Geological evolution and research prospect in southeast boundary of Philippine Sea Plate
-
摘要: 晚中生代期间,由于古太平洋俯冲板片俯冲于欧亚板块之下,从而在欧亚大陆东缘存在一条巨型的类似于现今太平洋东侧的安第斯型俯冲带。岩浆活动记录显示,70 Ma左右,可能由于外来的正地形地体拼贴上该俯冲带,从而导致这条巨型安第斯型俯冲带逐渐消失,欧亚大陆东缘逐渐从主动大陆边缘变为被动大陆边缘。然而,新生代早期以来,伴随着菲律宾海板块从赤道北移,该被动大陆边缘又重新活化,变为主动大陆边缘,并逐渐形成了巨型的沟-弧-盆系统,期间西太平洋地区大致经历了三期的弧后扩张,即始新世、渐新世—中新世、上新世以来,且菲律宾海板块正好包括了这3个扩张期的弧后扩张盆地:西菲律宾海盆、四国海盆-帕里西维拉海盆以及马里亚纳海槽。本文详细总结了太平洋板块与次级的板块—菲律宾海板块及卡罗琳板块的地质演化历史,且详细探讨了以上3个主要板块之间相互作用的典型区域(菲律宾海板块东南侧)的地质学和岩石学特征以及尚存在的重要科学问题,并展望了未来该区域的研究方向。Abstract: During the Mesozoic Era, due to continuous subduction of the plaeo-Pacific slab beneath the Eurasian plate, a huge Andean-type subduction zone was gradually formed, being similar to that in modern eastern Pacific margin. Evidence from magmatic activity shows that the subduction processes of the Mesozoic Andean-type subduction zone had gradually ceased due to possible collaging of exotic positive topography terrane (s) into the subduction zone, and the eastern margin of the Eurasian plate has changed from active to passive continental margins. However, since early Cenozoic, accompanied by northward migration of the Philippine plate from south of the Equator (original place), the passive margin was reactivated and became an active margin and gradually formed a huge trench-arc-(back-arc) basin system in the western Pacific region after experienced three-epoch spreading evolution (i.e., Eocene, Oligocene-Miocene, Pliocence-Present). The Philippine Sea plate (PSP) includes these three-epoch back-arc basins (i.e., West Philippine Basin, Shikoku-Parece Vela Basins, and Mariana Trough). This study summarized in detail the geological evolution history of Pacific plate (first-order large tectonic plate), Philippine Sea plate and Caroline plate (second-order tectonic plate), described the geological and petrological characteristics for typical regions of interaction of the three tectonic plates, proposed some important scientific questions, and finally, pointed out the directions of investigation and research in the near future.
-
Keywords:
- magmatic activities /
- geological processes /
- Pacific plate /
- Caroline plate /
- Philippine Sea plate
-
南海南部油气勘探至今已有近60年的历史,南海周边国家于20世纪50年代就开始对南海南部的大型沉积盆地进行油气勘探开发,尤其是近20年以来,越南、马来西亚、印度尼西亚等国家更是加快了对南海南部的油气勘探开发步伐[1-3]。据不完全统计,到20世纪90年代末,南海南部周边国家已钻井1 000多口,发现含油气构造200多个,发现油气田180个,油气年产量超过5 000万吨油当量,相当于一个大庆油田的年产量[1, 4-8]。近几年来,周边国家不仅基本上完成了对南海南部大型沉积盆地有利区域油气勘查的全覆盖,而且其调查手段也由以前的区域性二维地震概查逐渐转为三维地震详细勘探,总累计开采油气约13亿吨油当量。在目前的油气储层研究中,针对碳酸盐岩储层的研究较为成熟,相关报道较多,相比而言,针对砂岩储层,尤其是优质砂岩储层的研究工作明显处于较滞后的状态[1, 3, 5-8]。本文选取南海南部北康-曾母盆地下中新统为研究对象,首先通过层序地层格架厘定、优质砂岩波形分析以及不同沉积环境下典型砂岩精细刻画等研究工作,进而指出砂体厚度在空间上的展布规律,在平面上圈定优质砂岩的分布范围。最终结合沉积环境分析,建立优质储集砂体发育的沉积模式。本文旨在进一步明确北康-曾母盆地下中新统内部优质砂岩的时空展布规律,尝试对有利储集相带及其内部优质砂岩的边界进行精细刻画,为有效预测优质砂岩储层的空间发育位置提供科学依据。
1. 研究区概况
北康-曾母盆地位于南海南部海域大陆坡上,是大型的新生代伸展-挠曲复合陆缘含油气沉积盆地,两者以北西走向的廷贾断裂带为界[9-13],其东部以南沙海槽西北缘断裂和文莱沙巴盆地西南缘断裂为界,北部及西北部与南沙中部海域岛礁区相接,与南薇西盆地、南薇东盆地和万安盆地相隔(图1)。由于受欧亚大陆陆缘裂解、古南海俯冲、澳大利亚和欧亚板块碰撞以及新南海扩张等多构造事件作用的影响,北康-曾母盆地在新生代期间均经历了陆相-海陆过渡相-海相的沉积充填和演化过程,广泛发育湖相、海陆过渡相以及海相沉积。由婆罗洲拉让河与巴兰河携带的大量陆源碎屑沉积物供给以及南海南部频繁的三级海平面升降变化控制,北康-曾母盆地沉积并形成了多套强制海退-低位体系域-海进体系域内的陆架边缘三角洲-滨浅海-深水扇沉积体系的砂泥岩组合。其砂岩具有高孔渗性特征,可形成蕴藏巨大油气潜力的优质砂岩储层[10, 12-16]。
2. 研究区层序界面特征与层序地层格架
利用国外钻井信息(Mulu-1井、Talang-1井和Bako-1井),结合前人研究成果[10-11, 14, 16-18]以及区域二维地震资料,在北康-曾母盆地内厘定出T1、T2、T3、T31、T4、T5和Tg共7个层序界面(图2和图3),各界面年代如图2所示。各个界面的地震反射特征详述如下:
2.1 Tg界面
该界面为北康-曾母盆地新生界基底,为一初始破裂不整合面,总体表现为中—低频、强振幅、不连续反射。地震剖面上整体表现出下削上超的特征,上下地震反射层结构差异很大,局部可见角度不整合现象。当埋藏较深时,不易识别。
2.2 T5界面
该界面为区域性、覆盖整个北康-曾母盆地的大型不整合面,总体表现为中—低频、不连续反射特征,振幅多变。地震剖面上具有下整上超的特征,在半地堑盆地的斜坡处,该界面常超覆在Tg界面之上。
2.3 T4界面
该界面也是区域性覆盖整个北康-曾母盆地的大型不整合面,与下伏地层呈假整合接触,多表现为中—低频、强振幅、较连续的强反射特征。该界面之上的地层分布范围迅速扩展,反映了裂陷高潮期沉积,一般认为其标志着新南海的扩张。
2.4 T31界面
该界面在北康-曾母盆地南部特征较为清晰,向北追踪,多数地区可见其与T3界面合并,为一个局部发育的不整合面,整体表现为中频、连续、中—强振幅反射,界面之上具有显著的上超结构,界面之下为轻微的削截现象。
2.5 T3界面
该界面在全区是个比较显著的界面,是一个区域性的覆盖整个北康-曾母盆地的大型不整合面,与下伏地层呈削截、角度不整合接触,整体表现为中频、连续、中—强振幅地震反射特征。Hutchison[19]在研究南海南部边缘盆地时称该不整合为中中新世不整合(MMU),并认为该不整合为破裂不整合,沉积间断持续了3~5 Ma,从16 Ma开始了裂后地层沉积。Cullen等[20]称其为南海不整合面(SCSU)。
2.6 T2界面
该界面在全区大部分地区为整合界面,只是在较高部位,见其之上存在上超现象。T2界面为低频强振幅连续的反射界面,全区可很好追踪与对比。界面之下整体为弱振幅连续的反射层,界面之上为中—强振幅连续的席状反射层。
2.7 T1界面
该界面在陆棚区整体的地震反射特征表现为高频、中—强振幅、较连续反射,常见上覆地层底超、下伏地层削截等反射中止现象;在越过坡折点后,进入陆坡及盆地区内部,地震反射特征主要表现为高频、中—强振幅、连续反射,全区容易追踪。
3. 储层砂体的地震预测
3.1 理论基础
Anstey首先提出了过上下岩层之间由于其波阻抗的差异而产生的不同地震子波形态来直接识别砂岩储集层的相关问题[21],并利用详实的钻井资料,结合切实的地质模型,从以下多个方面对地震反射特征进行了系统研究,即地质界面能产生地震反射的实质(上下岩层波阻抗的不同)、砂泥(页)岩之间的声学特征、薄层与过渡层反射、砂岩横向变化及尖灭问题等。许多成功的钻井范例证实[22],在特定的沉积环境下,这种利用地震资料直接识别砂岩体的方法是可行、可信的,并多方面地列举、总结了厚层砂岩、滨岸砂岩、陆架边缘席状砂岩、河道砂岩、河口坝砂、浊积砂等典型砂岩储集层的地震反射特征(子波形态)和识别标志。受Anstey有关不同类型砂岩储集层的波形特征启发,本文以地震反射子波的相关理论为基础,通过地震模拟正演,分析并建立厚层砂岩,厚层泥(页)岩中高、低速夹层,渐变层,海退-海进中砂-泥-灰岩过渡层等的波阻抗结构模型及其地震反射波形类型,总结不同沉积环境下砂岩的识别标志,以此推广波形分析方法及其适用性。
3.2 砂岩波阻抗(速度)随深度变化的规律
由于砂岩发育的沉积环境与相带(冲积扇砂岩、河道砂岩、滨岸砂岩、陆架边缘席状砂岩等),各自的颗粒成分(长石砂岩、石英砂岩),分选、磨圆程度以及所受的胶结作用、成岩作用等的不同,其波阻抗(速度)将会因埋深的变化而受影响。
图4是典型的砂泥(页)岩声波阻抗随深度变化的函数关系图[21],图中揭示:高孔隙度砂岩的波阻抗(速度)低于泥(页)岩,其相互间波阻抗(速度)差异随深度的变化而逐渐减小,在浅层弯曲段内(RC=−0.7)存在一定的差异,砂岩层顶面可产生较为明显的负反射,我们将这类砂岩定义为Ⅰ类砂岩,即波阻抗(速度)小于围岩(泥(页)岩)。此类砂岩长期经受海浪的冲刷淘洗,其分选、磨圆程度均较高且泥质等胶结物含量较少,埋深所形成的压实作用,不会使其像泥(页)岩一样出现高度的致密化,其波阻抗(速度)与深度的变化关系不大。常见的有河道砂、河口坝砂、滨岸砂岩、三角洲前缘席状砂、水道砂等,是油气勘探中需要寻找的目标。低孔隙度砂岩的波阻抗比泥(页)岩高许多,其相互间巨大的波阻抗差异将足以在砂岩层顶面产生显著的正极性反射,我们将这类砂岩定义为Ⅲ类砂岩,即波阻抗(速度)大于围岩(泥(页)岩)。这类砂岩由于搬运距离短,沉积速率快,其颗粒的分选差且多为棱角、次棱角状,泥质等胶结物含量高。当这类砂岩受到埋深过程中的压实作用时,其颗粒很容易重新排列且被压实致密,与泥(页)岩一样,埋深是影响这类砂岩波阻抗(速度)的重要因素。常见的有冲积扇砂、洪泛平原或天然堤粉砂岩、泥质粉砂岩等。
3.3 波形分析
中华人民共和国原地质矿产部下属事业单位对正常极性显示的定义与SEG相反,即正反射界面所对应的零相位子波主波瓣在地震剖面上以波峰显示,这种定义至今未变[23-26];本文资料均来自原地质矿产部下属企业,如海洋地质调查局等,其正常极性显示剖面中的正反射界面反射波的主波瓣均用波峰表示。
地震剖面中有部分反射波具有单个、两个和渐变界面所产生的对称、斜对称和低频波形特征[22-23, 27-28]。
图5A和图5B为高孔渗Ⅰ类砂岩和致密Ⅲ类砂岩顶面(单个界面)的负反射和正反射,砂岩厚度h≥一个波长λ范围,其地震波形呈零相位对称波形。
图5C和图5D为低速和高速夹层所表现出的斜对称波形,夹层厚度h≤λ/4。常见的低速层有煤层、高孔渗砂岩、含气砂岩等,在地震波形特征上,这些低速层的顶面为负反射,对应于波谷;底面为正反射,对应于波峰,整体呈现一个右下倾斜对称的形态,即A1与A4、A2与A3均呈斜十字对称,从A2到A3振幅变化最大(图5C)。如果能排除这些低速层是煤或泥岩层后,可以直接得出这是一套高孔砂岩。灰岩、火山熔岩或钙质砂岩,其速度一般远远大于上下围岩。在地震波形特征上,这些高速层的顶面为正反射,对应于波峰;底面为负反射,对应于波谷,整体表现出一个左下倾斜对称波形(图5D)。结合地震相分析可以确定是哪一种类型的高速层。一般而言,灰岩高速层发育于海进期没有陆缘碎屑供应的陆架、台地等浅海环境,地震反射呈光滑连续;钙质砂岩发育于混积陆棚,通常是海退期砂岩被海进期钙质胶结(生物扰动)形成;火山熔岩在火山口附近,发育于任何水深,厚度通常向外变薄。
图5E和图5F为渐变层所表现出的低频波形,具有多种波阻抗结构(速度)相互组合的特征,渐变层厚度h≤λ/2。其中,图5E为厚层状砂泥岩互层,砂岩从下到上主要为含灰质粉砂质泥岩、粉砂质泥岩(泥质粉砂岩)、粉砂岩(细砂岩)、中—粗砂岩,其砂岩品质逐渐变好,展示了由Ⅲ类砂岩到Ⅰ类砂岩的变化,其波形呈类似耳状结构的B字型波;图5F为常见的陆架边缘海退期沉积的低位域优质砂岩,随后海平面上升而被海进灰岩(或含灰质、钙质岩层)覆盖,其A1部分与图5E类似,产生类似耳状结构的B字型波,A2部分由于灰岩层与低位域的优质砂岩层(尤其当砂岩层含气之后)之间巨大的波阻抗差异,产生极强振幅的负反射,A3部分是判别A2部分中是否存在优质砂岩的依据,因为尽管灰岩层顶底面强反射隐盖了砂岩顶面负反射属性,但砂岩层底面正反射不受此影响,若未见A3部分的出现,则可断定砂岩层不存在。
4. 下中新统砂层组的厘定
通过上述分析可知,地震波形与实际地质情况之间的对应关系是非常复杂的,而地震剖面中大多数由多个界面形成的反射复合波,一般不具有波形分析的价值。然而,厚层砂岩顶面产生的零相位对称波形,河道砂、河口坝砂、滨岸砂岩、席状砂、水道砂等高孔渗优质砂岩夹层产生的右下倾斜对称波形以及灰岩、火山熔岩或钙质砂岩夹层产生的左下倾斜对称波形,砂泥岩互层、海进灰岩等渐变层产生的似耳状结构B字型低频波形等,这些特殊样式的地震波形是非常具有价值的,可以应用于任何地质条件下的砂岩识别,尤其是斜对称波形,可以高效、准确判断河口坝砂、灰岩层和火山熔岩层等沉积体[22, 27]。
南海南部陆架坡折带的单个砂层组发育分布与延续时间总体受3级周期控制(图3),砂层组及其上下泥岩的厚度h>λ/2,尤其是在陆架边缘的海退层系中[29-30]。由波形分析可知,高孔渗优质含气或饱和液体的砂岩,其速度低于围岩,在波形特征上,砂岩顶面对应于波谷,底面对应于波峰,表现出低频、中—强振幅、右下倾斜对称波形反射特征,在地震剖面上可以通过其顶底面(一般为波谷-波峰组合)识别。以此为基础,从微观结构上开展研究区早中新世层序内部优质砂层组的精细厘定工作,识别出8种常见的砂岩及其组合,主要有含气砂岩、河道(河口坝)砂岩、陆架边缘席状砂岩、斜坡扇砂岩、盆底扇砂岩、砂泥岩互层以及浊积扇砂岩(图6)
5. 砂岩平面分布特征及其沉积体系
通过开展早中新世层序内部砂层组的精细识别、刻画及厘定工作,对其层序格架内部砂岩的整体情况有了较为明确的把握,其中三角洲平原河道砂、斜坡扇砂以及盆底扇砂具有多期次、厚度大、物性好的特点,具备形成优质砂岩储层的有利条件[31-32]。尽管开展了层序格架内砂层组的厘定工作,识别出众多“陆架-斜坡-深海盆地”体系下不同沉积相带中的砂岩,但较整个研究区来说,仅仅进行骨架砂岩的识别与研究还远远不足以满足勘探开发的要求[29-30, 32-33]。下面在砂岩层地震响应特征和层序格架内砂层组厘定的基础上,由点、线砂岩深入至整个砂岩平面分布情况的研究与刻画工作,并相应开展沉积体系分析。
5.1 早中新世主要砂岩分布区厚度图
在大量地震资料解释工作的基础上,针对研究区早中新世层序内部砂岩的主要发育区域,绘制早中新世主要砂岩分布区厚度图(图7)。红色表示砂岩的主要分布区域与厚度,颜色越深,砂岩越厚。
5.2 早中新世层序内砂岩的平面分布特征
根据早中新世主要砂岩分布区厚度(图7)以及砂岩平面分布特征(图8)可以看出,曾母盆地康西凹陷南部在早中新世时期处于隆起状态,砂岩主要分布于南康台地区,呈槽带状展布,具有丰度高、分布广、颗粒粗及横向连续性好等特征。整体上,砂岩呈现北西-南东向展布,这是由当时所处的古地貌环境下的古水流体系所决定的。
沉积体系分析结果表明,在早中新世层序沉积时期,研究区的沉积物源来自南面陆地,尤其是婆罗洲山地,主要有两支物源向陆架内凹陷盆地汇聚,整个陆架区都是含砂储层的有利储集相带。其中,西面这支物源在断陷凹槽带的控制下,主河道流向西北方向,跨过陆架坡折带后,由主河道分支出的水下分流河道继续向西北方向的深海盆地区域推进,最远距离达80 km;东面这支物源受古地貌环境控制,主河道进入凹陷后便分为两支,一支向西北方向流动,另一支向东北方向流动。在早中新世层序沉积时期,在斜坡及坡脚盆地区域发育一个东西宽约200 km、南北纵深约60 km的砂岩储层有利发育带。
图8结果显示,研究区早中新世层序内的三角洲-深水扇沉积体系可以划分为3种沉积相带,发育3大类砂体:
(1)三角洲前缘相:主要与河流有关,发育三角洲前缘相砂体,如水下分流河道砂、河道边缘砂、河口坝砂。
(2)浅海相(陆架边缘):充足的沉积物源进入大陆架,沉积浅海相砂岩,如受海浪作用形成陆架边缘席状砂或陆架边缘砂坝。
(3)半深海-深海相:受海平面升降变化与沉积物源供应量大小的控制而发育形成的半深海相砂体和深海相砂体,如与斜坡和盆底相关的扇体。
不同的沉积相带中,发育不同类型的砂岩,其主要特征为:
(1)水下分流河道砂岩
横切面为丘状体,整体形态呈U型,底部侵蚀冲刷特征较为明显,砂岩纵向厚度大,但横向连续性较差,同一个砂岩内,顶底界面对应强振幅波谷-波峰组合,砂岩的低速特征明显,指示粗颗粒成分和结构成熟度高的优质砂岩储层。
(2)河道边缘砂岩
分布于丘状体侧缘。波谷向侧缘变窄,振幅减弱,反映沉积体向侧缘地层厚度减薄、物性变差,主要为粉砂以及泥质粉砂。
(3)河口坝砂岩
呈半月形或扇形,通常脱离河道,与河道砂岩只在河口中间点可能连通;底面不同程度地被冲刷,内有前积构型,砂岩厚,物性好,分布较稳定。
(4)陆架边缘席状砂
沿大陆架边缘分布,为远砂坝,受海浪冲刷作用,使得砂岩物性较好,纵向上砂岩常多层叠置,整体厚度较大且横向连续分布。
(5)斜坡扇砂
分布于斜坡及坡脚区域,具有丘状特征,有时可见下切谷或天然提,通常为薄层砂岩或粉砂岩,主要是在海平面快速下降或缓慢上升时期发育,前者砂岩随三角洲前积而向盆地进积,呈高角度叠瓦状堆砌,横向连续性较好;后者尽管海平面不断上升,但上升空间小于沉积物供应,纵向上砂岩相互叠置,横向上向陆地退覆,呈披覆状悬挂于斜坡上。
(6)盆底扇砂
盆底扇主要包活深水浊积砂和叠覆扇砂,砂岩大规模发育,整体厚度大且横向上向盆地内部延伸较远,主要是在海平面相对快速下降期间,发育于大陆架或陆架边缘或斜坡上的沉积物质再次搬运而成,具有双向下超或一边上超特征,偶尔与斜坡扇连接一体。
6. 结论
(1)波形分析是一种基于波阻抗结构的地震反射波属性分析,是一种有效的识别砂岩层方法。尽管波形分析所获得的岩石类型信息仅是一种定性的判别,但这却在油气勘探开发中发挥着关键性、独特性的作用(如含气砂岩、灰岩和火山岩的区分,海进灰岩下海退砂岩的识别)。
(2)通过对北康-曾母盆地早中新世层序内部砂层组的厘定可知,研究区主要发育有高孔渗含气砂岩、河道砂岩、陆架边缘席状砂岩、斜坡扇砂、盆底扇砂以及浊积扇砂。随海平面升降变化,砂岩可呈阶梯状下降形式向盆地进积,如斜坡扇砂、盆底扇砂;或呈退覆堆砌形式向陆地退积,如陆架边缘席状砂岩;或呈纵向加积堆砌形式,如砂泥岩互层。砂岩间相互叠置,总体厚度大且横向连续性好;多期次发育,不同期次间所发育的砂岩均有厚层状的泥岩隔层,具备发育岩性圈闭的有利条件。
(3)早中新世层序内部所发育的河道或水道砂、河口坝砂、受海浪作用形成三角洲前缘席状砂以及深水扇砂,因其颗粒粗而纯,具有较好的抗压实和抗杂基伊利石化能力,容易形成物性较好的优质砂岩储层,地震剖面上表现为低频、中—强反射、右下倾斜对称波形。
(4)早中新世层序内部砂岩平面展布图显示:研究区南部为砂岩的富集区,主要发育三角洲平原砂岩、浅海相砂岩,其中砂岩具有丰度高、分布广、颗粒粗及横向连续性好等特征,为形成优质砂岩储层提供了有利条件,向北由于受当时古地貌环境和古水流体系所控制,砂岩分布较为散落,主要发育半深海—深海砂岩。
(5)用地震地质综合解释的方法刻画的砂岩分布图以及沉积相图,经受住了Talang-1井、Bako-1井、Mulu-1井和B井的钻井验证,说明这套方法得出的砂岩分布及沉积体系分析成果是可信的。
-
图 5 菲律宾海板块东南边界区域熔岩微量元素蛛网图
图中IAB代表岛弧玄武岩,N-MORB代表正常洋中脊玄武岩,OIB代表洋岛玄武岩。正常洋中脊玄武岩、洋岛玄武岩和原始地幔数据来自Sun和McDonough[57],岛弧玄武岩数据来自Niu and O’Hara [58],帕里西维拉海盆南部数据来自文献[59],雅浦弧数据来自文献[44, 52-53],卡罗琳高原数据来自文献[41],索罗尔海槽数据来自文献[60],帕劳弧数据来自文献[61-62],阿玉海槽数据来自文献 [63-65]。
Figure 5. Trace element compositions of lavas in the southeastern boundary of the Philippine Sea plate
IAB: island arc basalt; N-MORB: normal mid-ocean ridge basalt; OIB: ocean island basalt. Data for the N-MORB, OIB and primitive mantle are from references[57]; data for IAB are from references[58]; data for the southern part of the Parece Vela Basin are from references[59]; data for the Yap Arc are from references[44, 52-53]; data for the Caroline Plateau are from references[41]; data for the Solor Trough are from references[60]; data for the Palau Arc are from references[61-62]; data for Ayu Trough are from references[63-65].
表 1 菲律宾海板块东南边界主要构造单元的地质地球物理特征
Table 1 Geological and geophysical features of the main geological units in the southeast boundary of the Philippine Sea plate
构造单元 大致地理位置 规模 基底岩石
年龄/Ma平均水
深/m地壳厚
度/km地球物理特征 岩石地球化学特征 可能成因 参考文献 雅浦沟-弧
系统马里亚纳和帕劳岛弧之间 长约700 km 7.6~10.9 6000~9000 8~16 具高热流值、浅源地震频发、俯冲速率低以及较短的沟弧间距 主要由变质岩组成,类似于洋中脊玄武岩的特征;橄榄岩和火山岩具有岛弧的相关性 太平洋和卡罗琳板块的俯冲以及卡罗琳高原的“碰撞/俯冲” [41-42,44,
52-53,95]北雅浦陡崖 马里亚纳与雅浦海沟交汇处以北 长约为20 km 24.8 5600~6400 5~10 自由空气重力异常为负值,布格重力异常没有表现出显著特征,为残余结构 具有俯冲相关火山岩的典型特征,具有更多的放射性成因同位素Sr 帕里西维拉海盆南部扩张时期形成 [42,52,54] 帕劳沟-弧
系统九州-帕劳脊主体以南 长约500 km 20.1~37.7 6000~7000 >10 板块汇聚速率为0.3~0 cm/yr,由北向南递减 典型的洋内岛弧火山岩序列,亏损高场强元素,富集Sr、La、Ba、Rb等元素 俯冲后撤+卡罗琳高原“碰撞” [62-63,98] 帕里西维拉
海盆南部菲律宾海板块东南端,北雅浦陡崖以南至雅浦弧之间 370 km×
440 km13.1~6.1 500~5200 4.8~5.9 无磁异常,缺失东半部分,双层地壳结构,同时存在平板俯冲和俯冲反转 具有类似于弧后盆地玄武岩的地球化学特征 弧后扩张成因 [60,82,95] 阿玉海槽 帕劳海沟以南,卡罗琳板块与菲律宾海板块边界处 长约600 km,宽约20~
30 km19.9~25.2 5000~6000 5~7 扩张速率为1.0~1.5 cm/yr,存在扩张方向的转变,地震多与走滑断层相关 主要由玄武岩组成,具有类似于洋中脊玄武岩或弧后盆地玄武岩的特征 火山弧的初始裂谷阶段之后围绕轴线的扩展 [38,66,70] 卡罗琳高原 雅浦海沟以东,卡罗琳板块和太平洋板块边界处 长约530 km 8.1~23.9 1000~3000 9~15 地壳较厚,具有较低的布格重力异常 主要由玄武岩组成,具有与洋岛玄武岩或洋中脊玄武岩相似的地球化学特征 地幔柱作用 [28,41,
85,97]索罗尔海槽 东、西卡罗琳洋脊之间 西宽(150~
175 km),东窄(75 km),长约530 km7.0 1600~5000 5~6 斜向张裂转换系统,兼具走滑和伸展特征 主要由玄武岩组成,具有类似于洋中脊玄武岩或洋岛玄武岩的化学特征 卡罗琳洋底高原裂解 [3,28,32,
53,61,64] -
[1] Li S Z, Yu S, Zhao S J, et al. Tectonic transition and plate reconstructions of the east Asian continental margin[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 65-94.
[2] Yan Q S, Metcalfe I, Shi X F, et al. Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, eastern China: implications for lithospheric extension[J]. International Geology Review, 2019, 61(7): 821-838. doi: 10.1080/00206814.2018.1474388
[3] Yan Q S, Shi X F, Yuan L, et al. Tectono-magmatic evolution of the Philippine Sea Plate: A review[J]. Geosystems and Geoenvironment, 2022, 1(2): 100018. doi: 10.1016/j.geogeo.2021.100018
[4] 石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750 doi: 10.11867/j.issn.1001-8166.2013.07.0737 SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 2013, 28(7): 737-750. doi: 10.11867/j.issn.1001-8166.2013.07.0737
[5] Niu Y L, Liu Y, Xue Q Q, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Science Bulletin, 2015, 60(18): 1598-1616. doi: 10.1007/s11434-015-0891-z
[6] Xu Y, Yan Q S, Shi X F, et al. Discovery of Late Mesozoic volcanic seamounts at the ocean-continent transition zone in the Northeastern margin of South China Sea and its tectonic implication[J]. Gondwana Research, 2022.doi: 10.1016/j.gr.2022.04.003.
[7] Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion[J]. Science, 2006, 313(5791): 1281-1284. doi: 10.1126/science.1128489
[8] Torsvik T H, Doubrovine P V, Steinberger B, et al. Pacific plate motion change caused the Hawaiian-Emperor Bend[J]. Nature Communications, 2017, 8(1): 15660. doi: 10.1038/ncomms15660
[9] Karig D E. Origin and development of marginal basins in the western Pacific[J]. Journal of Geophysical Research, 1971, 76(11): 2542-2561. doi: 10.1029/JB076i011p02542
[10] Stern R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.
[11] Hilde T W C, Lee C S. Origin and evolution of the West Philippine Basin: a new interpretation[J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X
[12] 李三忠, 索艳慧, 朱俊江, 等. 海沟系统研究的进展与前沿[J]. 中国科学: 地球科学, 2020, 50(12): 1874-1892 doi: 10.1360/SSTe-2019-0301 LI Sanzhong, SUO Yanhui, ZHU Junjiang, et al. Advance and frontier of the research on trench system[J]. Scientia Sinica Terrae, 2020, 50(12): 1874-1892. doi: 10.1360/SSTe-2019-0301
[13] Hickey‐Vargas R. Origin of the Indian Ocean‐type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large‐scale processes[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B9): 20963-20979. doi: 10.1029/98JB02052
[14] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431 doi: 10.1016/S1367-9120(01)00069-4
[15] Yan Q S, Shi X F. Geological comparative studies of Japan arc system and Kyushu-Palau arc[J]. Acta Oceanologica Sinica, 2011, 30(4): 107-121. doi: 10.1007/s13131-011-0134-3
[16] Seno T, Maruyama S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84. doi: 10.1016/0040-1951(84)90008-8
[17] Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537
[18] Shervais J W, Reagan M, Haugen E, et al. Magmatic response to subduction initiation: Part 1. Fore‐arc basalts of the Izu‐Bonin arc from IODP expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 314-338. doi: 10.1029/2018GC007731
[19] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3): 677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008 WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate[J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008
[20] Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin[M]. Geological Society of America, 1985: 1-60.
[21] Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002
[22] Nakanishi M, Tamaki K, Kobayashi K. A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications[J]. Geophysical Research Letters, 1992, 19(7): 693-696. doi: 10.1029/92GL00022
[23] Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington: American Geophysical Union, 1998: 67-88.
[24] Jolivet L, Faccenna C, Becker T, et al. Mantle flow and deforming continents: From India‐Asia convergence to Pacific subduction[J]. Tectonics, 2018, 37(9): 2887-2914. doi: 10.1029/2018TC005036
[25] Hall R, Ali J R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1-4): 229-250. doi: 10.1016/0040-1951(95)00038-0
[26] Weissel J K, Anderson R N. Is there a Caroline plate?[J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3
[27] Hegarty K A, Weissel J K. Complexities in the development of the Caroline Plate region, western equatorial Pacific[J]. The Ocean Basins and Margins: The Pacific Ocean. Boston: Springer, 1988: 277-301.
[28] Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis[J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8
[29] Bird P. An updated digital model of plate boundaries[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 1027.
[30] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.
[31] Bracey D R. Reconnaissance geophysical survey of the Caroline Basin[J]. Geological Society of America Bulletin, 1975, 86(6): 775-784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2
[32] Bracey D R, Andrews J E. Western Caroline Ridge: relic island arc?[J]. Marine Geophysical Researches, 1974, 2(2): 111-125. doi: 10.1007/BF00340029
[33] Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004
[34] Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937
[35] Zhang Z Y, Dong D D, Sun W D, et al. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate, western Pacific[J]. International Geology Review, 2021, 63(2): 193-207. doi: 10.1080/00206814.2019.1707126
[36] Hill K C, Hegarty K A. New tectonic framework for PNG and the Caroline plate: implications for cessation of spreading in back-arc basins[C]//Pacific Rim 87. International Congress on the Geology, Structure, Mineralisation and Economics of Pacific Rim. Parkville: Australasian Inst. Mining Metallurgy, 1987: 179-182.
[37] Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench[J]. Marine Geophysical Researches, 2000, 21(1): 69-86.
[38] Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction[J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003
[39] Dong D D, Zhang Z Y, Bai Y L, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction[J]. Tectonophysics, 2018, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030
[40] 李三忠, 曹现志, 王光增, 等. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677 doi: 10.12090/j.issn.1006-6616.2019.25.05.060 LI Sanzhong, CAO Xianzhi, WANG Guangzeng, et al. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 2019, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060
[41] Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
[42] Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate[J]. Chemical Geology, 2002, 189(1-2): 35-53. doi: 10.1016/S0009-2541(02)00062-1
[43] 瞿洪宝, 郑彦鹏, 刘晨光, 等. 晚始新世以来雅浦海沟-岛弧构造演化模式[J]. 海洋科学进展, 2017, 35(2): 249-257 doi: 10.3969/j.issn.1671-6647.2017.02.009 QU Hongbao, ZHENG Yanpeng, LI Chenguang, et al. Model of tectonic evolution for Yap Trench-Arc Since Late Eocene[J]. Advances in Marine Science, 2017, 35(2): 249-257. doi: 10.3969/j.issn.1671-6647.2017.02.009
[44] Yang Y M, Wu S G, Gao J W, et al. Geology of the Yap Trench: new observations from a transect near 10 N from manned submersible Jiaolong[J]. International Geology Review, 2018, 60(16): 1941-1953. doi: 10.1080/00206814.2017.1394226
[45] 张志毅, 韩喜彬, 许冬. 雅浦–马里亚纳海沟连接处地貌特征研究[J]. 海洋学报, 2022, 44(11): 63-76 ZHANG Zhiyi, HAN Xibin, XU Dong. Geomorphological characteristics of the junction Yap Trench and Mariana Trench[J]. Haiyang Xuebao, 2022, 44(11): 63-76.
[46] Kinoshita M, Kasumi Y. Heat flow measurements in the Yap Trench area[J]. Preliminary report of Hakuho-maru Cruise KH87-3: Tokyo, The Ocean Research Institute, University of Tokyo, 1989: 136-143.
[47] Sato T, Kasahara J, Katao H, et al. Seismic observations at the Yap Islands and the northern Yap Trench[J]. Tectonophysics, 1997, 271(3-4): 285-294. doi: 10.1016/S0040-1951(96)00251-X
[48] Crawford A J, Beccaluva L, Serri G, et al. Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches[J]. Earth and Planetary Science Letters, 1986, 80(3-4): 265-280. doi: 10.1016/0012-821X(86)90110-X
[49] Hawkins J, Batiza R. Metamorphic rocks of the Yap arc-trench system[J]. Earth and Planetary Science Letters, 1977, 37(2): 216-229. doi: 10.1016/0012-821X(77)90166-2
[50] McCabe R, Uyeda S. Hypothetical model for the bending of the Mariana Arc[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: American Geophysical Union, 1983: 281-293.
[51] 董冬冬, 张广旭, 钱进, 等. 西太平洋雅浦俯冲带的地貌及地层结构特征[J]. 海洋地质与第四纪地质, 2017, 37(1): 23-29 doi: 10.16562/j.cnki.0256-1492.2017.01.003 DONG Dongdong, ZHANG Guangxu, QIAN Jin, et al. Geomorphology and Stratigraphic framework of the Yap subduction zone, Western Pacific[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 23-39. doi: 10.16562/j.cnki.0256-1492.2017.01.003
[52] Beccaluva L, Macciotta G, Savelli C, et al. Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela Basin)[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1980: 247-268.
[53] Beccaluva L, Serri G, Dostal J. Geochemistry of volcanic rocks from the Mariana, Yap and Palau trenches bearing on the tectono-magmatic evolution of the Mariana trench-arc-backarc system[J]. Developments in Geotectonics, 1986, 21: 481-508.
[54] Shiraki K. Metamorphic basement rocks of Yap Islands, western Pacific: Possible oceanic crust beneath an island arc[J]. Earth and Planetary Science Letters, 1971, 13(1): 167-174. doi: 10.1016/0012-821X(71)90120-8
[55] Matsuda J I, Zashu S, Ozima M. Sr isotopic studies of volcanic rocks from island arcs in the western Pacific[J]. Tectonophysics, 1977, 37(1-3): 141-151. doi: 10.1016/0040-1951(77)90044-0
[56] Zhang J, Zhang G L. Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench[J]. Lithos, 2020, 370-371: 105616. doi: 10.1016/j.lithos.2020.105616
[57] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[58] Niu Y L, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2209.
[59] Yuan L, Yan Q S. Source lithology and magmatic processes recorded in the mineral of basalts from the Parece Vela Basin[J]. Acta Geologica Sinica‐English Edition, 2022, 96(6): 1991-2006. doi: 10.1111/1755-6724.14937
[60] Perfit M R, Fornari D J. Mineralogy and geochemistry of volcanic and plutonic rocks from the boundaries of the Caroline plate: Tectonic implications[J]. Tectonophysics, 1982, 87(1-4): 279-313. doi: 10.1016/0040-1951(82)90230-X
[61] Hawkins J W, Castillo P R. Early history of the Izu–Bonin–Mariana arc system: evidence from Belau and the Palau Trench[J]. Island Arc, 1998, 7(3): 559-578. doi: 10.1111/j.1440-1738.1998.00210.x
[62] Hawkins J W, Ishizuka O. Petrologic evolution of Palau, a nascent island arc[J]. Island Arc, 2009, 18(4): 599-641. doi: 10.1111/j.1440-1738.2009.00683.x
[63] Fornari D J, Weissel J K, Perfit M R, et al. Petrochemistry of the Sorol and Ayu Troughs: implications for crustal accretion at the northern and western boundaries of the Caroline Plate[J]. Earth and Planetary Science Letters, 1979, 45(1): 1-15. doi: 10.1016/0012-821X(79)90102-X
[64] Kumagai H, Kaneoka I, Ishii T. The active period of the Ayu Trough estimated from K-Ar ages: The southeastern spreading center of Philippine Sea Plate[J]. Geochemical Journal, 1996, 30(2): 81-87. doi: 10.2343/geochemj.30.81
[65] Park S H, Lee S M, Arculus R J. Geochemistry of basalt from the Ayu Trough, equatorial western Pacific[J]. Earth and Planetary Science Letters, 2006, 248(3-4): 700-714. doi: 10.1016/j.jpgl.2006.06.021
[66] Haston R, Fuller M, Schmidtke E. Paleomagnetic results from Palau, West Caroline Islands: a constraint on Philippine Sea plate motion[J]. Geology, 1988, 16(7): 654-657. doi: 10.1130/0091-7613(1988)016<0654:PRFPWC>2.3.CO;2
[67] Haston R B, Fuller M. Paleomagnetic data from the Philippine Sea plate and their tectonic significance[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6073-6098. doi: 10.1029/90JB02700
[68] Kobayashi K, Fujioka K, Fujiwara T, et al. Why is the Palau Trench so deep? Deep-sea trench without plate convergence[J]. Proceedings of the Japan Academy, Series B, 1997, 73(6): 89-94. doi: 10.2183/pjab.73.89
[69] Fujiwara T, Tamaki K, Fujimoto H, et al. Morphological studies of the Ayu trough, Philippine sea–Caroline plate boundary[J]. Geophysical Research Letters, 1995, 22(2): 109-112. doi: 10.1029/94GL02719
[70] Cosca M, Arculus R, Pearce J, et al. 40Ar/39Ar and K–Ar geochronological age constraints for the inception and early evolution of the Izu–Bonin–Mariana arc system[J]. Island Arc, 1998, 7(3): 579-595. doi: 10.1111/j.1440-1738.1998.00211.x
[71] Meijer A, Reagan M, Ellis H, et al. Chronology of volcanic events in the eastern Philippine Sea[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1983: 349-359.
[72] Mason A. Military geology of the Palau Islands, Caroline Islands[J]. Rep. Intel. Div. Off. Engineer HQ, US Army (rear), 1956, 285.
[73] Ishiwatari A, Yanagida Y, Li Y B, et al. Dredge petrology of the boninite‐and adakite‐bearing Hahajima Seamount of the Ogasawara (Bonin) forearc: An ophiolite or a serpentinite seamount?[J]. Island Arc, 2006, 15(1): 102-118. doi: 10.1111/j.1440-1738.2006.00512.x
[74] Hong J K, Lee S M. Reflection seismology in the southern Ayu Trough, a slow-spreading divergent boundary[J]. Ocean and Polar Research, 2002, 24(3): 189-196. doi: 10.4217/OPR.2002.24.3.189
[75] Macdonald K C. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10(1): 155-190. doi: 10.1146/annurev.ea.10.050182.001103
[76] Lee S M, Kim S S. Vector magnetic analysis within the southern Ayu Trough, equatorial western Pacific[J]. Geophysical Journal International, 2004, 156(2): 213-221. doi: 10.1111/j.1365-246X.2003.02125.x
[77] Zhang Z, Li S Z, Wang G Z, et al. Plate boundary processes of the Caroline Plate[J]. Science China Earth Sciences, 2022, 65(8): 1554-1567. doi: 10.1007/s11430-021-9919-6
[78] Hickey-Vargas R. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate[J]. Earth and Planetary Science Letters, 1991, 107(2): 290-304. doi: 10.1016/0012-821X(91)90077-U
[79] Mrozowski C L, Hayes D E. The evolution of the Parece Vela basin, eastern Philippine Sea[J]. Earth and Planetary Science Letters, 1979, 46(1): 49-67. doi: 10.1016/0012-821X(79)90065-7
[80] 俞恂, 陈立辉. 弧后盆地玄武岩的成分变化及其成因[J]. 岩石学报, 2020, 36(7): 1953-1972 doi: 10.18654/1000-0569/2020.07.02 YU Xun, CHEN Lihui. Geochemical variation of back-arc Basin basalt and its genesis[J]. Acta Petrologica Sinica, 2020, 36(7): 1953-1972. doi: 10.18654/1000-0569/2020.07.02
[81] 鄢全树, 袁龙, 石学法. 帕里西维拉海盆岩浆-构造过程及钻探建议[J]. 海洋地质与第四纪地质, 2022, 42(5): 103-109 doi: 10.16562/j.cnki.0256-1492.2022062003 YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109. doi: 10.16562/j.cnki.0256-1492.2022062003
[82] Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate[J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017
[83] Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149-160. doi: 10.1007/BF00398776
[84] Weissel J K, Karner G D. Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13919-13950. doi: 10.1029/JB094iB10p13919
[85] Heezen BC, Fischer AG, Boyce RE, et al. Initial reports of the deep sea drilling project, 57[M]. Washington DC: US Government Printing Office, 1971, 6: 493-537.
[86] Yan S S, Yan Q S, Shi X F, et al. The dynamics of the Sorol Trough magmatic system: Insights from bulk‐rock chemistry and mineral geochemistry of basaltic rocks[J]. Geological Journal, 2022, 57(10): 4074-4089. doi: 10.1002/gj.4529
[87] Ridley W I, Rhodes J M, REID A M, et al. Basalts from leg 6 of the deep-sea drilling project[J]. Journal of Petrology, 1974, 15(1): 140-159. doi: 10.1093/petrology/15.1.140
[88] Hegarty K A, Weissel J K, Hayes D E. Convergence at the Caroline-Pacific plate boundary: collision and subduction[M]// Hayes K A. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1983: 326-348.
[89] Seton M, Müller R D, Zahirovic S, et al. A global data set of present‐day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(10): e2020GC009214.
[90] 鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报, 2014, 36(5): 107-123 YAN Quanshu, SHI Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone[J]. Acta Oceanologica Sinica, 2014, 36(5): 107-123.
[91] Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): B08403.
[92] Barazangi M, Isacks B L. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America[J]. Geology, 1976, 4(11): 686-692. doi: 10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2
[93] Van Hunen J, Van Den BERG A P, Vlaar N J. On the role of subducting oceanic plateaus in the development of shallow flat subduction[J]. Tectonophysics, 2002, 352(3-4): 317-333. doi: 10.1016/S0040-1951(02)00263-9
[94] Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He[J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038
[95] Fan J K, Zheng H, Zhao D P, et al. Seismic structure of the Caroline Plateau‐Yap Trench collision zone[J]. Geophysical Research Letters, 2022, 49(6): e2022GL098017.
[96] Campbell I H. The mantle’s chemical structure: insights from the melting products of mantle plumes[M]//Jackson I. The Earth’s Mantle: Composition, Structure, and Evolution. Cambridge: Cambridge University Press, 1998: 259-310.
[97] 张吉, 张国良. 雅浦岛弧变质岩成因和构造环境研究[J]. 海洋地质与第四纪地质, 2018, 38(4): 71-82 doi: 10.16562/j.cnki.0256-1492.2018.04.006 Zhang J, Zhang G L. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology and Quaternary Geology, 2018, 38(4): 71-82. doi: 10.16562/j.cnki.0256-1492.2018.04.006
[98] Kobayashi K. Origin of the Palau and Yap trench-arc systems[J]. Geophysical Journal International, 2004, 157(3): 1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x
[99] Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu–Bonin–Mariana arc basement[J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023
-
期刊类型引用(2)
1. 苏海霞,刘姗,张莉,苏明,黄书勤,雷振宇. 南海南部北康盆地晚中新世以来深水沉积单元时空分布特征及其控制因素. 地质科技通报. 2023(06): 129-139 . 百度学术
2. 雷振宇,张莉,刘姗,苏明,骆帅兵,帅庆伟. 南海北康盆地断控型底流漂积体特征及其沉积模式. 海洋地质前沿. 2021(04): 46-52 . 百度学术
其他类型引用(0)