation index

    a: 8 kaBP normalized index of carbon chips (this paper),b: national fire historical trend[38], c: normalized index of carbon black (this paper), d: normalized index of sporopollen concentration (in this paper), e: temperature anomaly[56-59].

    图  6   西北地区2 kaBP火历史与战争、气候指数对比

    a:炭屑标准化指数(本文),b:黑碳标准化指数(本文),c:耕地面积变化[87],d:每30年战争数[87],e:温度[56-59],f:湿度指数[53]

    Figure  6.   Comparison of 2 kaBP fire history, war, and climate index in Northwest China

    a: Standardized index of charcoal (this paper), b: standardized index of carbon black (this paper), c: change of cultivated land area[87], d: number of wars every 30 years[87], e: temperature[56-59], f: humidity index[53].

    表  1   中国西北地区中晚全新世火记录不完全统计

    Table  1   Statistics of the Middle and Late Holocene fire records (incomplete) in Northwest China

    序号点位地点位置指标研究方法测年文献
    1JYC扶风蒋阳村34°28′N、107°53′E炭屑薄片计数法OSL[21]
    2MJY甘肃合水马家塬36°2′N、108°10′E炭屑薄片计数法OSL[22]
    3HGZ陇东后官寨35°41′N、107°35′E炭屑薄片计数法AMS 14C[23]
    4QC陇东桥村38°39'N、100°43′E炭屑薄片计数法AMS 14C[23]
    5ZJC甘肃平凉赵家村35°41′51.9″N、106°52′57.8″E炭屑薄片计数法OSL[24]
    6YGZ高陵杨官寨34°28′13″N、109°0′59″E炭屑薄片计数法AMS 14C[25]
    7ETC黄土高原二塘村34°55′12″N、107°52′12″E炭屑薄片计数法OSL[26]
    8DXF-N黄土高原东夏丰北35°2′24″N、111°34′48″E炭屑薄片计数法OSL[26]
    9DXF-S黄土高原东夏丰南35°1′48″N、111°34′12″E炭屑薄片计数法OSL[26]
    10XJN黄土高原徐建遗址35°4′48″N、106°9′0″E炭屑薄片计数法OSL[26]
    11WLP岐山五里铺34°26′N、107°45′E炭屑薄片计数法OSL[27]
    12XDW青藏高原下大武地区35°0′6.9″N、99°15′37.7″E炭屑薄片计数法AMS 14C[28]
    13JXG青海湖江西沟36°35′25″N、100°17′47″E炭屑薄片计数法AMS 14C[29]
    14QLB青海湖盆地36°14′58″N、101°12′16″E炭屑薄片计数法OSL[27]
    15HL-1青海可鲁克湖37°16′N、96°54′E炭屑薄片计数法AMS 14C[30]
    16ZB08-C1若尔盖盆地33°27′N、102°38'E炭屑薄片计数法AMS 14C[31]
    17YHC陕西白水尧禾村35°4′27″N、109°16′45″E炭屑薄片计数法OSL[24]
    18XHC咸阳长武35°08′50″N、107°55′55.5″E炭屑薄片计数法AMS 14C[32]
    19WQ-1新疆天山44°97′N、80°11′E炭屑薄片计数法AMS 14C[33]
    20KE青海共和盆地35°38.7′N、101°06′E炭屑薄片计数法AMS 14C[34]
    21ALHK新疆阿拉哈克盐湖47°41′37″N、87°32′40.5″E炭屑薄片计数法AMS 14C[35]
    22DZP青海高庙盆地36°26′28″N、102°34′51″E炭屑薄片计数法AMS 14C[19]
    23SLMH新疆赛里木湖44°35′N、81°15′E炭屑薄片计数法AMS 14C[36]
    24CCC宁夏彭阳35°52′N、106°46′E黑碳化学氧化法AMS 14C[37]
    25CDL12A青海草褡裢湖37°3′50.4″N、100°27′43.2″E黑碳化学氧化法AMS 14C[38]
    26PG1950新疆卡拉库里湖38°26′20.4″N、75°3′25.2″E黑碳化学氧化法AMS 14C[38]
    27GSA07六盘山天池35°15′0″N、106°18′0″E黑碳化学氧化法AMS 14C[38]
    28YHC16A陕西玉皇池33°56′24″N、107°45′36″E黑碳化学氧化法AMS 14C[38]
    29HLGU新疆乌伦古湖47°15′43.2″N、87°9′21.6″E孢粉薄片计数法AMS 14C[39]
    30ML-1新疆玛纳斯湖45°48′10.44″N、85°57′33.84″E孢粉薄片计数法AMS 14C[40]
    31WN陕西渭南34°59′17.7″N、109°48′44.3″E孢粉薄片计数法AMS 14C[41]
    32SJC青海三角城38°38′49.2″N、102°33′7.2″E孢粉薄片计数法AMS 14C[42]
    33QJ-2000青海湖36°37′N、100°31′E孢粉薄片计数法AMS 14C[43]
    34JDG甘肃九道沟40°30′N、96°39′E孢粉薄片计数法AMS 14C[44]
    35MGH新疆蘑菇湖湿地44°25′39.3″N、85°54′35.6″E孢粉薄片计数法AMS 14C[45]
    36CTHC新疆草滩湖村湿地44°25′06″N、86°01.26′E孢粉薄片计数法AMS 14C[46]
    37DDHZ新疆东道海子44°41.7′N、89°33.5′E孢粉薄片计数法AMS 14C[47]
    下载: 导出CSV
  • [1] 张健平, 吕厚远. 现代植物炭屑形态的初步分析及其古环境意义[J]. 第四纪研究, 2006, 26(5): 857-863

    ZHANG Jianping, LÜ Houyuan. Preliminary study of charcoal morphology and its environmental significance[J]. Quaternary Sciences, 2006, 26(5): 857-863.

    [2]

    Zhang Z Q, Zhong J J, Lv X G, et al. Climate, vegetation, and human influences on late-Holocene fire regimes in the Sanjiang plain, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 1-8.

    [3] 李宜垠, 侯树芳, 赵鹏飞. 微炭屑的几种统计方法比较及其对人类活动的指示意义[J]. 第四纪研究, 2010, 30(2): 356-363

    LI Yiyin, HOU Shufang, ZHAO Pengfei. Comparison of different quantification methods for microfossil charcoal concentration and the implication for human activities[J]. Quaternary Sciences, 2010, 30(2): 356-363.

    [4]

    Xue J B, Zhong W, Li Q, et al. Holocene fire history in eastern monsoonal region of China and its controls[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496: 136-145.

    [5]

    Miao Y F, Song Y G, Li Y, et al. Late Pleistocene fire in the Ili Basin, Central Asia, and its potential links to paleoclimate change and human activities[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547: 109700.

    [6]

    Ji P P, Chen J H, Zhou A F, et al. Biofuels reserve controlled wildfire regimes since the last deglaciation: a record from Gonghai Lake, North China[J]. Geophysical Research Letters, 2021, 48(16): e2021GL094042.

    [7] 占长林, 曹军骥, 韩永明, 等. 古火灾历史重建的研究进展[J]. 地球科学进展, 2011, 26(12): 1248-1259

    ZHAN Changlin, CAO Junji, HAN Yongming, et al. Research progress on reconstruction of paleofire history[J]. Advances in Earth Science, 2011, 26(12): 1248-1259.

    [8] 江鸿, 饶志国. 火的历史重建及其与气候变化和人类活动关系研究进展[J]. 海洋地质与第四纪地质, 2018, 38(2): 185-197

    JIANG Hong, RAO Zhiguo. Research progress on fire history reconstruction and its implications for climate change and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 185-197.

    [9] 穆燕, 秦小光, 刘嘉麒, 等. 黑碳的研究历史与现状[J]. 海洋地质与第四纪地质, 2011, 31(1): 143-155

    MU Yan, QIN Xiaoguang, LIU Jiaqi, et al. A review of black carbon study: history and current status[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 143-155.

    [10] 吕静, 王宇飞, 李承森. 古炭屑与古森林火[J]. 古地理学报, 2002, 4(2): 71-76

    LÜ Jing, WAMG Yufei, LI Chengsen. Fossil charcoal and ancient forest fire[J]. Journal of Palaeogeography, 2002, 4(2): 71-76.

    [11] 徐鑫, 李宜垠. 基于3种不同类型的炭屑数据定量重建大兴安岭火历史的结果对比[J]. 第四纪研究, 2015, 35(4): 960-966

    XU Xin, LI Yiyin. Comparison of the fire history reconstructions from three different kinds of charcoal data on the same site, Daxing’an Mountain[J]. Quaternary Sciences, 2015, 35(4): 960-966.

    [12] 杜建峰, 王宁练, 李建勇, 等. 洛阳盆地全新世炭屑记录及其古环境意义[J]. 第四纪研究, 2022, 42(2): 383-396

    DU Jianfeng, WANG Ninglian, LI Jianyong, et al. Charcoal records of Holocene loess-soil sequences and palaeoenvironmental significance in the Luoyang Basin[J]. Quaternary Sciences, 2022, 42(2): 383-396.

    [13]

    Novenko E Y, Rudenko O V, Mazei N G, et al. Late-Holocene vegetation and fire history in Western Putorana Plateau (subarctic Siberia, Russia)[J]. The Holocene, 2022, 32(5): 433-441.

    [14] 庞洋, 周斌, 徐向春, 等. 中国东部季风区全新世火历史及其影响因素[J]. 第四纪研究, 2022, 42(2): 368-382

    PANG Yang, ZHOU Bin, XU Xiangchun, et al. Holocene fire history and its influencing factors in the monsoon region of East China[J]. Quaternary Sciences, 2022, 42(2): 368-382.

    [15] 裴文强. 中国边缘海黑碳记录的长江、珠江流域火历史[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2020

    PEI Wenqiang. Fire history in the Yangtze River and Pearl River Basins: black carbon records from the China seas[D]. Doctor Dissertation of Institute of Oceanography, China Academy of Sciences, 2020.

    [16] 李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4): 1180-1194

    LI Ming, SUN Hongquan, SU Zhicheng. Research progress in dry/wet climate variation in Northwest China[J]. Geographical Research, 2021, 40(4): 1180-1194.

    [17] 徐国昌, 姚辉. 中国西部全新世历史气侯的变化[J]. 水科学进展, 1991, 2(4): 277-288

    XU Guochang, YAO Hui. Historical climate changes of the West China in the Holocene[J]. Advances in Water Science, 1991, 2(4): 277-288.

    [18] 姚轶锋, 王霞, 谢淦, 等. 新疆地区全新世植被演替与气候环境演变[J]. 科学通报, 2015, 60(31): 2963-2976

    YAO Yifeng, WANG Xia, XIE Gan, et al. Holocene vegetation succession and climate-environment change in Xinjiang Region[J]. Chinese Science Bulletin, 2015, 60(31): 2963-2976.

    [19] 刘瑾. 内蒙古中东部湖泊沉积记录的全新世以来的气候变化[D]. 中国地质大学(北京)博士学位论文, 2017

    LIU Jin. Paleoclimate changes during Holocene recorded by lake sediment in central East Inner Mongolia[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2017.

    [20] 王晾晾. 多种代用气候指标揭示的西部干旱区全新世气候环境变化[D]. 兰州大学硕士学位论文, 2009

    WANG Liangliang. Multi-proxy data analysis on Holocene climate changes in western arid China[D]. Master Dissertation of Lanzhou University, 2009.

    [21] 谭志海, 黄春长, 庞奖励, 等. 渭河流域全新世土壤剖面木炭屑记录及其古环境意义[J]. 中国生态农业学报, 2010, 18(1): 25-30

    TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Charcoal records of Holocene loess-soil sequences and its palaeoenvironmental significance in Weihe River Drainage[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 25-30.

    [22] 谭志海, 黄春长, 庞奖励, 等. 陇东黄土高原北部全新世野火历史的木炭屑记录[J]. 第四纪研究, 2008, 28(4): 733-738

    TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Charcoal recorded Holocene fire history in the northern part of the Longdong Loess Plateau[J]. Quaternary Sciences, 2008, 28(4): 733-738.

    [23] 周新郢, 李小强, 赵克良, 等. 陇东地区新石器时代的早期农业及环境效应[J]. 科学通报, 2011, 56(4-5): 318-326

    ZHOU Xinying, LI Xiaoqiang, ZHAO Keliang, et al. Early agricultural development and environmental effects in the Neolithic Longdong basin (eastern Gansu)[J]. Chinese Science Bulletin, 2011, 56(8): 762-771.

    [24] 谭志海, 黄春长, 庞奖励, 等. 渭河流域全新世以来野火历史与人类土地利用的炭屑记录[J]. 吉林大学学报: 地球科学版, 2014, 44(4): 1297-1306

    TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Wildfire history and human land use over Weihe River Basin Since Holocene: evidence from charcoal records[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(4): 1297-1306.

    [25] 范汇晨. 高陵杨官寨遗址剖面全新世火历史的黑碳记录与人类活动[D]. 西安工程大学硕士学位论文, 2017

    FAN Huichen. The black carbon record of Holocene fire history and human activities in the Yangguanzhai archeological site of Gaoling[D]. Master Dissertation of Xi’an Polytechnic University, 2017.

    [26]

    Huang C C, Pang J L, Chen S E, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1-2): 28-44.

    [27]

    Tan Z H, Huang C C, Pang J L, et al. Holocene wildfires related to climate and land-use change over the Weihe River Basin, China[J]. Quaternary International, 2011, 234(1-2): 167-173.

    [28] 赵亚娟, 候光良, 鄂崇毅, 等. 青藏高原下大武地区炭屑浓度所反映的环境演变与人类活动[J]. 地球环境学报, 2016, 7(1): 19-26

    ZHAO Yajuan, HOU Guangliang, E Chongyi, et al. Charcoal concentration reflect of environment change and human activities in Xiadawu Relic, Qinghai-Tibet Plateau[J]. Journal of Earth Environment, 2016, 7(1): 19-26.

    [29] 姜莹莹, 鄂崇毅, 侯光良, 等. 青海湖江西沟2号遗址炭屑浓度反映的环境变化与人类活动[J]. 地球环境学报, 2015, 6(2): 98-105

    JIANG Yingying, E Chongyi, HOU Guangliang, et al. Charcoal concentration reflect of environment change and human activities in Qinghai-Lake JXG2 relic[J]. Journal of Earth Environment, 2015, 6(2): 98-105.

    [30] 余英浩, 金映豫, 徐德克, 等. 青海可鲁克湖孢粉记录的14 cal. ka B. P. 以来植被和气候演化历史[J]. 第四纪研究, 2021, 41(5): 1229-1243

    YU Yinghao, JIN Yingyu, XU Deke, et al. Vegetational and climatic changes in the Hurleg Lake, Qinghai, during the last 14000 years[J]. Quaternary Sciences, 2021, 41(5): 1229-1243.

    [31] 赵文伟. 若尔盖泥炭地孢粉和炭屑记录的全新世环境变化[D]. 兰州大学硕士学位论文, 2012

    ZHAO Wenwei. Holocene environmental changes inferred by pollen and charcoal records from the Zoige Basin[D]. Master Dissertation of Lanzhou University, 2012.

    [32] 邓琴. 宝鸡地区全新世的气候环境变迁[D]. 长安大学硕士学位论文, 2011

    DENG Qin. The climatic evolution during the Holocene in the Baoji region[D]. Master Dissertation of Chang'an University, 2011.

    [33]

    Li J Y, Wang N L. Holocene grassland fire dynamics and forcing factors in continental interior of China[J]. Geophysical Research Letters, 2020, 47(13): e2020GL088049.

    [34]

    Miao Y F, Zhang D J, Cai X M, et al. Holocene fire on the northeast Tibetan Plateau in relation to climate change and human activity[J]. Quaternary International, 2017, 443: 124-131.

    [35] 李玉梅. 新疆北部典型湿地4700年以来环境和植被演变研究[D]. 吉林大学博士学位论文, 2019

    LI Yumei. Vegetation and environment changes of the typical wetland since 4700 yr BP in the northern part of Xinjiang[D]. Doctor Dissertation of Jilin University, 2019.

    [36] 蒋庆丰, 季峻峰, 沈吉, 等. 赛里木湖孢粉记录的亚洲内陆西风区全新世植被与气候变化[J]. 中国科学: 地球科学, 2013, 43(2): 243-255

    JIANG Qingfeng, JI Junfeng, SHEN Ji, et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China[J]. Science China Earth Sciences, 2013, 56(3): 339-353.

    [37] 孙斌. 陇东地区全新世土壤剖面的黑碳记录及环境变化[D]. 西安工程大学硕士学位论文, 2016

    [SUN Bin. Holocene records of Black Carbon in the loess and paleo-soil profiles and it’s environmental changes in Longdong region[D]. Master Dissertation of Xi'an Polytechnic University, 2016.

    [38] 张山佳. 丝绸之路中—东段中晚全新世古火历史时空差异及影响因素研究[D]. 兰州大学博士学位论文, 2016

    ZHANG Shanjia. Temporal-spatial differences and influencing factors of paleo-fire history during middle and late Holocene in northwest China[D]. Doctor Dissertation of Lanzhou University, 2016.

    [39] 肖霞云, 蒋庆丰, 刘兴起, 等. 新疆乌伦古湖全新世以来高分辨率的孢粉记录与环境变迁[J]. 微体古生物学报, 2006, 23(1): 77-86

    XIAO Xiayun, JIANG Qingfeng, LIU Xingqi, et al. High resolution sporopollen record and environmental change since Holocene in the Wulungu Lake, Xinjiang[J]. Acta Micropalaeontologica Sinica, 2006, 23(1): 77-86.

    [40] 孙湘君, 杜乃秋, 翁成郁, 等. 新疆玛纳斯湖盆周围近14000年以来的古植被古环境[J]. 第四纪研究, 1994, 14(3): 239-248

    SUN Xiangjun, DU Naiqiu, WENG Chengyu, et al. Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, N. W. China during the last 14000 years[J]. Quaternary Sciences, 1994, 14(3): 239-248.

    [41] 王芳. 渭南地区全新世以来的孢粉组合与古环境[D]. 石家庄经济学院硕士学位论文, 2015

    WANG Fang. Research of structural geology and genesis of Pollen assemblages and Paleoenvironment since Holocene in the Weinan region[D]. Master Dissertation of Shijiazhuang University of Economics, 2015.

    [42] 靳立亚, 陈发虎, 朱艳. 西北干旱区湖泊沉积记录反映的全新世气候波动周期性变化[J]. 海洋地质与第四纪地质, 2004, 24(2): 101-108

    JIN Liya, CHEN Fahu, ZHU Yan. Holocene climatic periodicities recorded from lake sediments in the arid-semiarid areas of Northwestern China[J]. Marine Geology & Quaternary Geology, 2004, 24(2): 101-108.

    [43]

    Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years[J]. Quaternary International, 2005, 136(1): 131-140.

    [44] 毛洪亮, 赵华, 卢演俦, 等. 甘肃疏勒河冲积扇绿洲全新世孢粉组合和环境演化[J]. 地球学报, 2007, 28(6): 528-534

    MAO Hongliang, ZHAO Hua, LU Yanchou, et al. Pollen assemblages and environment evolution in Shule River alluvial fan oasis of Gansu[J]. Acta Geoscientia Sinica, 2007, 28(6): 528-534.

    [45] 段晓红, 张芸, 杨振京, 等. 新疆石河子蘑菇湖湿地4800年以来的环境演变[J]. 海洋地质与第四纪地质, 2018, 38(4): 203-211

    DUAN Xiaohong, ZHANG Yun, YANG Zhenjing, et al. Environmental evolution of the Moguhu Wetland of Shihezi City in Xinjiang since 4800 cal. a BP[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 203-211.

    [46] 张芸, 孔昭宸, 倪健, 等. 新疆草滩湖村湿地4550年以来的孢粉记录和环境演变[J]. 科学通报, 2008, 53(3): 306-316

    ZHANG Yun, KONG Zhaochen, NI Jian, et al. Pollen record and environmental evolution of Caotanhu wetland in Xinjiang since 4550 cal. a BP[J]. Chinese Science Bulletin, 2008, 53(7): 1049-1061.

    [47] 阎顺, 李树峰, 孔昭宸, 等. 乌鲁木齐东道海子剖面的孢粉分析及其反映的环境变化[J]. 第四纪研究, 2004, 24(4): 463-468

    YAN Shun, LI Shufeng, KONG Zhaochen, et al. The pollen analyses and environment changes of the Dongdaohaizi area in Ürümqi, Xinjiang[J]. Quaternary Sciences, 2004, 24(4): 463-468.

    [48]

    Carcaillet C, Richard P J H. Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada[J]. Climate Dynamics, 2000, 16(7): 549-559.

    [49]

    Carcaillet C, Bouvier M, Fréchette B, et al. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history[J]. The Holocene, 2001, 11(4): 467-476.

    [50]

    Carcaillet C, Almquist H, Asnong H, et al. Holocene biomass burning and global dynamics of the carbon cycle[J]. Chemosphere, 2002, 49(8): 845-863.

    [51] 狄丽颖, 孙仁义. 中国森林火灾研究综述[J]. 灾害学, 2007, 22(4): 118-123

    DI Liying, SUN Renyi. Summarization of research on forest fire in China[J]. Journal of Catastrophology, 2007, 22(4): 118-123.

    [52]

    Xu Q H, Tian F, Bunting M J, et al. Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China[J]. Quaternary Science Reviews, 2012, 37: 81-91.

    [53] 张恩源. 中国西北全新世湿度时空变化集成及区域史前人类活动[D]. 兰州大学硕士学位论文, 2020

    ZHANG Enyuan. Spatiotemporal changes of Holocene moisture across northwestern China and regional prehistoric human activities[D]. Master Dissertation of Lanzhou University, 2020.

    [54]

    Zhang D L, Huang X Z, Liu Q, et al. Holocene fire records and their drivers in the westerlies-dominated Central Asia[J]. Science of the Total Environment, 2022, 833: 155153.

    [55] 郭超, 马玉贞, 胡彩莉, 等. 中国内陆区湖泊沉积所反映的全新世干湿变化[J]. 地理科学进展, 2014, 33(6): 786-798

    GUO Chao, MA Yuzhen, HU Caili, et al. Holocene humidity changes in inland China inferred from lake sediments[J]. Progress in Geography, 2014, 33(6): 786-798.

    [56] 侯光良, 方修琦. 中国全新世分区气温序列集成重建及特征分析[J]. 古地理学报, 2012, 14(2): 243-252

    HOU Guangliang, FANG Xiuqi. Characteristics analysis and synthetical reconstruction of regional temperature series of the Holocene in China[J]. Journal of Palaeogeography, 2012, 14(2): 243-252.

    [57] 侯光良, 方修琦. 中国全新世气温变化特征[J]. 地理科学进展, 2011, 30(9): 1075-1080

    HOU Guangliang, FANG Xiuqi. Characteristics of Holocene temperature change in China[J]. Progress in Geography, 2011, 30(9): 1075-1080.

    [58] 方修琦, 侯光良. 中国全新世气温序列的集成重建[J]. 地理科学, 2011, 31(4): 385-393

    FANG Xiuqi, HOU Guangliang. Synthetically reconstructed Holocene temperature change in China[J]. Scientia Geographical Sinica, 2011, 31(4): 385-393.

    [59] 葛全胜, 王顺兵, 郑景云. 过去5000年中国气温变化序列重建[J]. 自然科学进展, 2006, 16(6): 689-696

    GE Quansheng, WANG Shunbing, ZHENG Jingyun. Reconstruction of temperature change sequence in China in the past 5000 years[J]. Progress in Natural Science, 2006, 16(6): 689-696.

    [60] 谭志海, 龙艳侠, 范汇晨, 等. 史前关中盆地土壤剖面的黑碳与炭屑记录[J]. 土壤通报, 2016, 47(3): 518-524

    TAN Zhihai, LONG Yanxia, FAN Huichen, et al. Records of charcoal and black carbon in Holocene loess-paleosol profiles from Guanzhong Basin[J]. Chinese Journal of Soil Science, 2016, 47(3): 518-524.

    [61] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学: B辑, 1992(12): 1300-1308

    SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. Climate fluctuations and important events during the Holocene great warm period in China[J]. Scientia Sinica: Chimica, 1992(12): 1300-1308.

    [62] 王绍武, 闻新宇, 黄建斌. 五帝时代(距今6-4千年)中国的气候[J]. 中国历史地理论丛, 2011, 26(2): 5-13

    WANG Shaowu, WEN Xinyu, HUANG Jianbin. Climate in China during the Five-Emperor Period: 6-4 kaBP[J]. Journal of Chinese Historical Geography, 2011, 26(2): 5-13.

    [63] 侯小青, 侯光良, 王芳芳, 等. 中国北方全新世降水分区对比分析[J]. 青海环境, 2017, 27(3): 126-130, 139

    HOU Xiaoqing, HOU Guangliang, WANG Fangfang, et al. Comparative analysis of Holocene precipitation zoning in northern China[J]. Journal of Qinghai Environment, 2017, 27(3): 126-130, 139.

    [64] 李小强, 安芷生, 周杰, 等. 全新世黄土高原塬区植被特征[J]. 海洋地质与第四纪地质, 2003, 23(3): 109-114

    LI Xiaoqiang, AN Zhisheng, ZHOU Jie, et al. Characteristics of vegetation in the Loess plateau area since Holocene[J]. Marine Geology & Quaternary Geology, 2003, 23(3): 109-114.

    [65] 李小强, 赵宏丽, 闫敏华, 等. 东北三江平原全新世火演化及其与植被和气候的关系[J]. 地理科学, 2005, 25(2): 177-182

    LI Xiaoqiang, ZHAO Hongli, YAN Minhua, et al. Fire variations and Relationship among Fire and Vegetation and Climate during Holocene at Sanjiang Plain, Northeast China[J]. Scientia Geographica Sinica, 2005, 25(2): 177-182.

    [66] 李小强. 中国全新世气候和农业活动研究新进展[J]. 中国科学: 地球科学, 2013, 43(12): 1919-1928

    LI Xiaoqiang. New progress in the Holocene climate and agriculture research in China[J]. Science China Earth Sciences, 2013, 56(12): 2027-2036.

    [67] 吴文祥, 刘东生. 4000aB. P. 前后东亚季风变迁与中原周围地区新石器文化的衰落[J]. 第四纪研究, 2004, 24(3): 278-284

    WU Wenxiang, LIU Dongsheng. Variations in east Asia monsoon around 4000. B. P. and the collapse of neolithic cultures around central plain[J]. Quaternary Sciences, 2004, 24(3): 278-284.

    [68] 吴文祥, 刘东生. 4000aB. P. 前后降温事件与中华文明的诞生[J]. 第四纪研究, 2001, 21(5): 443-451

    WU Wenxiang, LIU Dongsheng. 4000a B. P. event and its implications for the origin of Ancient Chinese civilization[J]. Quaternary Sciences, 2001, 21(5): 443-451.

    [69] 吴文祥, 周扬, 胡莹. 甘青地区全新世环境变迁与新石器文化兴衰[J]. 中原文物, 2009(4): 31-37

    WU Wenxiang, ZHOU Yang, HU Ying. Holocene climate change and the rise and fall of Neolithic cultures in the Ganqing areas[J]. Cultural Relics of Central China, 2009(4): 31-37.

    [70] 陈发虎, 黄小忠, 杨美临, 等. 亚洲中部干旱区全新世气候变化的西风模式: 以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6): 881-887

    CHEN Fahu, HUANG Xiaozhong, YANG Meilin, et al. Westerly dominated Holocene climate model in arid central Asia: case study on Bosten Lake, Xinjiang, China[J]. Quaternary Sciences, 2006, 26(6): 881-887.

    [71] 赵凯华. 艾比湖地区中全新世以来孢粉组合与古气候定量重建[D]. 石家庄经济学院硕士学位论文, 2013

    ZHAO Kaihua. Palynological assemblages and Paleoclimate quantitative reconstruction in the Ebinur Lake region since the Holocene[D]. Master Dissertation of Shijiazhuang University of Economics, 2013.

    [72] 安成邦, 陈发虎, 冯兆东. 甘青地区中晚全新世植被变化与人类活动[J]. 干旱区地理, 2002, 25(2): 160-164

    AN Chengbang, CHEN Fahu, FENG Zhaodong. Study on the relationship between the vegetation change and the human activities in the Gansu-Qinghai region during the period from mid-to late-Holocene[J]. Arid Land Geography, 2002, 25(2): 160-164.

    [73] 马琴玉. 北宋对黄河流域植被的破坏及影响[D]. 西北师范大学硕士学位论文, 2019

    MA Qinyu. Destruction and influence of Northern Song dynasty on vegetation in Yellow River Basin[D]. Master Dissertation of Northwest Normal University, 2019.

    [74] 尚雪, 张鹏程, 周新郢, 等. 陕西下河遗址新石器时代早期农业活动初探[J]. 考古与文物, 2012(4): 55-59, 103

    SHANG Xue, ZHANG Pengcheng, ZHOU Xinying, et al. A preliminary study on early agricultural activities at the Neolithic site of Xiahe in Shaanxi Province[J]. Archaeology and Cultural Relics, 2012(4): 55-59, 103.

    [75] 樊志民, 冯风. 关于历史上的旱灾与农业问题研究[J]. 中国农史, 1988(1): 33-39, 49

    FAN Zhimin, FENG Feng. Study on drought and agricultural problems in history[J]. Agricultural Archaeology, 1988(1): 33-39, 49.

    [76] 方修琦, 刘翠华, 侯光良. 中国全新世暖期降水格局的集成重建[J]. 地理科学, 2011, 31(11): 1287-1292

    FANG Xiuqi, LIU Cuihua, HOU Guangliang. Reconstruction of precipitation pattern of China in the Holocene Megathermal[J]. Scientia Geographica Sinica, 2011, 31(11): 1287-1292.

    [77] 王菊婵. 关中东部全新世黄土序列记录的气候变化[D]. 长安大学硕士学位论文, 2011

    WANG Juchan. A record on the climate change during Holocene in the eastern of Guanzhong[D]. Master Dissertation of Chang'an University, 2011.

    [78] 唐领余, 李春海, 安成邦, 等. 黄土高原西部4万多年以来植被与环境变化的孢粉记录[J]. 古生物学报, 2007, 46(1): 45-61

    TANG Lingyu, LI Chunhai, AN Chengbang, et al. Vegetation history of the western loess plateau of China during the last 40ka based on pollen record[J]. Acta Palaeontologica Sinica, 2007, 46(1): 45-61.

    [79] 黄春长. 黄土高原南部晚更新世黄土古土壤与气候变迁[J]. 地理学报, 1989, 44(1): 1-10

    HUANG Chunchang. Loss-palaeosoil and climatic changes on southern loess plateau in late Pleistocene[J]. Acta Geographica Sinica, 1989, 44(1): 1-10.

    [80] 黄春长. 渭河流域3100年前资源退化与人地关系演变[J]. 地理科学, 2001, 21(1): 30-35

    HUANG Chunchang. The deterioration of land resources and the change in Human-Earth relationships in the Weihe River Basin at 3100 a B. P. [J]. Scientia Geographica Sinica, 2001, 21(1): 30-35.

    [81] 莫多闻, 李非, 李水城, 等. 甘肃葫芦河流域中全新世环境演化及其对人类活动的影响[J]. 地理学报, 1996, 51(1): 59-69

    MO Duowen, LI Fei, LI Shuicheng, et al. A preliminary study on the paleoenvironment of the middle Holocene in the Hulu river area in Gansu province and its effects on human activity[J]. Acta Geographica Sinica, 1996, 51(1): 59-69.

    [82] 方修琦, 章文波, 张兰生. 全新世暖期我国土地利用的格局及其意义[J]. 自然资源学报, 1998, 13(1): 16-22

    FANG Xiuqi, ZHANG Wenbo, ZHANG Lansheng. The land use arrangement of china in the Holocene Megathermal period and its significance[J]. Journal of Natural Resources, 1998, 13(1): 16-22.

    [83] 赵景波, 侯甬坚, 杜娟, 等. 关中平原全新世环境演变[J]. 干旱区地理, 2003, 26(1): 17-22

    ZHAO Jingbo, HOU Yongjian, DU Juan, et al. Holocene environmental changes in the Guanzhong Plain[J]. Arid Land Geography, 2003, 26(1): 17-22.

    [84] 金勇强. 宋夏战争与黄土高原地区生态环境关系研究[D]. 陕西师范大学硕士学位论文, 2007

    JIN Yongqiang. Song and the tangut war and the loess plateau area ecological environment relations studies[D]. Master Dissertation of Shaanxi Normal University, 2007.

    [85] 尹君, 罗玉洪, 方修琦, 等. 西汉至五代中国盛世及朝代更替的气候变化和农业丰歉背景[J]. 地球环境学报, 2014, 5(6): 400-409

    YIN Jun, LUO Yuhong, FANG Xiuqi, et al. The climatic and harvest backgrounds of dynastic flourishing ages and transitions in China during 210 BC to 960 AD[J]. Journal of Earth Environment, 2014, 5(6): 400-409.

    [86] 刘璐, 苏筠, 方修琦. 中国西汉至清代北方农牧民族战争及其与温度变化的关联[J]. 北京师范大学学报: 自然科学版, 2016, 52(4): 450-457

    LIU Lu, SU Yun, FANG Xiuqi. Wars between farming and nomadic groups from Western Han Dynasty to Qing Dynasty in north China and relationship with temperature change[J]. Journal of Beijing Normal University: Natural Science, 2016, 52(4): 450-457.

    [87]

    Tan L C, Cai Y J, An Z S, et al. Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: records from stalagmites in Huangye Cave[J]. The Holocene, 2011, 21(2): 287-296.

    [88] 刘俊霞. 秦汉时期西北农业开发与生态环境问题研究[D]. 西北农林科技大学硕士学位论文, 2008

    LIU Junxia. A study on northwest agricultural development and ecological environment problems in Qin and Han dynasties[D]. Master Dissertation of Northwest A&F University, 2008.

    [89] 杜娟. 秦汉时期关中农业土地利用区域特征及影响因素[J]. 西北大学学报: 自然科学版, 2014, 44(1): 150-155

    DU Juan. The regional characteristics and influence factors of agricultural land use in Guanzhong area during Qin and Han Dynasties[J]. Journal of Northwest University: Natural Science Edition, 2014, 44(1): 150-155.

    [90] 杨保, 施雅风, 李恒鹏. 过去2 ka气候变化研究进展[J]. 地球科学进展, 2002, 17(1): 110-117

    YANG Bao, SHI Yafeng, LI Hengpeng. Some advances in climatic change over the past two millennia[J]. Advances in Earth Science, 2002, 17(1): 110-117.

    [91] 任国玉, 姜大膀, 燕青. 古气候演化特征、驱动与反馈及对现代气候变化研究的启示意义[J]. 第四纪研究, 2021, 41(3): 824-841

    REN Guoyu, JIANG Dabang, YAN Qing. Characteristics, drivers and feedbacks of paleo-climatic variations and the implications for modern climate change research[J]. Quaternary Sciences, 2021, 41(3): 824-841.

    [92] 王岳, 李育, 张成琦. 河西走廊东西段全新世古湖泊演化对比研究[J]. 第四纪研究, 2017, 37(3): 581-596

    WANG Yue, LI Yu, ZHANG Chengqi. The comparative study of paleolakes evolution between the eastern and western parts of the Hexi Corridor in Holocene[J]. Quaternary Sciences, 2017, 37(3): 581-596.

    [93] 陶士臣. 新疆东部湖泊沉积花粉记录的全新世植被与环境[D]. 兰州大学博士学位论文, 2011

    TAO Shichen. Pollen record of vegetation and environmental changes from lakes’ sediment in eastern Xinjiang China, during the Holocene[D]. Doctor Dissertation of Lanzhou University, 2011.

    [94] 宋姝瑶. 新疆艾比湖湿地全新世以来环境演变研究[D]. 河北地质大学硕士学位论文, 2016

    SONG Shuyao. Holocene climate change in the Ebinur Lake wetland, Xinjiang, China[D]. Master Dissertation of Hebei Geo University, 2016.

    [95] 韩淑媞, 袁玉江. 新疆巴里坤湖35000年来古气候变化序列[J]. 地理学报, 1990, 45(3): 350-362

    HAN Shuti, YUAN Yujiang. The sequence of paleoclimatic variation of Balikun lake of Xinjiang in the part 35000 years[J]. Acta Geographica Sinica, 1990, 45(3): 350-362.

    [96] 薛积彬, 钟巍. 新疆巴里坤湖全新世环境记录及区域对比研究[J]. 第四纪研究, 2008, 28(4): 610-620

    XUE Jibin, ZHONG Wei. Holocene climate change recorded by lacustrine sediments in Barkol Lake and its regional comparison[J]. Quaternary Sciences, 2008, 28(4): 610-620.

    [97] 徐和阳. 历史气候变迁对中国古代社会影响的研究综述[J]. 哈尔滨学院学报, 2013, 34(9): 99-101

    XU Heyang. Research summary on historical climate change impact on ancient Chinese society[J]. Journal of Harbin University, 2013, 34(9): 99-101.

    [98] 刘家坤. 火攻在中国历代战争中的运用和发展[J]. 军事历史研究, 2001(4): 99-103

    LIU Jiakun. The application and development of fire attack in the feudal dynasties of past ages[J]. Military Historical Research, 2001(4): 99-103.

    [99] 钟茂华. 中国火灾史(秦朝~1949年)简析[J]. 中国安全科学学报, 2004, 14(5): 67-71

    ZHONG Maohua. Brief analysis on history of fire in China (221 B. C. ∽ 1949 A. D. )[J]. China Safety Science Journal, 2004, 14(5): 67-71.

    [100] 杨铭, 柳春鸣. 西周时期的气候变化与民族迁徙[J]. 中原文物, 1997(2): 77-83

    YANG Ming, LIU Chunming. Climate change and ethnic migration in the Western Zhou Dynasty[J]. Cultural Relics of Central China, 1997(2): 77-83.

    [101]

    Tan L C, Cai Y J, Cheng H, et al. Centennial-to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482: 580-590.

  • 期刊类型引用(10)

    1. 张瑞. 东海地区油基钻井液评价及优化研究. 石化技术. 2025(06) 百度学术
    2. 屈童,黄志龙,李天军,杨易卓,王柏然,王瑞. 西湖凹陷平北地区武云亭凝析气田形成条件与成藏特征. 地质学报. 2024(01): 247-265 . 百度学术
    3. 俞伟哲,胡伟. 中深层天然气分流河道型储层逐级刻画技术研究与应用. 低碳世界. 2024(05): 28-30 . 百度学术
    4. 覃军,熊萍,何新建,沈冠华,王瑞霞,梅廉夫,吕志欢,叶青. 东海盆地石门潭组属于裂陷期地层序列吗?. 地层学杂志. 2024(04): 380-391 . 百度学术
    5. 李倩,李昆,庄建建,陈子健,王丹萍,王修平,晏玉环,刘名杨. 西湖凹陷西斜坡断层—岩性圈闭形成条件探讨. 海洋石油. 2022(02): 14-22+38 . 百度学术
    6. 周荔青,江东辉,周兴海,李昆,庄建建,刘闯. 东海西湖凹陷西斜坡断层—岩性油气藏富集评价体系与勘探方向. 石油实验地质. 2022(05): 747-754 . 百度学术
    7. 庄建建,李喆,巩兴会,万丽芬. 西湖凹陷WBT地区平湖组下段有利储层预测. 海洋石油. 2021(01): 8-14+21 . 百度学术
    8. 李斌,杨鹏程,蒋彦,陈现,李倩,李喆. 西湖凹陷西斜坡W构造异常高压特征及对油气成藏的影响. 海洋石油. 2021(02): 11-19+36 . 百度学术
    9. 江东辉,蒲仁海,苏思羽,范昌育,周锋,杨鹏程. 断陷盆地斜坡带大型油气田成藏条件——西湖凹陷平北缓坡断裂与岩性控藏有利区. 天然气工业. 2021(11): 33-42 . 百度学术
    10. 周荔青,江东辉,张尚虎,周兴海,杨鹏程,李昆. 东海西湖凹陷大中型油气田形成条件及勘探方向. 石油实验地质. 2020(05): 803-812 . 百度学术

    其他类型引用(2)

图(6)  /  表(1)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  109
  • PDF下载量:  54
  • 被引次数: 12
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-04-12
  • 录用日期:  2023-04-12
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2024-02-27

目录

XU Hao

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回