Loading [MathJax]/jax/output/SVG/jax.js

冲绳海槽CLAM热液区低硫逸度热液成矿

张侠, 孙治雷

张侠,孙治雷. 冲绳海槽CLAM热液区低硫逸度热液成矿[J]. 海洋地质与第四纪地质,2023,43(5): 17-25. DOI: 10.16562/j.cnki.0256-1492.2023072501
引用本文: 张侠,孙治雷. 冲绳海槽CLAM热液区低硫逸度热液成矿[J]. 海洋地质与第四纪地质,2023,43(5): 17-25. DOI: 10.16562/j.cnki.0256-1492.2023072501
ZHANG Xia,SUN Zhilei. Low sulfur fugacity mineralization in CLAM hydrothermal field[J]. Marine Geology & Quaternary Geology,2023,43(5):17-25. DOI: 10.16562/j.cnki.0256-1492.2023072501
Citation: ZHANG Xia,SUN Zhilei. Low sulfur fugacity mineralization in CLAM hydrothermal field[J]. Marine Geology & Quaternary Geology,2023,43(5):17-25. DOI: 10.16562/j.cnki.0256-1492.2023072501

冲绳海槽CLAM热液区低硫逸度热液成矿

基金项目: 国家自然科学基金面上项目“海洋甲烷拦截带对冷泉流体的消耗研究:来自南海东沙海域的观测与研究”(42176057)
详细信息
    作者简介:

    张侠(1991—),男,博士,助理研究员,主要从事现代海底热液成矿研究,E-mail:xzhang4@qnlm.ac;15954227127@163.com

  • 中图分类号: P736

Low sulfur fugacity mineralization in CLAM hydrothermal field

  • 摘要: 冲绳海槽是琉球俯冲系统的重要组成部分,该区热液硫化物研究对揭示非成熟弧后盆地内部热液成矿作用特征具有重要意义。CLAM热液区位于冲绳海槽中部(27°33′N、126°58′E),大量研究表明,该区成矿作用特征与海槽其他热液区存在显著差异,但其成因尚不明确。对CLAM热液区硫化物矿物组成、共生组合关系及闪锌矿微区元素组成进行了系统分析测试,在此基础上提出,该区特殊的矿物学特征及矿物化学组成可能受热液流体硫逸度控制。本文研究样品为富Fe型块状硫化物,主要由磁黄铁矿及低温闪锌矿组成,磁黄铁矿的大量结晶暗示着该区热液流体具有低硫逸度特征。热液成矿过程中,流体温度及硫逸度经历了由低到高的演化。闪锌矿中极高的Fe含量同样受控于该区流体低硫逸度条件,计算结果表明,热液流体的硫逸度值为–15,与其他受沉积物影响的热液活动区一致。流体-沉积物反应过程中,沉积物中有机质的分解可能是导致CLAM热液区热液流体硫逸度系统性降低的主要原因。
    Abstract: The Okinawa Trough is an important part of Ryukyu subduction system and the sulfide research in this region is important for uncovering the hydrothermal mineralization characteristics in incipient back-arc basin. Many researches have demonstrated that the mineralization characteristics of CLAM hydrothermal system are different from those of others in Okinawa Trough. However, the cause of these differences are still unclear. The mineralogical characteristics and sphalerite in situ trace element contents of CLAM Fe-rich type sulfides are determined systematically. On these basis, we propose the unique mineralogical compositions and geochemical characteristics in CLAM are controlled by sulfur fugacity of hydrothermal fluid. The studied samples are mainly composed of pyrrhotite and low-temperature sphalerite. The occurrence of large amounts of pyrrhotite implies that the hydrothermal fluid possesses low sulfur fugacity. During the mineralization process, both temperature and sulfur fugacity conditions for the mineralization evolved from low to high. The high Fe contents also support the low sulfur fugacity condition during the CLAM sulfide mineralization. The calculation indicates that the sulfur fugacity value of hydrothermal fluid is –15, which is equal to those of other sediment-hosted hydrothermal systems. The decomposition of organism in sediments during hydrothermal circulation is the major cause of low sulfur fugacity in CLAM fluid.
  • 古潜山是我国油气勘探的重点领域,具有良好的油气资源前景。古潜山的形成经历了多期次构造运动改造,被断裂、褶皱及岩性复杂化,加大了此类油气藏的勘探难度。潜山油气藏储集特征普遍存在储集空间复杂、规律差、非均质性强、物性变化快等特征[-]。因此,对潜山的形成演化过程、基底断裂体系的展布、岩溶的改造期次等控制储层发育的关键地质问题的研究至关重要[]

    北部湾盆地涠西南凹陷经过近四十年的勘探,常规领域勘探潜力越来越小,灰岩潜山占涠西南剩余资源潜力比例大,且不受埋深限制。通过区域地质调研及钻探揭示北部湾盆地的灰岩潜山主要分布在北部坳陷带涠西南断裂下降盘及南部坳陷带乌石凹陷。目前,北部湾盆地围绕涠西南凹陷1,2号断裂带及周缘已发现涠洲A、涠洲B、涠洲C、涠洲D等多个灰岩潜山油田或含油构造,其中涠洲A油田开发获得良好的经济效益,已经累产约130多万方,展示了灰岩潜山良好的勘探前景,因此,将是下一步重要勘探扩展领域。

    涠西南凹陷是北部湾盆地北部坳陷的二级构造单元,其北临粤桂隆起,西与海中凹陷、涠西南低凸起相接,东、东南紧接乐民凹陷、企西隆起(图1)。北部湾盆地是中、新生代叠合盆地,经历了多期拉张与挤压交替作用过程,构造变形复杂,盆地基底属于云开地块西段在北部湾海区的延伸[-]。早古生代云开地块褶皱隆起,形成云开复式背斜带,从志留纪末至早二叠世晚期,云开地块处于稳定状态,云开大山及其邻区泛华夏褶皱造山经过晚志留世至早泥盆世长期剥蚀,形成中泥盆世初期近平原状的广大海侵面,为碳酸盐台地发育提供条件。早二叠世晚期东吴运动使云开大山至十万大山连成一片山地,云开大山成为相对隆升的剥蚀区[]。晚二叠世海侵,云开大山被淹没,整体沦为海域。晚三叠世开始,云开地块不断隆升遭受风化剥蚀,导致整个北部湾盆地隆升为陆地,一直处于长期隆升剥蚀状态。中生代沉积岩呈孤岛状零星分布[],直至早古近纪,由于受板块相互挤压及南海扩张和边界断裂活动[],形成控制北部湾盆地发育的NE向涠西南大断裂,盆地开始裂陷发育。始新世,盆地发生强烈的右行拉分断陷作用,产生了走向近东—西、具控凹作用的1号断层,北部湾地区进入成盆高峰期,此时沉积了流沙港组巨厚层沉积。渐新世进入断拗转换期,在涠西南形成近东—西向2号断层,控制涠洲组沉积。渐新世未发生区域隆升运动,涠西南凹陷抬升,导致涠洲组遭受强烈剥蚀,并伴有次级的走滑断层和张性断层的发育。新近纪,整个北部坳陷区进入裂后热沉降阶段(拗陷阶段),整体下沉接受新近纪和第四纪海相沉积。

    图 1 涠西南凹陷构造位置图
    图  1  涠西南凹陷构造位置图
    Figure  1.  Tectonic position of the Weixinan Depression

    涠西南凹陷灰岩潜山经历了长期的风化剥蚀,与上覆古、新近系呈不整合接触,钻井揭示,表层风化带内的溶蚀孔洞多被砂砾岩充填,并伴随严重的井漏。在涠洲A区构造共300片薄片观察基础上,根据三端元矿物成分统计,潜山内部岩石类型以灰岩、白云岩为主,少量硅质岩(图2)。强烈的白云岩化及硅化导致灰岩原始结构破坏,部分颗粒仅残存外部轮廓,白云岩以粉—极细晶为特征(图3a),晶间孔隙发育,部分白云石晶间孔被后期亮晶方解石充填,灰岩硅化所形成燧石由隐晶硅质及粉—极细粒较自形石英组成,还可见少量细晶方解石残余在硅化燧石中,可见少量石英晶间孔。

    图 2 涠洲A区石炭系碳酸盐矿物成分及颗粒结构分类图
    图  2  涠洲A区石炭系碳酸盐矿物成分及颗粒结构分类图
    Figure  2.  Classification of Carboniferous carbonate deposits from the Weizhou A area based on composition and texture

    碳酸盐岩结构与岩石成因密切相关,是沉积环境的重要标志,根据颗粒、亮晶、泥晶三端元结构组分分类可见,主要以颗粒灰岩为主,泥晶灰岩次之(图2)。

    颗粒灰岩中颗粒类型主要为内碎屑、有孔虫、藻、棘皮等,颗粒呈圆—次圆,分选较好—中等,颗粒含量50%以上,可见有孔虫等体腔孔被亮晶方解石充填(图3b),局部重结晶导致颗粒内部结构模糊,依稀可辨棘皮等生物碎屑(图3b),强胶结作用导致粒间孔隙不发育。泥晶基质或亮晶方解石胶结物充填于颗粒间,进一步分为亮晶颗粒灰岩(图3b)及泥晶颗粒灰岩(图3c),前者水动力条件强,由于水体的反复搅动,泥晶基质难以沉积下来。后者泥晶含量大于亮晶,泥晶基质分布于生屑间,颗粒支持结构,水动力较强,但稍弱于亮晶生屑灰岩。

    图 3 典型岩石类型显微照片
    图  3  典型岩石类型显微照片
    a. WZA-1,1 581 m,粉晶云岩,强烈白云岩化,粒间溶孔及晶间孔发育,单偏光,岩屑;b. WZA-2,1 748 m,亮晶生屑灰岩,有孔虫体腔孔及生物碎屑间被亮晶方解石充填,单偏光,岩屑;c. WZA-1,1 776 m,泥晶生屑灰岩,生物碎屑破碎严重,分选差,单偏光,岩屑;d. WZA-1,1 750 m,泥晶灰岩,亮晶方解石充填裂缝,单偏光,岩屑;e. WZA-2,1 690 m,生屑泥晶灰岩,有孔虫生物碎屑,泥晶方解石充填于粒屑间,单偏光,岩屑;f. WZA-1井,1 556.7 m,泥晶灰岩,半充填方解石脉,残余孔隙,单偏光,岩屑。
    Figure  3.  Microphotographs of the typical rocks

    泥晶灰岩主要由粒径小于0.01 mm的泥级碳酸盐矿物组成,含少量或不含生物碎屑,反映水动力弱(图3d,f)。

    颗粒泥晶灰岩属两者过渡类型,泥晶含量大于50%,颗粒含量25%~50%,泥晶方解石充填于颗粒间,一般不含同沉积亮晶(图3e),粒间孔无或较少。该类岩石为基质支撑,水动力条件介于上述两者间,较弱的水体条件使泥晶得以大量沉积。

    潜山内幕局部可见洞穴砂砾岩,在WZA-1/2灰岩潜山内幕录井中均见到浅灰色灰质砂岩,距潜山顶面近200 m,推测为溶洞暗河内沉积。

    涠西南凹陷石炭系灰岩潜山储层在长期的地质演化过程中,经历抬升剥蚀和埋藏成岩改造,潜山表层风化带内由于长期的淋滤、溶蚀,发育众多溶洞、裂缝、砂砾岩充填物,钻厚一般约3~10 m,局部(4井)厚达26 m,据岩心物性分析风化带内孔隙度为4%~29%,测井解释油层平均孔隙度21%;潜山内幕被断层复杂化,储集空间类型丰富多样,各种规模和产状的孔、洞、缝均有发育,储层具有非均质性强、纵横向物性变化大的特点。综合岩心观察、薄片鉴定、地震、测井、钻井等解释结果,1号断裂带周缘钻探揭示灰岩潜山储层储集空间可划分为以下4种类型:①溶洞型;②裂缝型;③缝、洞复合型;④孔隙型。

    大中型溶洞洞穴系统是涠西南灰岩潜山的主要储集空间,根据区域构造调研,涠西南凹陷灰岩潜山至少经历了早二叠世末、晚三叠世两期大规模构造抬升,遭受暴露剥蚀,石炭系碳酸盐岩被抬升到地表或近地表,古潜山形成,在经历大规模的表层岩溶和顺层岩溶后,形成了厚层的风化壳和复杂的地下溶洞系统。

    洞穴型储层洞径较大,一般大于1 m,测井曲线上常表现为双侧向电阻率急剧下降;井径异常增大,显示扩径;密度降低、中子增大、声波时差异常增大(图4),在钻进过程中发生钻具放空、井涌和泥浆漏失等现象[-],反映潜山内幕大型溶洞体系发育。如WZA-2井1 600~1 930 m纵向上发育六套溶洞,放空漏失量最大,合计放空16 m,漏失14.275×103 m3泥浆液(表1);WZA-1井1 627~1 638 m发育近10 m溶洞;WZA-3井1 678~1 680 m(TVD1 556.18~1 557.89 m)钻具放空,风化带内钻井取心可见岩心为褐灰色油浸含砾砂岩,推测是风化带内大型溶洞的充填物。

    表  1  放空漏失量统计
    Table  1.  The statistics table of drilling break and leakage
    井号石炭系厚度/m风化壳深度(TVD)/m厚度/m漏失深度(TVD)/m漏失量/m3放空段(TVD)/m放空长度/m
    WZA-1312.51 487.5~1 4913.51 487.694681 628~1 6313
    1 510341
    1 535299
    1 598498
    1 6835021 768~1 7713
    1 777154
    合计2 262合计6
    WZA-23411 589~1 612231 8201 5811 820~1 8233
    1 829~1 8301
    1 847~1 8492
    1 9028 4581 918~1 92810
    1 9184 236
    合计14 275合计16
    WZA-346.371 556.18~1 560.464.281 556.18971 556.18~1 557.891.71
    1 560.46443
    1 596.46671
    1 602.411 673
    合计2 884合计1.71
    下载: 导出CSV 
    | 显示表格
    图 4 涠洲A区石炭系储层对比图
    图  4  涠洲A区石炭系储层对比图
    Figure  4.  Correlation of Carboniferous reservoirs in Weizhou A area

    裂缝是碳酸盐岩储层的重要储集空间,是沟通溶蚀孔洞及洞穴之间的桥梁,为酸性流体溶蚀提供通道,为后期扩溶形成溶洞和洞穴提供条件。对于碳酸盐岩储层而言,裂缝的重要性甚至超过孔隙,许多致密碳酸盐岩由于裂缝的发育变得极具潜力。涠洲A区取心段内可见多组裂缝相互切割(图5a、b),根据产状进一步分为低角度裂缝、高角度裂缝,晚期的高角度缝半充填状,切过早期方解石脉。岩心薄片观察也可见多组裂缝发育,呈充填、半充填状(图3d、f),方解石晶体沿裂缝边缘呈马牙状向内生长。

    图 5 典型岩心照片
    图  5  典型岩心照片
    a. WZA-1,1 553.7 m,多组裂缝相互切割,充填-半充填,岩心;b. WZA-1,1 553.8 m,晚期半充填高角度缝切过早期方解石脉,岩心;c. WZA-1,1 551.7~1 551.9 m,缝、洞体见明显油侵,岩心;d. WZA-1,1 553.55 m,裂缝溶蚀扩大,岩心;e. WZA-3,1 678~1 678.45 m(TVD1 556.18~1 678.45 m)发育方解石脉,方解石结晶较好,呈自形马牙状晶簇;f. WZA-1,1 551.25~1 552.07 m,高角度开启缝,岩心。
    Figure  5.  Photographs of selected cores

    缝、洞复合型储层是涠西南灰岩潜山的主要储集空间,酸性流体沿裂缝溶蚀扩大形成缝、洞复合型储层。钻井揭示,当钻入石炭系灰岩潜山常发生严重的泥浆漏失(表1),推测主要存在大型缝洞体,录井岩性主要为与剥蚀面伴生的风化残积层,通常为风化土及砂砾质溶洞充填物。WZA-3井钻进至1 678 m(TVD1 556.18 m)发生放空,放空段垂直高度1.7 m左右,在井深1 678~1 682.4 m(TVD1 556.18~1 559.95 m)取心,心长仅1.4 m,收获率37%,岩心均为褐灰色油浸含砾砂岩,顶部1 678~1 678.3 m(TVD1 556.18~1 556.4 m)取心段内可见宽度约7 cm的方解石脉发育,方解石自形晶簇呈马牙状(图5e),推测应为碳酸盐岩风化壳内充填物,实测显示,风化壳内充填物物性好,实测孔隙度平均值16.1%,渗透率233.6 mD。WZA-2井录井岩屑显示石炭系风化壳主要由棕红色铁质风化土及浅灰色油斑砂砾岩组成的风化壳。WZA-1井在钻至井深1 487.7 m发生严重泥浆漏失,录井岩屑为浅绿灰色含砾砂岩,推测为风化壳溶洞内充填物。潜山内幕1 551.25~1 556.4 m取心段内规模不一,缝、洞体发育,沿裂缝周缘溶蚀孔洞发育,缝、洞体内可见明显油侵(图5c),可见方解石自形晶簇沿缝、洞壁多期生长,半充填溶洞(图5d)。垂直裂缝可贯穿整个岩心,长达40 cm,宽2~5 mm,沿裂缝周缘,溶蚀孔洞发育(图5f)。

    孔隙型储层是涠西南凹陷灰岩潜山的重要储集空间,主要类型有晶间孔、粒间孔等。通过薄片分析,研究区广泛发育重结晶作用、白云岩化作用,这就为晶间孔发育提供了良好的条件(图3a)。WZA-2井石炭系测井孔隙度为0.1%~27.9%,平均孔隙度为4.2%,测井渗透率为0.1~800 mD,平均渗透率为30.9 mD(图4)。WZA-1井测井孔隙度普遍小于5%。通过储层物性分布(图6)可见,白云岩储层物性好于亮晶生屑灰岩和泥晶生屑灰岩,孔隙度集中分布于4%~12%,局部高达20%。

    图 6 WZA-2井灰岩潜山储层物性分布图
    图  6  WZA-2井灰岩潜山储层物性分布图
    Figure  6.  The distribution of limestone reservoir physical properties in Well WZA-2

    涠西南石炭系灰岩潜山储层经过多期构造活动影响,经过长期风化暴露溶蚀,储层非均质性强,储集条件受岩溶及白云岩化控制。地层岩石成分、结构等岩相特征是控制岩溶发育的物质基础,而构造活动导致的地貌差异、裂缝性质及展布、古潜水面波动等最终决定岩溶规模及影响深度。白云岩化形成的晶间孔隙明显改善孔隙型储层物性,良好的孔渗条件也可为后期岩溶提供渗流通道。

    沉积环境是影响储层物性最基本的因素,不同沉积环境下形成的岩相不仅决定储层的空间展布,还影响着储层所经历的成岩作用类型和强度,进而影响储层储集性能。泥盆纪中晚期开始大规模的海侵,早石炭世云开古陆仍然局部暴露为剥蚀区[],北部湾盆地为云开古陆与钦防盆地间呈北东向延伸的碳酸盐岩开阔台地;晚石炭世威宁期(黄龙组)由于海侵的持续,整个云开古陆与古特提斯洋沟通,淹没水下,形成开阔台地相,生物繁盛,碳酸盐礁滩相储层发育[]。研究区位于钦防盆地边缘,发育碳酸盐台地边缘滩相储层,取心段岩心观察结合显微薄片,涠洲A区以浅灰色颗粒灰岩为主(图5a-d),受强水动力条件的影响,颗粒分选较好—中等(图3bc),原始粒间孔隙发育,岩性纯,脆性大,泥质夹层少,这些特点决定了岩层易受构造破裂作用和岩溶作用的改造,出现较好的储层发育段。

    涠西南凹陷碳酸盐台地经历早二叠世晚期东吴运动抬升剥蚀,中二叠世海侵淹没,晚三叠世受印支—燕山期陆内造山运动影响[-],整个云开地块不断隆升剥蚀[]。北部湾盆地在隆升背景下,受控于合浦-北流、吴川-四会断裂左旋压扭[],在涠西南凹陷形成复式向斜,其核部大致沿1号断裂带(廉江-信宜断裂向海延伸)。直至早古近纪,涠西南大断裂发育,北部湾盆地进入裂陷发育阶段,形成上石炭统黄龙组与古新统长流组不整合接触,纵向上依次发育表层岩溶带、垂直渗流带及水平潜流带(图7)。

    图 7 涠洲A石炭系黄龙组岩溶剖面图
    图  7  涠洲A石炭系黄龙组岩溶剖面图
    Figure  7.  A karst profile of the Huanglong Formation of Carboniferous in Weizhou A area

    长期的暴露剥蚀,表层岩溶发育,风化面凹凸不平,主要以缝、洞型储层为主,并且沿不整合面大面积分布。钻探揭示涠洲A构造顶部风化壳发育(图4),风化壳厚度3.5~23 m,钻入石炭系灰岩潜山常发生严重的泥浆漏失,录井岩性主要为与剥蚀面伴生的风化残积层,通常为风化土及砂砾质溶洞充填物。古潜水面波动受构造运动阶段性及晚石炭世以来全球海平面多次升降影响[-],导致研究区纵向上发育多个洞穴层序次。电测曲线显示低电阻、钻速快、钻井放空和井漏等现象。放空漏失段跨度大,0~330 m范围内均有分布。

    北部湾盆地的发育受控于合浦-北流、信宜-廉江、吴川-四会和阳江-河源四条先存的深大断裂带[]。而研究区介于合浦-北流(涠西南断裂带)、信宜-廉江(1号断裂带)两大断裂向北部湾海域延伸范围内[]图1),经历了中生代早期的左旋挤压抬升、中生代晚期右行张扭及岩浆热活动,新生代时期盆地受强烈的右行拉分作用及先存断裂体系的影响,控凹1号断层发育,强烈的断层活动形成断层崖(图8)。复杂的构造演变导致研究区内多期次裂缝发育,早期主要以压扭性裂缝为主,晚期以张性裂缝为主,结合显微观察,压扭性裂缝多被方解石充填,其对储层的改善有限,结合区域构造演化背景,晚白垩世时期开始形成张扭性裂缝,呈半充填或不充填(图5ab)。酸性流体沿此类裂缝不断溶蚀改造,一方面,有利于风化壳岩溶储层发育,使储层向着更有利的方向进行;另一方面,裂缝和断裂的发育直接影响岩溶发育的深度。涠西南地区钻井已证实,断裂的展布对岩溶形成、高产油气富集区和油气的分布有明显的控制作用。近1号断裂带的涠洲A裂缝发育,纵向上裂缝发育段距风化壳顶面0~250 m均有分布,测试产量高,单井日产原油高达一千多方,通过涠洲A地区的开放井生产历史发现,油田开发多年,油藏生产压差小,采油指数高,说明裂缝与缝洞沟通,压力供给充足。涠洲E构造位置与涠洲A类似(图8),近1号断裂带,具有相同的应力背景,中生代晚期右行张扭作用下信宜-廉江(1号断裂)周缘张性断裂体系发育为不整合岩溶及潜山内幕溶蚀提供了良好的通道,加速了溶蚀进程。新生代时期在强烈的伸展作用下,1号断层发育,北部湾盆地进入成盆高峰期,断层下降盘沉积巨厚流沙港组地层,上升盘隆升形成断层崖。涠洲E区断层落差较涠洲A区大,流沙港组一段及涠洲组超覆于断层面上,上升盘为下石炭统与中新统下洋组呈不整合接触,潜山顶部及断崖处暴露淋滤时间更长,推测储层较涠洲A区发育。

    图 8 涠洲E上石炭统储集岩相和储集性预测图
    图  8  涠洲E上石炭统储集岩相和储集性预测图
    Figure  8.  Lithofacies and reservoir properties of the Upper Carboniferous in Weizhou E area

    研究区纵向上发育三套明显白云岩化(图3),平面上白云岩展布受断裂控制,近1号断裂带涠洲A区白云岩化作用较强,远离断裂涠洲B区白云岩化较弱,推测白云岩化主要受燕山期岩浆热活动影响,先期断裂沟通深部热流体导致潜山内部发生白云岩化及强烈的硅化。显微薄片观察可见强烈白云岩化破坏原始组构,晶间孔隙发育,当方解石被白云石交代时,Mg2+进入矿物晶格,而将Ca2+离子析出,由于Mg2+和Ca2+的摩尔体积差别,反应后将引起矿物体积的收缩,进而导致反应后孔隙度增加。理论上,如果交代文石,孔隙度将增加5.76%;如果交代方解石,孔隙度将增加12.96%,物性较好,晶间孔隙发育利于后期溶蚀作用改造,而研究区内亮晶生屑灰岩及泥晶生屑灰岩由于经过强烈的胶结作用,岩性致密不利于后期溶蚀作用改造。因此,白云岩化明显改善孔隙型储层,可发育有利储层。

    (1)涠西南地区灰岩潜山主要为碳酸盐岩台地边缘滩相储层,强水动力影响,以颗粒灰岩为主,岩性纯,脆性大,为后期构造破裂作用和岩溶作用提供了良好的物质基础。储层储集空间以缝、洞型为主,局部发育孔隙型储层。

    (2)灰岩潜山纵向分为表层岩溶、垂直渗流及水平潜流带,1号断裂周缘晚期的张扭型裂缝可为岩溶提供良好的渗流通道,加速了风化淋滤的进程,形成沟通良好的溶蚀孔洞,控制了优质储层的展布,古潜水面波动形成纵向上多个洞穴层序次。

    (3)受燕山岩浆热活动影响,发生强烈白云岩化及硅化,白云岩化受断裂展布的控制,强烈的白云岩化晶间孔隙发育,明显改善孔隙型储层。涠洲E构造位置与涠洲A构造类似,近1号断裂且处于强应力区,断层落差大,裂缝发育,暴露剥蚀时间更久,利于溶蚀改造和白云岩化进行。预测涠洲E储集岩性主要为白云岩、灰质白云岩与生屑灰岩,风化壳型溶洞+裂缝+孔隙型储集空间发育,纵向上可发育多个缝洞层序次。

  • 图  1   冲绳海槽地质地形图

    据Zhang 等[11]修改。NOT:冲绳海槽北段;MOT:冲绳海槽中段;SOT:冲绳海槽南段。

    Figure  1.   Sampling location and bathymetric map of the studied area

    After Zhang et al[11]. NOT: Northern Okinawa Trough; MOT: Middle Okinawa Trough; SOT: Southern Okinawa Trough.

    图  2   冲绳海槽CLAM热液区硫化物样品照片

    Figure  2.   Photographs of hydrothermal deposit samples from the CLAM filed, MOT

    图  3   冲绳海槽CLAM热液区硫化物典型结构镜下照片

    Sph:闪锌矿,Po:磁黄铁矿,Cpy:黄铜矿,Py:黄铁矿。

    Figure  3.   The typical paragenetic sequences of CLAM hydrothermal field (under reflected light)

    Sph: sphalerite, Po: pyrrhotite, Cpy: chalcopyrite, Py: pyrite.

    图  4   典型热液区闪锌矿log fS2-温度判别图

    数据来源:东太平洋海隆[42],瓜伊马斯海盆[42],伊平屋北热液区[44],第四与那国盐流体[14],第四与那国富气相[14]

    Figure  4.   Diagram of log fS2-T for sphalerite from typical hydrothermal fields

    Data sources: East Pacific Rise[42], Guayamas Basin[42], Iheya North Knoll[44], Yonaguni IV brine[14], Yonaguni IV vapor[14].

    表  1   冲绳海槽CLAM热液区闪锌矿电子探针分析结果

    Table  1   The EMPA analysis results of hydrothermal deposits from CLAM site, Okinawa Trough %

    ID S Zn Fe Cu Pb Co Ni 总量 FeS值
    TVG5-1 35.50 42.98 20.23 0.62 99.33 22.33
    34.81 43.12 20.55 1.45 0.04 0.02 99.99 22.70
    34.72 45.36 19.00 0.07 0.02 0.15 0.01 99.36 21.05
    34.86 45.08 19.32 0.13 0.12 99.55 21.39
    35.56 40.21 21.74 1.52 0.07 0.05 0.08 99.23 23.91
    34.71 43.48 20.13 0.22 0.05 0.08 0.05 98.70 22.24
    34.42 45.15 18.91 0.46 0.05 98.98 20.96
    34.78 37.53 24.10 1.75 0.05 0.04 0.07 98.31 26.35
    34.74 44.49 19.32 0.11 98.66 21.39
    34.70 42.55 20.95 0.15 0.24 0.05 0.06 98.70 23.09
    35.05 42.29 21.90 0.40 0.07 99.72 24.11
    34.36 47.83 16.91 0.19 0.09 0.08 99.50 18.83
    34.45 45.28 18.47 0.34 0.16 0.09 0.01 98.84 20.49
    34.34 42.22 20.37 1.66 0.07 98.66 22.49
    34.32 42.00 20.84 1.21 0.17 0.02 0.05 98.64 22.98
    34.74 39.73 23.95 0.24 0.12 0.10 98.88 26.22
    35.08 39.33 24.06 0.38 0.02 98.94 26.33
    34.88 41.74 22.22 0.10 0.03 0.09 0.06 99.11 24.42
    TVG5-3 34.96 30.40 25.31 6.51 0.20 97.43 27.54
    34.29 46.92 15.05 0.11 0.18 0.03 96.58 16.82
    34.25 44.25 16.67 0.04 0.02 0.04 0.01 95.31 18.54
    34.41 47.77 14.80 0.12 97.16 16.55
    33.56 45.66 16.91 0.03 96.17 18.82
    34.03 46.57 15.69 0.10 96.41 17.50
    34.45 33.37 23.05 5.15 0.05 0.07 96.13 25.21
    34.75 37.26 20.42 4.24 0.03 0.11 0.01 96.82 22.48
    34.50 40.05 20.48 0.28 95.30 22.54
    34.74 40.12 19.00 2.39 0.09 0.14 96.50 21.00
    34.42 44.21 17.67 0.21 0.01 0.06 96.61 19.61
    34.91 36.63 19.34 5.11 0.15 0.05 96.24 21.34
    注:“—”表示测试值低于仪器检出限。
    下载: 导出CSV
  • [1]

    Edmond J M, Measures C, McDuff R E, et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data[J]. Earth and Planetary Science Letters, 1979, 46(1): 1-18. doi: 10.1016/0012-821X(79)90061-X

    [2]

    Baker E T, German C R. On the global distribution of hydrothermal vent fields[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington: American Geophysical Union, 2004: 245-267.

    [3]

    de Ronde C E J, Stucker V K. Seafloor hydrothermal venting at volcanic arcs and backarcs[M]//Sigurdsson H. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Elsevier, 2015: 823-849.

    [4]

    Hannington M D, de Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 111-141.

    [5]

    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 191-224. doi: 10.1146/annurev.earth.24.1.191

    [6]

    Rouxel O, Shanks III W C, Bach W, et al. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N[J]. Chemical Geology, 2008, 252(3-4): 214-227. doi: 10.1016/j.chemgeo.2008.03.009

    [7]

    Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation[J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014

    [8]

    Zhang X, Sun Z L, Wu N Y, et al. Mantle plume plays an important role in modern seafloor hydrothermal mineralization system[J]. Geochimica et Cosmochimica Acta, 2023, 352: 211-221. doi: 10.1016/j.gca.2023.05.012

    [9]

    Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough[J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073

    [10]

    Zhang X, Zhai S K, Sun Z L, et al. Rare earth elements and Sr, S isotope compositions of hydrothermal deposits from the Okinawa Trough: insight into mineralization condition and metal sources[J]. Marine Geology, 2022, 443: 106683. doi: 10.1016/j.margeo.2021.106683

    [11]

    Zhang X, Sun Z L, Wu N Y, et al. Polyphase hydrothermal sulfide mineralization in the Minami-Ensei hydrothermal field, middle Okinawa Trough: implications from sulfide mineralogy and in situ geochemical composition of pyrite[J]. Ore Geology Reviews, 2022, 149: 105055. doi: 10.1016/j.oregeorev.2022.105055

    [12]

    Wang H, Chu F Y, Li X H, et al. Mineralogy, geochemistry, and Sr-Pb and in situ S isotopic compositions of hydrothermal precipitates from the Tangyin hydrothermal field, southern Okinawa Trough: evaluation of the contribution of magmatic fluids and sediments to hydrothermal systems[J]. Ore Geology Reviews, 2020, 126: 103742. doi: 10.1016/j.oregeorev.2020.103742

    [13]

    Wang S J, Sun W D, Huang J, et al. S, Pb, and Fe isotope compositions of sulfides in middle and southern Okinawa Trough: implying the complicated hydrothermal systems in back-arc spreading centers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 195: 104006. doi: 10.1016/j.dsr.2023.104006

    [14]

    Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa trough back-arc basin[J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x

    [15] 胡思谊, 曾志刚, 殷学博, 等. 冲绳海槽岩心沉积物稀土元素特征及物源指示[J]. 海洋地质与第四纪地质, 2019, 39(1): 69-82 doi: 10.16562/j.cnki.0256-1492.2017082301

    HU Siyi, ZENG Zhigang, YIN Xuebo, et al. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82. doi: 10.16562/j.cnki.0256-1492.2017082301

    [16]

    Zhang X, Li L F, Du Z F, et al. Discovery of supercritical carbon dioxide in a hydrothermal system[J]. Science Bulletin, 2020, 65(11): 958-964. doi: 10.1016/j.scib.2020.03.023

    [17]

    Tian F F, Li R, Xie G Z, et al. The formation of supercritical carbon dioxide hydrothermal vents in the Okinawa Trough[J]. Science Bulletin, 2023, 68(2): 154-156. doi: 10.1016/j.scib.2022.12.032

    [18]

    Dekov V M, Yasuda K, Kamenov G, et al. Mn-carbonate deposition in a seafloor hydrothermal system (CLAM field, Iheya Ridge, Okinawa Trough): insights from mineralogy, geochemistry and isotope studies[J]. Marine Geology, 2023, 460: 107055. doi: 10.1016/j.margeo.2023.107055

    [19]

    Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8): 699-702. doi: 10.1130/G35655.1

    [20]

    Zhang X, Zhai S K, Yu Z H, et al. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough[J]. Ore Geology Reviews, 2019, 111: 102944. doi: 10.1016/j.oregeorev.2019.102944

    [21]

    Kimura M, Kaneoka I, Kato Y, et al. Report on DELP 1984 cruises in the middle Okinawa Trough: Part V. Topography and geology of the central grabens and their vicinity[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1986, 61(2): 269-310.

    [22]

    Honma H, Kusakabe M, Kagami H, et al. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin[J]. Geochemical Journal, 1991, 25(2): 121-136. doi: 10.2343/geochemj.25.121

    [23]

    Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7

    [24]

    Kimura M, Uyeda S, Kato Y, et al. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan[J]. Tectonophysics, 1988, 145(3-4): 319-324. doi: 10.1016/0040-1951(88)90203-X

    [25]

    Kinoshita M, Yamano M, Post J, et al. Heat flow measurements in the southern and middle Okinawa Trough on R/V sonne in 1988[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1990, 65(3): 571-588.

    [26]

    Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029

    [27]

    Cao H, Sun Z L, Liu C L, et al. Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, Okinawa Trough: constraints from rare earth element and sulfur isotopic compositions[J]. China Geology, 2018, 1(2): 225-235. doi: 10.31035/cg2018023

    [28]

    Yang B J, Liu J H, Shi X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020, 120: 103464. doi: 10.1016/j.oregeorev.2020.103464

    [29]

    Nozaki T, Nagase T, Ushikubo T, et al. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 2021, 49(2): 222-227. doi: 10.1130/G47943.1

    [30]

    Ishibashi J, Sano Y, Wakita H, et al. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan[J]. Chemical Geology, 1995, 123(1-4): 1-15. doi: 10.1016/0009-2541(95)00051-M

    [31]

    Nakashima K, Sakai H, Youshida H, et al. Hydrothermal mineralization at the Okinawa Trough[M]//Sakai H, Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publication, 1995: 487-508.

    [32]

    Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin[J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133

    [33]

    Gamo T, Sakai H, Kim E S, et al. High alkalinity due to sulfate reduction in the CLAM hydrothermal field, Okinawa Trough[J]. Earth and Planetary Science Letters, 1991, 107(2): 328-338. doi: 10.1016/0012-821X(91)90080-2

    [34]

    Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan[J]. Economic Geology, 1993, 88(8): 2210-2225. doi: 10.2113/gsecongeo.88.8.2210

    [35]

    Wang Y J, Han X Q, Petersen S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2017, 84: 1-19. doi: 10.1016/j.oregeorev.2016.12.020

    [36]

    Zhang X, Zhai S K, Yu Z H, et al. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 124-131. doi: 10.1016/j.jmarsys.2016.11.007

    [37]

    Gena K, Chiba H, Kase K, et al. The tiger sulfide chimney, yonaguni knoll IV hydrothermal field, southern Okinawa Trough, Japan: the first reported occurrence of Pt-Cu-Fe-bearing bismuthinite and Sn-bearing chalcopyrite in an active seafloor hydrothermal system[J]. Resource Geology, 2013, 63(4): 360-370. doi: 10.1111/rge.12015

    [38]

    Zhang X, Sun Z L, Wu N Y. Fe-Pb-Sr isotopic systematics of the hydrothermal chimney from the Minami-Ensei hydrothermal field, middle Okinawa Trough: constraint on hydrothermal mineralization process in incipient back-arc basin[J]. Ore Geology Reviews, 2023, 154: 105332. doi: 10.1016/j.oregeorev.2023.105332

    [39]

    Koski R A, Lonsdale P F, Shanks W C, et al. Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the Southern Trough of Guaymas Basin, Gulf of California[J]. Journal of Geophysical Research, 1985, 90(B8): 6695-6707. doi: 10.1029/JB090iB08p06695

    [40]

    Zierenberg R A, Koski R A, Morton J L, et al. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge[J]. Economic Geology, 1993, 88(8): 2069-2098. doi: 10.2113/gsecongeo.88.8.2069

    [41]

    Hannington M D, Jonasson I R, Herzig P M, et al. Physical and chemical processes of seafloor mineralization at mid-ocean ridges[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington: American Geophysical Union, 1995: 115-157.

    [42]

    Hannington M D, Scott S D. Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: evidence from sulfide mineralogy and the composition of sphalerite[J]. Economic Geology, 1989, 84(7): 1978-1995. doi: 10.2113/gsecongeo.84.7.1978

    [43]

    Herzig P M, Hannington M D, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific[J]. Economic Geology, 1993, 88(8): 2182-2209. doi: 10.2113/gsecongeo.88.8.2182

    [44]

    Hirotome U, Hiroshi H, Yuuka M, et al. Ore and gangue minerals of sulfide chimneys from the North Knoll, Iheya ridge, Okinawa trough, Japan[J]. JAMSTEC Deep Sea Research, 2003, 22: 49-62.

    [45]

    Wu N Y, Xu C L, Li A, et al. Oceanic carbon cycle in a symbiotic zone between hydrothermal vents and cold seeps in the Okinawa Trough[J]. Geosystems and Geoenvironment, 2022, 1(3): 100059. doi: 10.1016/j.geogeo.2022.100059

    [46]

    Meng X W, Li X H, Chu F Y, et al. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1°-2°S)[J]. Ore Geology Reviews, 2020, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209

图(4)  /  表(1)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  40
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-08-20
  • 录用日期:  2023-08-20
  • 网络出版日期:  2023-10-29
  • 刊出日期:  2023-10-27

目录

SUN Zhilei

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回