High resolution climatic and environmental changes in Shandong Peninsula during the last glacial maximum
-
摘要:
末次冰盛期是末次冰期以来地球表面最寒冷的时期。通过对山东半岛地下画廊溶洞石笋DXHL3进行高精度230Th定年和高分辨率氧-碳稳定同位素分析,重建了该地区23.2~18.8 ka时期高分辨率夏季风气候环境变化历史。结果发现,山东半岛末次冰盛期夏季风气候存在显著的千年尺度波动;REDFIT分析表明,氧、碳同位素值均存在显著的2.2 ka周期。末次冰盛期山东半岛总体处于冷干状态,具体又可细分为4个阶段,即冷干(23.2~22 ka)-相对暖湿(22~21 ka)-冷干(21~19 ka)-相对暖湿(19~18.8 ka)。石笋DXHL3的δ18O变化趋势总体上与亚洲季风区内其他石笋记录相似,也与西太平洋暖池婆罗洲的石笋记录类似。这反映了末次冰盛期西太平洋暖池气候环境变化可能对山东半岛的夏季风气候变化产生了重要影响,推测西太平洋暖池表层海水温度变化引起的大气环流和黑潮的变化,是将气候环境变化信号从低纬地区传递到中高纬地区的纽带。
Abstract:The last glacial maximum is the most cold-dry period on the Earth's surface since the last glaciation. We reconstructed high-resolution summer monsoon changes over the Shandong Peninsula during the period of 23.2~18.8 ka using precisely-dated high-resolution oxygen and carbon isotopes (δ18O and δ13C). Results show that the summer monsoon climate in the last glacial maximum in Shandong Peninsula had significant millennial scale fluctuations, and REDFIT analysis shows a significant 2.2 ka cycle in both oxygen and carbon isotopes, which was in a cold-dry state in general, and can be subdivided into four stages, namely, cold and dry (23.2~22 ka), relatively warm and wet (22~21 k), cold and dry (21~19 ka), and relatively warm and wet (21~19 ka). The newly obtained δ18O record is generally similar to other records of stalagmite δ18O from monsoonal China, as well as the stalagmite δ18O records from northern Borneo in the Western Pacific Warm Pool (WPWP). The climate and environment changes in the WPWP might have exerted a substantial impact on summer monsoon climate over the Shandong Peninsula during the last glacial maximum. It is speculated that temperature change at sea surface of WPWP affected the atmospheric circulation and Kuroshio, which should be the main mechanism sending climate and environment signals from low latitude to middle-high latitude zones in the northern hemisphere.
-
1. 区域概况
西湖凹陷是东海陆架盆地东部坳陷带中北部的一个新生代含油气凹陷,属陆缘裂谷盆地,呈北北东向展布,面积约5.9×104 km2。西湖凹陷自西向东可划分为保俶斜坡带、三潭深凹、中央背斜带、白堤深凹及天屏断阶带5个次级构造单元[1](图1)。新生代西湖凹陷经历了古新世—始新世断陷期、渐新世—中新世拗陷期及上新世以来的区域沉降3个构造演化阶段,自下而上沉积了古新统(Tg-T40),始新统宝石组(T40-T34)、平湖组(T34-T30),渐新统花港组(T30-T24),中新统(龙井组、玉泉组、柳浪组)(T24-T20),T20以上为上新统三潭组和第四系东海群[2](图1)。拗陷期在北西向挤压应力场的作用下,经历了玉泉、花港及龙井3次构造反转运动后,形成了由多个大型反转背斜构造组成的中央背斜带[3]。
目前,中央背斜带已发现多个大中型油气田及含油气构造,主要目的层为渐新统花港组,具有纵向上含气层数多、含气面积大的特征。其中,花港组上段的H3砂层组为拗陷期大型辫状河三角洲沉积[4],储层厚度大,分布稳定,多口钻井测试获得工业气流。前人对中央背斜带的油气成藏条件从不同的角度进行了分析,谢月芳等通过对中南部晚期剪切断层的分析认为油气藏的形成规律就是晚期剪切断层对油藏的破坏规律[5];熊斌辉等认为花港组及以上地层缺少区域性盖层,保存条件是油气勘探首先要考虑的因素[6];钟韬等通过对储层致密化过程与油气成藏关系的分析,认为花港组深层储层“先致密后成藏”是造成含气饱和度普遍较低的重要原因[7]。目前,对于花港组成藏主控因素的研究主要集中于背斜带南部,对北部研究涉及较少,本文通过中央背斜带几个典型油气藏解剖对比认为,有利的油气运移通道是控制油气藏形成的主要因素,而晚期油气藏的保存条件对油气的富集程度起关键控制作用。
2. 中央背斜带成藏条件分析
2.1 优越的烃源条件
作为一个新生代断坳叠合盆地,西湖凹陷新生代发育了巨厚的碎屑岩沉积。其中,始新世断陷期,西湖凹陷在渔山隆起附近与海相通,形成半封闭海湾的沉积环境,发育了宝石组及平湖组含煤地层,特别是中始新世亚热带气候为浮游生物和高等植物的繁盛提供了良好的环境,具有较高的有机质产率,加之水体性质为还原—弱还原、咸性—弱咸性,弱水动力使平湖组具备发育广覆式烃源岩的条件[8-10]。这套海湾型含煤地层具有厚度大、有机质含量高、成熟度高的特征。始新统西湖凹陷地层厚度为200~1 500 m,中央背斜带平湖组泥质烃源岩厚度超过1 000 m,煤系烃源岩最厚处接近50 m;有机质类型为Ⅱ2-Ⅲ型,生气为主,生油次之,煤层TOC平均为61.84%;暗色泥岩TOC均值为1.31%,有机碳均值为0.77%~4.13%,生烃潜量为0.74~10.37 mg/g,为较好—好烃源岩[11-13]。单井烃源岩成熟史模拟表明,中央背斜带宝石组及平湖组烃源岩分别于始新世(约45 Ma)和早渐新世(约35~32 Ma)开始进入成熟阶段,并于中新世末进入排烃高峰[14-15]。
根据 Prinzhofer等的研究,具有气源关系的气源岩干酪根碳同位素比天然气丁烷重约1‰[16]。西湖凹陷天然气δ13C4 平均值约为−25.7‰,平湖组烃源岩干酪根的δ13C4平均值为−25.4‰(表1),稍重于天然气丁烷。同时,天然气C5-7系列化合物中,大多数样品C5-7的正构烷烃相对含量为26%~31%(图2),指示天然气成因类型偏煤型气[17-18]。并且中央背斜带天然气成熟度多大于1.2%,为高熟—过熟天然气(图3),而花港组烃源岩成熟度基本小于1%,只有平湖组及其以下烃源岩的成熟度达到1%以上,表明天然气应主要来源于始新统优质烃源岩层,中央背斜带具备优越的烃源条件,为大—中型油气藏的发育奠定了坚实的物质基础。
表 1 中央背斜带天然气、烃源岩碳同位素值Table 1. Statistical table of carbon isotope value of natural gas and source rock in central anticlinal belt碳同位素值/‰(样品数) 丁烷 花港组泥 花港组煤 平湖组泥 平湖组煤 G构造 −27.3(8) −26.7(5) − −26.4(2) − H构造 −23.7(3) −25.6(3) −24.5(1) − − C构造 −24.0(1) −26.2(19) −25.7(2) − − A构造 −27.1(9) − − − − B构造 −27.0(6) −26.4(4) − −25.8(7) −25.7(2) 2.2 储盖组合特征
中央背斜带勘探的主要目的层为渐新统花港组,此时,西湖凹陷进入拗陷期,内部地形平缓,具有东北部长轴及东部短轴双物源体系,A/S比低,发育中—大型辫状河三角洲沉积[19-21],储集砂岩类型以辫状河三角洲平原分支河道砂、前缘水下分流河道砂、河口坝砂为主。H3砂层组位于花港组上部(图1),发育低位域厚层灰色砂岩,在凹陷内连片分布,厚度为56.5~212.9 m,砂岩百分含量为42%~78%,由南向北砂岩厚度增大,砂地比增高(图4,表2)。受埋深差异影响,南部储集空间以溶孔—粒间孔为主,孔隙度基本大于10%,渗透率大于1 mD,多为中孔—中渗储层;北部由于压实作用强烈,孔隙类型多为溶蚀孔,储层物性受溶蚀作用的规模、强度影响,非均质性强,孔隙度为2%~20%,渗透率为0.02~79.3 mD,为中低孔—中低渗储层。
表 2 H1-H3砂层组地层岩性统计Table 2. The statistical table of lithology form sand group H1 to H3A1 B1 C1 D1 E1 F1 G1 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 地层厚度/m 173 110 135 195.5 126.7 143.5 143.5 152.6 193 257 131 185 267 254 255 254 271 265 188.5 280.5 256 砂岩厚度(粉砂及以上)/m 25 27.5 56.5 64.5 30.54 66 30.5 12 84 87 40 139 71 120.5 98 90 65 179 48 84.5 191.5 砂岩百分含量/% 14 25 42 33 24 46 21 8 43 34 31 75 27 47 38 35 24 68 25 30 75 泥岩厚度/m 140.5 62 61.5 128 128 72.5 93.5 107.5 88 168 81 37 150 107 122 129 143 75 130.5 171.5 58.5 泥岩百分含量/% 81 56 46 65 60 51 65 70 46 65 62 20 56 42 48 51 53 28 69 61 23 H1-H2砂层组为水侵—高位域沉积,以厚层泥岩夹薄层砂岩或频繁的砂泥岩互层为主,泥岩分布稳定,单层厚度为2.7~35 m,累计最大可达103 m,泥质含量可达60%以上,突破压力为6.2~26.7 MPa,可以作为良好的区域盖层,与H3砂层组形成了有利的储盖组合配置关系(图4)。
2.3 有利的圈源时空配置条件
西湖凹陷在构造演化过程中发育早、中、晚3期断裂系统,相应地形成了构造上“三层复合叠加”的特征[22](图5),古—始新世断陷期,形成NE-NNE向雁行排列的正断层系统,发育了与断层走向相同的潜山披覆构造群,为下构造层;拗陷期,在玉泉运动挤压应力作用下,早期构造受到继承性改造,形成挤压背斜构造带的雏形,中新世末龙井运动,在强烈水平挤压作用下,发生地层反转、褶皱、抬升及剥蚀,伴随北-北东向逆断层形成,定型成大型反转构造带,为中构造层;上新世末至更新世在冲绳海槽运动的剪切应力场作用下,上新统以下地层中发育了一系列近东西向剪切张性正断层,将背斜构造复杂化,同时形成了披盖式沉积,为上构造层。因此,中央背斜带的构造圈闭是潜山背景下受到后期挤压应力作用下形成的背斜或半背斜的圈闭,具有规模大,“凹中隆”的特征(图1),发育位置及圈闭形态十分优越。
生排烃史研究表明:中央背斜带平湖组烃源岩于渐新世中期(29.7 Ma)开始生烃,于中中新世、晚中新世和现今具有较高的生烃速率;并于早—中新世(33.6~29.1 Ma)开始有烃类排出,中新世末开始大规模排烃(图6)。因此,圈闭定型期与烃源岩大规模排烃期基本一致,具有较好的圈源时空配置关系。
图 6 中央背斜带平湖组含油气系统事件图(测线位置见图1)Figure 6. The oil and gas system events of Pinghu Formation of central anticlinal belt3. 成藏主控因素分析
在良好的烃源、储盖组合及圈源时空配置条件下,中央背斜带发现了多个大型含油气构造,但每个含油气构造的圈闭充满度及气柱高度差异较大。通过对中央背斜带B、C、D、F四个典型油气藏的解剖及对比分析认为,有效的输导体系是油气成藏的主要控制因素,良好的后期保存条件则是油气富集的重要因素。
3.1 典型含油气构造H3砂层组油气发育特征
B、C、D、F 四个构造均是中—大型的背斜或断背斜构造,B构造位于最南部,是一个沿北北东方向展布的“S”形大型挤压反转背斜,纵向上含气层位多,H3气藏为块状底水气藏,充满度低,只有35.7%;中南部的C构造是一个近南北走向形态较完整的低幅背斜构造,钻井揭示H3砂层为水层,而之下的多个砂层钻遇了油气层,且越向深部,油气丰度越高;中部的D构造是中新世末定型的断背斜构造,该构造的H3砂层组为含气水层,油气显示较差;北部的F构造为一个北北东走向的宽缓背斜,H3砂层组圈闭幅度约232 m,H3砂层组共发现H3a、H3b及H3c 3套气层,其中H3b储层,烃柱高度232 m,圈闭充满度为100%(图7,表3),为中央背斜带充满度最高、含油气性最好的构造。
表 3 中央背斜带典型构造油气藏参数Table 3. Statistical table of carbon isotope value of natural gas and source rock in central anticlinal belt构造名称 圈闭面积/km2 圈闭幅度/m 气水界面深度/m 综合解释结论 含气面积/km2 气柱高度/m 充满度/% 气水关系 气藏类型 B 32.0 140 −2781 气层 11.42 50 35.7 层状底水 构造气藏 C 23.6 50 − 水层 − − − − − D 12.4 20 − 含气水层 − − − − − F 42.65 232 −3812.2 气层 42.65 232 100 层状边水 构造气藏 3.2 主控因素:有效的输导体系
输导体系是连接烃源岩与圈闭的油气运移通道的空间组合体,其静态要素主要包括断层(含裂缝)、骨架砂体(储集层)和不整合面(层序界面)[23]。中央背斜带花港组的主要输导体系为断层及骨架砂体。断层纵向上沟通烃源岩与储集层,而油气的横向运移主要依赖辫状河三角洲形成的大规模连续厚层砂岩。前已述及,在凹陷构造演化过程中发育了早、中、晚3期断裂系统,断陷期,NW-SE向的拉张应力场下形成了NE-SW向的拉张正断层体系,此时期的正断层具有“形成时间早、活动时间长、断穿层位深、断层断距大”的特征,向下可以沟通始新统烃源岩,为良好的沟源断层;拗陷期,在挤压应力的作用下形成了NE-SW向的逆断层,同时使早期正断层断距减小,少数早期正断层甚至发生反转,断层活动期与中新世末大规模排烃期一致,也是油气运移的主要通道,活动期结束后对油气藏起封堵和保存的作用。区域沉降期,发育了一定数量的E-W向剪切断层,虽然断层规模较小(图7),但多个油气田均显示了剪切断裂对原生油气藏起到了破坏作用。
3期断裂体系在4个构造上均有体现,但每一期断层数量、断层规模及断穿层位在4个构造上具有不同的特点。B构造3期断层均有发育,早期断层数量较少,向下断至基底,上至花港组中部,中期挤压断层数量多,下至平湖组下段,上至中新世龙井组之上,配合早期断层可以形成有效的纵向输导体系;晚期断层向下多切穿T25界面,向上断层断至T20界面之上。C构造早期断层发育数量多,向上断穿层位在H3砂层组之下T25界面附近,但中期断层基本不发育,垂向上,油气难以运移至H3砂层组成藏,因此,B1井H3砂层组为水层。D构造早期及中期断层发育,晚期断层基本不发育,早期及中期断层形成纵向上输导体系,因此,在H3砂层组见到油气显示。F构造早期及中期断层发育较好,在花港组下段衔接,形成优越的垂向输导体系,晚期断层基本不发育(图7)。从4个构造3期断层发育情况对比来看,B、D、F 三个构造早期、中期断层发育,匹配关系良好,可以形成有效的纵向输导体系,在3个构造H3砂层组均有油气发现;而C构造早期断层向上断至层位深,中期断层不发育,导致H3砂层缺少沟源断层,为水层,而其下伏的H4-H6砂层组发育沟源断层均有油气发现。综上所述:有效的输导体系是中央背斜带油气成藏的主控因素。
3.3 影响油气藏充满度的重要因素:良好的后期保存条件
具备输导体系的B、D、F 三个构造中H3砂层组虽然均具有油气显示,但三者含油气性差异大。B构造为块状底水气藏,圈闭充满度为37.5%,H3之上砂层组圈闭充满度只有20%~30%,对其晚期断层分析发现,B构造晚期近东西向剪切正断层发育,向下可断至H3砂层组之下的T25界面附近,断距约为30 m,向上可延伸至第四系(图7),在气藏形成之后的断层活动期破坏了早期背斜油气藏,导致油气沿断层面向浅层逸散,造成了原始油气藏的规模减小,油气充满度降低,含气层增多、变浅,或直接逸散至海底散失。D构造H3砂层组为含气水层,对该构造解剖认为D构造主要受两条早期大断层控制,西侧主控断层在H3砂层组附近断距小,只有10~30 m,H3砂层组钻遇的两套厚储层厚度分别为41和103 m,造成断层两盘地层砂-砂对接(图7),而表征断层封堵性的SGR值只有0.2,显示封堵性较差(图8),油气向更高部位运移,该层具有一定的测、录井显示也是地史时期油气运移的一种表现。相比之下,F构造主体部位晚期剪切断层基本不发育(图7),在气藏形成之后未对气藏产生破坏作用,花港组上段只发育逆断层,具有较好的封堵性,使得充满度高的原生油气藏得以保存完整。因此,良好的后期保存条件是影响油气藏丰度的重要因素。
4. 结论
(1)西湖凹陷中央背斜带烃源充足,圈闭形态好,圈源时空配置关系有利,储层厚度大、分布广,储层物性较好,为中低孔—中低渗储层,为油气成藏奠定了良好的基础石油地质条件。
(2)中央背斜带在构造演化过程中主要发育3期断裂系统,早期及中期断裂系统组合形成纵向油气运移输导体系,是油气成藏的主控因素。而主控断层的封堵性及晚期剪切正断层破坏原生气藏,造成油气在浅部聚集或逸散,是控制气藏丰度的重要因素。
(3)中央背斜带天然气勘探成功的关键因素在油源断裂和油气藏后期保存条件两方面,在中央背斜带下步勘探中要寻找早—中期断层发育、晚期剪切断层不发育、主控断层封堵性好的构造。
-
图 3 石笋DXHL3的δ18O和δ13C记录及与极地冰芯、婆罗洲北部石笋及中国季风区内其他石笋δ18O 记录对比
a:格陵兰冰芯NGRIP[17]; b-c:地下画廊溶洞石笋DXHL3; d:婆罗洲北部石笋SSC01[26];e:豪猪洞石笋HZZ11[18];f:葫芦洞石笋MSD[19]; g:南极冰芯EDML[17]。各石笋记录均显示了年龄及误差;图中黑色圆点和水平误差棒代表相应记录的定年点及误差;黑色箭头代表变化趋势;所有数据均进行了平滑滤波处理,灰色虚线代表的是原数据,黑色实线为三点滑动平均后数据。
Figure 3. Comparison of the DXHL3 δ18O and δ13C records with δ18O records of ice cores from polar areas, speleothems from northern Borneo, and other stalagmites in monsoonal China
a: Greenland ice core NGRIP[17]; b-c: underground gallery cave stalagmite DXHL3; d: North Borneo stalagmite SSC01[26]; e: Haozhu cave stalagmite HZZ11[18]; f: Hulu cave stalagmite MSD[19]; g: Antarctic ice core EDML[17]. All stalagmite records show age and error. Black dots and horizontal error bars represent the corresponding recorded dating points and errors. Black arrows indicate the changing trend. All data are smoothed and filtered; the gray dashed line are the original data and the solid black line are the three-point sliding average.
表 1 石笋DXHL3的U-230Th年代数据
Table 1 U-230Th dating results of stalagmite DXHL3
样品号 深度/mm 238U/10−9 232Th/10−12 实测 δ234U [230Th/238U]活度比 [230Th/232Th]/10−6 未校正年龄/aBP 校正年龄/aBP δ234Ui DXHL-1 3.5 24467±21 2220±8 3015.5±4.5 0.67890±0.00072 123563±448 19774±33 19774±33 3188.8±4.7 DXHL-3 7.0 22657±28 635±22 3147.5±5.5 0.73498±0.00097 432661±14833 20794±42 20794±42 3338.0±5.8 DXHL-4 10.0 19816±26 56±7 3189.6±6.4 0.77094±0.00106 4531392±550191 21654±48 21654±48 3390.9±6.8 DXHL-5 26.5 18180±25 165±16 3120.4±6.8 0.77806±0.00114 1413001±138238 22270±53 22270±53 3323.2±7.2 DXHL-6 31.0 29792±43 128±21 3118.2±8.0 0.78114±0.00124 3004717± 499744 22379±61 22379±61 3321.8±8.6 DXHL-7 59.0 27930±33 323±15 3115.6±6.5 0.78600±0.00099 1120882±50279 22545±49 22545±49 3320.6±6.9 DXHL-8 64.2 24744±32 621±23 3051.2±6.2 0.77506±0.00111 509515±18740 22591±51 22591±51 3252.4±6.6 DXHL-9 90.0 23807±23 66±20 3054.3±4.6 0.77846±0.00116 4609934±1361855 22680±46 22680±46 3256.5±5.0 DXHL-10 111.0 35390±39 293±18 3186.8±5.5 0.80779±0.00136 1609388±97936 22793±53 22793±53 3398.8±5.9 DXHL-2 132.8 31713±32 50±9 3113.7±5.1 0.80362±0.00091 8416357±1550677 23106±42 23106±42 3323.8±5.4 注: λ230=9.1599×10−6 a−1 ;λ234=2.8263×10−6 a−1 ;λ238=1.55125×10−10 a−1 。δ234U=([234U/238U]活度比−1)×1000;234U初始值是根据230Th年龄获得的,即δ234U初始值=δ234U测量值×eλ234×t。校正230Th年龄假设初始的230Th/232Th摩尔比为(4±2)×10−6。 -
[1] Clark P U, Dyke A S, Shakun J D, et al. The last glacial Maximum [J]. Science, 2009, 325(5941): 710-714. doi: 10.1126/science.1172873
[2] Yokoyama Y, Lambeck K, De Deckker P, et al. Timing of the Last Glacial Maximum from observed sea-level minima [J]. Nature, 2000, 406(6797): 713-716. doi: 10.1038/35021035
[3] 杨石岭, 董欣欣, 肖举乐. 末次冰盛期以来东亚季风变化历史: 中国北方的地质记录[J]. 中国科学:地球科学, 2019, 62(8):1181-1192 doi: 10.1007/s11430-018-9254-8 YANG Shiling, DONG Xinxin, XIAO Jule. The East Asian Monsoon since the Last Glacial Maximum: Evidence from geological records in northern China [J]. Science China:Earth Sciences, 2019, 62(8): 1181-1192. doi: 10.1007/s11430-018-9254-8
[4] 侯光良, 许长军, 兰措卓玛, 等. 末次冰盛期中国人类活动的响应与适应[J]. 热带地理, 2018, 38(6):819-827 HOU Guangliang, XU Changjun, LANCUO Zhuoma, et al. The response and adaptation of Chinese human activities to the Last Glacial Maximum [J]. Tropical Geography, 2018, 38(6): 819-827.
[5] 王照波, 张剑, 王江月, 等. 山东蒙山第四纪冰川遗迹光释光测年研究及冰期划分与对比[J]. 地质论评, 2017, 63(3):694-702 WANG Zhaobo, ZHANG Jian, WANG Jiangyue, et al. A study on quaternary glaciation moraines in mount Mengshan, Shandong Province with optically stimulated luminescence (OSL) and comparison of glacial period division [J]. Geological Review, 2017, 63(3): 694-702.
[6] Yang S L, Ding Z L, Li Y Y, et al. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13178-13183. doi: 10.1073/pnas.1504688112
[7] 李曼玥, 张生瑞, 许清海, 等. 华北平原末次冰盛期以来典型时段古环境格局[J]. 中国科学:地球科学, 2019, 62(8):1279-1287 doi: 10.1007/s11430-018-9264-2 LI Manyue, ZHANG Shengrui, XU Qinghai, et al. Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum [J]. Science China:Earth Sciences, 2019, 62(8): 1279-1287. doi: 10.1007/s11430-018-9264-2
[8] 杨利荣, 岳乐平, 弓虎军. 呼伦贝尔沙地末次冰盛期晚期至全新世风成沙表面矿物特征及环境意义[J]. 地理研究, 2015, 34(6):1066-1076 YANG Lirong, YUE Leping, GONG Hujun. The environmental implication from microscopic texture of eolian sand of Hulun Buir duneland centred on late last glacial maximum and Holocene [J]. Geographical Research, 2015, 34(6): 1066-1076.
[9] Chen Q M, Cheng X, Cai Y J, et al. Asian summer monsoon changes inferred from a stalagmite δ18O record in central China during the last glacial period [J]. Frontiers in Earth Science, 2022, 10: 863829. doi: 10.3389/feart.2022.863829
[10] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591
[11] 程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学, 2019, 62(10):1489-1513 doi: 10.1007/s11430-019-9478-3 CHENG Hai, ZHANG Haiwei, ZHAO Jingyao, et al. Chinese stalagmite paleoclimate researches: a review and perspective [J]. Science China:Earth Sciences, 2019, 62(10): 1489-1513. doi: 10.1007/s11430-019-9478-3
[12] 耿庆明, 丁长慎, 耿升明. 山东沂水县水文地质条件与分区探讨[J]. 山东师大学报:自然科学版, 1990, 5(2):66-70 GENG Qingming, DING Changshen, GENG Shengming. A study of hydrogeologic conditions and zones in Yishui county of Shandong Province [J]. Journal of Shandong Normal University:Natural Science Edition, 1990, 5(2): 66-70.
[13] 迟宏. 近千年以来山东半岛高分辨率气候环境变化的石笋记录[D]. 鲁东大学硕士学位论文, 2016. CHI Hong. Climate change in the past 1000 years revealed by stalagmite from Kaiyuan Cave in Shandong Peninsula, China[D]. Master Dissertation of Ludong University, 2016.
[14] Shen C C, Wu C C, Cheng H, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols [J]. Geochimica et Cosmochimica Acta, 2012, 99: 71-86. doi: 10.1016/j.gca.2012.09.018
[15] Shen C C, Cheng H, Edwards R L, et al. Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy [J]. Analytical Chemistry, 2003, 75(5): 1075-1079. doi: 10.1021/ac026247r
[16] Schulz M, Mudelsee M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series [J]. Computers & Geosciences, 2002, 28(3): 421-426.
[17] Lemieux-Dudon B, Blayo E, Petit J R, et al. Consistent dating for Antarctic and Greenland ice cores [J]. Quaternary Science Reviews, 2010, 29(1-2): 8-20. doi: 10.1016/j.quascirev.2009.11.010
[18] Zhang H B, Griffiths M L, Huang J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial–Bølling interstadial transition [J]. Earth and Planetary Science Letters, 2016, 453: 243-251. doi: 10.1016/j.jpgl.2016.08.008
[19] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
[20] 王庆, 周厚云, 迟宏, 等. 最近千年来山东半岛西部气候环境变化的石笋δ18O、δ13C记录(I)[J]. 海洋地质与第四纪地质, 2015, 35(5):135-142 WANG Qing, ZHOU Houyun, CHI Hong, et al. The stalagmite records of climate and environment change on the western Shandong Peninsula during the past 1000 years: 18O and 13C values (I) [J]. Marine Geology & Quaternary Geology, 2015, 35(5): 135-142.
[21] Tan L C, Liu W, Wang T L, et al. A multiple-proxy stalagmite record reveals historical deforestation in central Shandong, northern China [J]. Science China Earth Sciences, 2020, 63(10): 1622-1632. doi: 10.1007/s11430-019-9649-1
[22] Xue G, Cai Y J, Ma L, et al. A new speleothem record of the penultimate deglacial: Insights into spatial variability and centennial-scale instabilities of East Asian monsoon [J]. Quaternary Science Reviews, 2019, 210: 113-124. doi: 10.1016/j.quascirev.2019.02.023
[23] 李倩, 李广雪, 张强, 等. 末次冰消期临沂石笋微量元素记录及其气候意义[J]. 中国海洋大学学报, 2018, 48(11):100-107 LI Qian, LI Guangxue, ZHANG Qiang, et al. Stalagmite trace element records and implications for paleoclimate change in Linyi during the Last Deglaciation [J]. Periodical of Ocean University of China, 2018, 48(11): 100-107.
[24] Li Q, Li G X, Chen M T, et al. East Asian summer monsoon variations during the last deglaciation, recorded from a stalagmite at Linyi, northern China [J]. Quaternary International, 2017, 464: 327-335.
[25] Liu Z Y, Wen X Y, Brady E C, et al. Chinese cave records and the East Asia summer monsoon [J]. Quaternary Science Reviews, 2014, 83: 115-128. doi: 10.1016/j.quascirev.2013.10.021
[26] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164
[27] 黄荣辉, 李维京. 夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制[J]. 大气科学, 1988, 12(S1):107-116 doi: 10.3878/j.issn.1006-9895.1988.t1.08 HUANG Ronghui, LI Weijing. Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism [J]. Chinese Journal of Atmospheric Sciences, 1988, 12(S1): 107-116. doi: 10.3878/j.issn.1006-9895.1988.t1.08
[28] Huang R H, Sun F Y. Impacts of the tropical western Pacific on the East Asian Summer Monsoon [J]. Journal of the Meteorological Society of Japan. Ser. II, 1992, 70(1B): 243-256. doi: 10.2151/jmsj1965.70.1B_243
[29] 黄荣辉, 陈际龙, 黄刚, 等. 中国东部夏季降水的准两年周期振荡及其成因[J]. 大气科学, 2006, 30(4):545-560 doi: 10.3878/j.issn.1006-9895.2006.04.01 HUANG Ronghui, CHEN Jilong, HUANG Gang, et al. The quasi-biennial oscillation of summer monsoon Rainfall in China and its cause [J]. Chinese Journal of Atmospheric Sciences, 2006, 30(4): 545-560. doi: 10.3878/j.issn.1006-9895.2006.04.01
[30] Li D, Tan L C, Cai Y J, et al. Is Chinese stalagmite δ18O solely controlled by the Indian summer monsoon? [J]. Climate Dynamics, 2019, 53(5-6): 2969-2983. doi: 10.1007/s00382-019-04671-x
[31] Wu J Y, Wang Y J, Cheng H, et al. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite [J]. Science in China Series D:Earth Sciences, 2009, 52(3): 360-368. doi: 10.1007/s11430-009-0031-1
[32] Caley T, Roche D M, Renssen H. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model [J]. Nature Communications, 2014, 5: 5371. doi: 10.1038/ncomms6371
[33] Cai Y J, Tan L C, Cheng H, et al. The variation of summer monsoon precipitation in central China since the last deglaciation [J]. Earth and Planetary Science Letters, 2010, 291(1-4): 21-31. doi: 10.1016/j.jpgl.2009.12.039
[34] Jiang X Y, He Y Q, Shen C C, et al. Stalagmite-inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous termination of the climatic Optimum in the Asian monsoon territory [J]. Chinese Science Bulletin, 2012, 57(7): 795-801. doi: 10.1007/s11434-011-4848-6
[35] Selvaraj K, Chen C T A, Lou J Y, et al. Holocene weak summer East Asian monsoon intervals in Taiwan and plausible mechanisms [J]. Quaternary International, 2011, 229(1-2): 57-66. doi: 10.1016/j.quaint.2010.01.015
[36] Zhao K, Wang Y J, Edwards R L, et al. Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 510-519. doi: 10.1016/j.palaeo.2016.02.044
[37] Zhong W, Cao J Y, Xue J B, et al. A 15, 400-year record of climate variation from a subalpine lacustrine sedimentary sequence in the western Nanling Mountains in South China [J]. Quaternary Research, 2015, 84(2): 246-254. doi: 10.1016/j.yqres.2015.06.002
[38] Fairbanks R G. A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation [J]. Nature, 1989, 342(6250): 637-642. doi: 10.1038/342637a0
[39] 业治铮, 汪品先. 南海晚第四纪古海洋学研究[M]. 青岛: 青岛海洋大学出版社, 1992. YE Zhizheng, WANG Pinxian. Research on Late Quaternary Paleoceanography of the South China Sea[M]. Qingdao: Qingdao Ocean University Press, 1992.
[40] Sawada K, Handa N. Variability of the path of the Kuroshio ocean current over the past 25, 000 years [J]. Nature, 1998, 392(6676): 592-595. doi: 10.1038/33391
[41] Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean [J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6
[42] Liu Y G, Fu Y X, Du D W, et al. Paleoceanographic records in the sedimentary cores from the middle Okinawa Trough [J]. Chinese Science Bulletin, 2003, 48(1): 74-81. doi: 10.1360/csb2003-48-1-74
[43] 何炽鹏, 李冬玲, 李正, 等. 末次冰盛期以来冲绳海槽古海洋环境研究进展[J]. 第四纪研究, 2020, 40(6):1577-1587 doi: 10.11928/j.issn.1001-7410.2020.06.17 HE Chipeng, LI Dongling, LI Zheng, et al. Research progress in the paleoenvironment around the Okinawa Trough since the Last Glacial Maximum [J]. Quaternary Sciences, 2020, 40(6): 1577-1587. doi: 10.11928/j.issn.1001-7410.2020.06.17
[44] Xu D K, Lu H Y, Wu N Q, et al. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9657-9662. doi: 10.1073/pnas.1300025110
[45] Li D W, Yu M, Jia Y H, et al. Gradually cooling of the yellow sea warm current driven by tropical pacific subsurface water temperature changes over the past 5 kyr [J]. Geophysical Research Letters, 2021, 48(10): e2021GL093534.