鲁北现代洪水沉积物XRF元素扫描特征及其指示意义

张宏亮, 侯依林, 李华勇, 李智慧, 王倩, 杨艺萍, 许惟栋, 于正松

张宏亮,侯依林,李华勇,等. 鲁北现代洪水沉积物XRF元素扫描特征及其指示意义[J]. 海洋地质与第四纪地质,2023,43(3): 185-194. DOI: 10.16562/j.cnki.0256-1492.2022110801
引用本文: 张宏亮,侯依林,李华勇,等. 鲁北现代洪水沉积物XRF元素扫描特征及其指示意义[J]. 海洋地质与第四纪地质,2023,43(3): 185-194. DOI: 10.16562/j.cnki.0256-1492.2022110801
ZHANG Hongliang,HOU Yilin,LI Huayong,et al. Characteristics of X-ray fluorescence scanning element of modern flood sediments in northern Shandong Province and its geological indicative significance[J]. Marine Geology & Quaternary Geology,2023,43(3):185-194. DOI: 10.16562/j.cnki.0256-1492.2022110801
Citation: ZHANG Hongliang,HOU Yilin,LI Huayong,et al. Characteristics of X-ray fluorescence scanning element of modern flood sediments in northern Shandong Province and its geological indicative significance[J]. Marine Geology & Quaternary Geology,2023,43(3):185-194. DOI: 10.16562/j.cnki.0256-1492.2022110801

鲁北现代洪水沉积物XRF元素扫描特征及其指示意义

基金项目: 国家自然科学基金青年项目“云南阳宗海沉积物中细菌脱镁叶绿素含量的气候学意义及全新世古气候定量重建”(41807447);国家自然科学基金面上项目“远程耦合视角下农业技术扩散模式、机理与区域效应研究”(42171217);河南省科技攻关项目“2021年豫北特大洪水沉积特征识别及其在洪水发生机制研究中的应用”(232102321109);海南省自然科学基金面上项目“海南岛全新世古风暴活动研究”(421MS110);云南省教育厅科学研究基金研究生资助项目“阳宗海近60年以来重金属及氮磷变化趋势”(2022Y038);安阳师范学院大学生创新创业训练资助项目“2000年来阳宗海流域地表景观的人为改造以及由此引发的水文格局转换”(202210479138)
详细信息
    作者简介:

    张宏亮(1970—),男,博士,副教授,主要从事湖泊环境和气候变化研究,E-mail:phytolith@163.com

    通讯作者:

    李华勇(1986—),男,博士,副教授,主要从事沉积学和全新世气候变化研究,E-mail:lihuayong2010@hotmail.com

  • 中图分类号: P532; P736

Characteristics of X-ray fluorescence scanning element of modern flood sediments in northern Shandong Province and its geological indicative significance

  • 摘要: 2018年8月山东北部弥河流域受台风暴雨影响发生洪涝灾害,通过对洪水淹没区考察,选择弥河及其支流丹河下游新鲜洪水沉积保存完好的地点,获取两根沉积物浅钻MH1、DH2(长度分别为21.5、21 cm,下段为现代土壤),对沉积岩芯进行X射线荧光光谱(XRF)元素连续扫描,结合粒度指标和其他研究成果,探讨现代洪水沉积物元素特征及其在古洪水事件识别中的指示意义。结果显示,Al、Ti、Si、Ca、Fe等元素具有相似的波动特征,相互之间正相关关系显著,信号强度在细粒洪水沉积层出现峰值;Rb元素信号强度与粒度相关性弱,在钻孔中的变化较为稳定,仅在沉积界面处有所降低,可能与岩芯裂隙造成的实验偏差有关;Sr、Zr两种元素显著正相关,且信号强度在洪水沉积层较低。Zr/Rb和Rb/Sr分析结果表明,两者均受控于粒度特征,风化淋溶作用对其影响有待进一步研究,其中Zr/Rb与粒度呈现较强的正相关性,Rb/Sr则与粒度负相关关系显著,且在其他区域洪水地层研究中具有一致结论。Zr/Rb峰值和Rb/Sr谷值对应黏土质洪水沉积,Zr/Rb谷值和Rb/Sr峰值对应粒度粗组分高值的粉砂质洪水沉积,可在古洪水沉积识别中作为参照指标。本研究结果将为利用XRF技术识别古洪水沉积提供有力参考。
    Abstract: In August 2018, a typhoon-storm–induced flood disaster occurred in the Mihe River Basin in the northern Shandong Province of China. By investigating the flood inundated area, the sites were selected where fresh flood deposits in the lower reaches of the Mihe River and its tributary Danhe River were well preserved, and two sediment shallow drills MH1 and DH2 (with the length of 21.5 cm and 21 cm, respectively, including the lower section of modern soil) were obtained. The Avaatech X-ray fluorescence (XRF) spectroscopy core scanner made in the Netherlands was applied for element analysis, and the characteristics of modern flood sediment elements and its significance in paleoflood layers were discussed in combination with grain size index and other research results. Results show that Al, Ti, Si, Ca, and Fe elements presented similar fluctuation characteristics, and there was a significant positive correlation between them, and the signal intensity of these chemical elements peaked in fine-grained flood sediments sections. The signal intensity of Rb element was weakly correlated with particle size, and the change through the borehole was relatively stable but decreased at sedimentary interface, which might be related to the experimental deviation caused by cracks. The two elements of Sr and Zr were significantly positively correlated, and the signal intensity of them was low in the flood sediment layer. In addition, the Zr/Rb and Rb/Sr ratios were heavily correlated with grain size properties, and the influence of weathering and leaching on them is yet to be studied further. The Zr/Rb ratio was strongly positively correlated with the grain size, while the Rb/Sr ratio was significantly negatively correlated with the grain size, which is consistent with the conclusions obtained from the studies on other regional flood formations. The maximum Zr/Rb and minimum Rb/Sr values occurred in the clayey part of flood deposits, while the minimum Zr/Rb and maximum Rb/Sr values in the silty part of flood deposits with more coarser-grain composition. Therefore, Rb/Sr and Zr/Rb ratios can be used to indicate paleoflood deposits. This study provided a good reference for the identification of paleoflood deposit by using XRF technology.
  • 全球气候变化背景下洪涝灾害频发,成为日益严重的自然灾害[1-3]。开展古洪水研究有助于认识现代洪水沉积与环境,因此,探究不同时空尺度下的古洪水发生机制和规律,日渐成为第四纪沉积与环境研究的热点[4-5]。古洪水沉积物是研究古洪水事件的地质载体[6],但由于现代洪水沉积特征研究的不足,古洪水层识别仍多依赖经验法,部分结论存在一定争议[7-8]。古洪水与现代洪水虽然在发生时间、规模以及沉积物保存环境等方面存在较大差异,但发生过程、沉积原理及沉积物成分、结构、构造特征是相同的[9]。因此,遵循“将今论古”的研究思路,充分认识现代洪水沉积特征,是识别地层中古洪水沉积的重要前提和依据[10-13]

    XRF(X-ray Fluorescence,即X射线荧光光谱)元素扫描技术利用X射线对岩芯剖面进行扫描,以单位时间内各元素(Mg—U)X荧光信号计数作为元素丰度,该方法具有快速、无损、高分辨率等特点[14],尽管测量值受岩芯含水量、粒度、有机质含量、裂隙等影响,只能获得半定量的元素结果[15-16],但基于XRF连续扫描与ICP-OES/ICP-MS测试对比分析发现,扫描结果可信度较高,可忠实反映岩芯元素变化特征[17-18]。因此,该方法在第四纪海洋与湖沼沉积[19-21]、全新世泥炭层[22]以及洞穴石笋[23]研究中应用广泛。相比而言,在河流洪水沉积方面的研究鲜见报道[13]

    山东中部山地是我国著名暴雨多发区,并因此频繁引发山前平原地区洪水灾害[24],历史时期的古洪水事件可能在一定程度上导致了区域内古文化衰落[25]。2018年8月山东寿光发生暴雨洪水灾害[26],本研究获取境内弥河、丹河流域洪水沉积物浅钻(下部含现代土壤层),利用XRF岩芯扫描系统对其进行高分辨率连续元素扫描,同时结合沉积相和粒度讨论元素含量变化规律及其影响因素,发现洪水层标志性元素特征,对比其他地区洪水沉积物研究结论,讨论该标志性特征的适用性,并在古洪水层识别中有条件性应用。

    弥河发源于山东中部沂山,总体为北偏东流向,注入渤海莱州湾(图1a),全长206 km,流域面积3 847.5 km2,年平均径流深度156.5 mm。丹河发源于临朐县山旺镇,向东北汇入弥河,为弥河第一大支流。岳寺高村以下为弥河下游,长96 km,流经山前平原和滨海低地区,河道平均比降仅为0.4‰(图1b)。该流域属暖温带季风区大陆性气候,多年平均降水量约为600 mm,降水集中在5—8月,旱涝灾害频发。有水文记录以来(截至2017年),最大洪峰流量发生在1963年7月19日(瑞庄站),达到2870 m3/s。近40年来弥河断流天数呈逐渐增加趋势,特别是1981年以来,寒桥站监测年断流天数均在150天以上[27]

    图  1  研究区与钻孔位置
    a. 研究区所在位置,b. 弥河下游水系,c. MH1钻孔位置,d. DH1、DH2钻孔位置。
    Figure  1.  The location of study area and the drilling sites
    a: Location of the study area, b: downstream water system of Mihe River, c: position of MH1, d: positions of DH1 and DH2.

    2018年8月14日,受台风“摩羯”影响,研究区内开始出现降雨,河流流量随之增大,丹河因河道较窄,水位上升淹没河漫滩区域。8月18日,台风“温比亚”又过境弥河流域,下游寿光地区8月18日12时至8月20日1时降雨量超过200 mm,上游部分地区降水量达到300 mm,河流水位大幅快速上升,位于弥河中游的谭家坊水文站流量达到2420 m3/s,并且伴随上游水库泄洪,大量客水涌入,导致弥河、丹河下游河道多处出现漫堤和决堤,形成洪涝灾害[28-29]

    2018年10月,笔者考察弥河流域洪水淹没区,选择新鲜洪水沉积保存较为原始的地点(图1b、c、d),获取沉积物岩芯MH1、DH1、DH2。MH1孔长21.5 cm,位于弥河下游宽河道区,行洪河道宽约2 km,钻孔取自堤坝内高河漫滩,高出正常河面约2.5 m,已被平整开垦为耕地,主要种植旱作粮食作物(图1c)。DH1、DH2浅钻长度均为21 cm,DH1位于丹河下游堤坝内侧河漫滩之上,此处行洪河道宽约200 m,河漫滩高出河面约2 m,堤坝高出河漫滩约2.5 m,河漫滩区以杂草荒地为主;DH2位于堤坝外侧农田区,属决口扇沉积[30],西距决口点约50 m,两个钻孔相距约200 m。本文取MH1、DH2岩芯进行XRF元素扫描分析,并结合DH1钻孔扫描结果以及长江流域若干洪水地层元素地球化学特征进行讨论。

    岩芯运回实验室后剖开,首先进行平整处理,然后覆盖上Ultralene薄膜(4 μm),使用Avaatech型XRF岩芯扫描仪按5 mm间隔连续扫描分析,扫描面积为5 mm(宽度)×10 mm(长度),扫描时间为30 s[16],该实验在中国科学院南海海洋研究所完成。由于测试和采样间隔6个月左右,岩芯水分挥发充分,含水量对测试结果影响较弱。为尽量消除测试过程中的偶然因素影响,只选择Al、Ti、Si、Ca、Fe、Rb、Sr、Zr等8种绝大部分点位相对信号强度在1000以上的元素进行分析[31]。另外,由于仪器探头宽度问题,岩芯两端扫描结果往往容易出现较大偏差,故删去顶部和底部各一组数据。

    MH1岩芯0~9 cm为黄色洪水沉积层,未见明显层理,下段9~21.5 cm为河漫滩沉积基础上自然发育和人工培育叠加形成的现代土壤层,呈棕褐色,粒度分析结果显示洪水沉积物颗粒较细,以黏土和细粉砂为主(图2),揭示钻孔位置洪水水动力较弱[32]。扫描结果显示,Al、Ti、Si、Ca、Fe等5种元素在洪水沉积层信号强度突然升高;Rb元素在整个岩芯比较稳定,仅在沉积界面处出现信号强度谷值,推测可能与此处岩芯出现裂隙有关;Sr、Zr元素洪水沉积层信号强度则呈现降低趋势(图2)。

    图  2  MH1岩芯中值粒径及XRF扫描元素强度变化
    Figure  2.  The median grain size and the XRF profiles of elements of Core MH1

    DH2钻孔0~12.5 cm为洪水决口扇沉积层,岩性为红黄色黏土,层理不清晰,下段12.5~21 cm为现代耕土层,呈棕黑色,含丰富植物残体。粒度组分拟合结果揭示决口扇沉积可划分为3个阶段,洪水水动力整体较弱[30]。XRF扫描结果显示,Al、Ti、Si、Ca、Fe、Rb等6种元素信号强度变化曲线较为相似,均呈现先波动降低,后稳定升高特征,在洪水层与土壤层沉积界面处信号强度达到最低值;元素Sr和Zr信号强度变化特征一致,先波动降低后略有升高,于10.5 cm处达到钻孔最低值,下段土壤层信号强度明显高于上段洪水沉积层,但信号强度变化略滞后于岩性变化(图3)。

    图  3  DH2岩芯中值粒径及XRF扫描元素强度变化
    Figure  3.  The median grain size and the XRF profiles of elements of Core DH2

    两个钻孔洪水沉积层中Al、Ti、Si、Ca、Fe等元素扫描强度明显高于土壤层,而Sr和Zr元素平均信号强度则有不同程度降低,Rb元素在不同地层中的扫描强度差异不大(表1)。MH1和DH2岩芯下段分别为河漫滩沉积基础上发育的土壤层和现代耕土层,两者元素平均扫描强度具有一定差异,体现了不同类型土壤元素地球化学特征方面的差异性。同时,XRF元素扫描受岩芯岩性影响[16],数值为半定量结果,不同钻孔之间缺乏严格可对比性。

    表  1  MH1、DH2岩芯不同沉积地层元素平均扫描强度
    Table  1.  Average scanning intensity of elements in different sedimentary strata of Cores MH1 and DH2
    元素强度Al/104Ti/104Si/105Ca/105Fe/105Rb/104Sr/104Zr/104
    MH1洪水层1.351.541.151.441.610.350.620.65
    土壤层1.001.241.090.551.130.320.791.29
    DH2洪水层1.231.751.061.131.990.300.680.64
    土壤层0.951.420.950.711.440.280.790.86
    下载: 导出CSV 
    | 显示表格

    相关性受控于元素在表生环境中的地球化学行为,不同元素间相关性越高越有助于揭示元素的稳定输入来源和赋存条件[33]。MH1岩芯元素相关系数显示,Al、Ti、Si、Ca、Fe、Rb等6种元素具有正相关性(表2),且相关系数绝大多数大于0.6(0.01置信水平),其中Mg、Fe之间的相关系数最高,0.01置信水平上R值达到0.988;Sr、Zr两种元素显著正相关,R值高达0.927,与其余大部分元素呈负相关关系。

    表  2  MH1浅钻元素相关性分析
    Table  2.  Results of element correlation analysis for Core MH1
    AlTiSiCaFeRbSrZr
    Al1
    Ti0.884**1
    Si0.831**0.773**1
    Ca0.804**0.819**0.437**1
    Fe0.847**0.912**0.605**0.924**1
    Rb0.779**0.765**0.707**0.612**0.704**1
    Sr-0.381*-0.339**0.128-0.726**-0.547**-0.0611
    Zr-0.480**-0.480**0.018-0.854**-0.663**-0.2330.927**1
    注:*在0.05级别(双尾),相关性显著;**在0.01级别(双尾),相关性显著。
    下载: 导出CSV 
    | 显示表格

    DH2钻孔元素可分为两组相关性较高的元素组合,第1组为Al、Ti、Si、Ca、Fe、Rb元素,相关系数在0.01水平上达到0.7以上。其中Al、Si都是常见造岩元素,一般被认为是外源碎屑元素[34],Si元素可用来反映河流水动力大小及水量平衡[35],Al元素主要富集在黏土矿物中,可作为强化学风化和淋滤作用的环境指示元素[36];Ti是惰性元素,其信号强度的变化通常指示区域降水量,可作为指示沉积物中陆源碎屑物的有效指标[37];Fe元素主要来自地表侵蚀的细粒碎屑物质[17];Ca与Fe元素相关系数高达0.938,表明在洪水沉积物中,自生陆源碎屑碳酸盐所占比重较小,主要为外源输入[11];Rb元素在地球化学过程中性质稳定,其信号强度受含水量、粒度等因素干扰较小[38]。第2组为Sr和Zr元素,两者相关系数超过0.9。Zr是极其稳定的化学元素,多以锆石的形式存在于粗粒碎屑物中,不易流失和迁移,仍保持源区原岩的特征,代表粒径较大的陆源碎屑物[39]

    表  3  DH2岩芯元素相关性分析结果
    Table  3.  Results of element correlation analysis for Core DH2
    AlTiSiCaFeRbSrZr
    Al1
    Ti0.950**1
    Si0.950**0.912**1
    Ca0.838**0.866**0.694**1
    Fe0.867**0.936**0.787**0.938**1
    Rb0.774**0.747**0.749**0.712**0.727**1
    Sr-0.133-0.2050.115-0.527**-0.387*0.0001
    Zr-0.214-0.2790.052-0.618**-0.439**-0.0840.911**1
    注:*在0.05级别(双尾),相关性显著;**在0.01级别(双尾),相关性显著。
    下载: 导出CSV 
    | 显示表格

    MH1孔和DH2孔岩芯Zr/Rb比在洪水沉积层平均值分别为1.95、2.12,相较土壤层低,Rb/Sr比则表现为高值(平均值分别为0.56、0.44,图4a、b)。Rb和Zr元素在风化搬运过程中的地球化学行为既稳定又存在明显区别[40]。Zr主要赋存于土壤或沉积物中的锆石中,在风化搬运过程中稳定性强,常在粗颗粒中富集,而Rb元素作为典型的分散元素主要存在于细粒矿物中,因此Zr/Rb比值实际上反映了粗粒级矿物与黏土矿物的相对含量[41]。相比而言,Rb/Sr比的环境指示意义更加复杂,一方面Sr元素与Zr元素相似,主要富集在粗粒矿物中(图23),而Rb元素主要在黏土矿物中富集,因而典型洪水粉砂层Rb/Sr比值通常较低[42]。另一方面,Sr元素化学活性较Rb元素高,更容易淋溶流失,因而Rb/Sr值会随时间推移逐渐增大,指示了与洪水发生密切相关的降水强度的大小[43]

    图  4  DH2(a)、MH1(b)和DH1(c)[44]钻孔Zr/Rb比和Rb/Sr比变化特征
    Figure  4.  Variations of Zr/Rb and Rb/Sr ratios in DH2 (a), MH1 (b), and DH1 (c) cores

    如上文所述,Rb和Zr元素在表生地球化学行为中存在显著差异性,其比值可作为指示洪水沉积物的有效地球化学指标,并能在一定程度上揭示洪水区域的环境特征[40]。王敏杰等[45]分析了长江三角洲地区钻孔岩芯沉积物Zr/Rb比值变化,发现Zr/Rb比的峰值与洪水期粗粒沉积对应,由此重建了长江流域600年以来古洪水事件。韦璐等同样在长江水下三角洲获得柱状岩芯,利用Zr/Rb峰值识别出长江流域1930—2017年间18次洪水事件,识别率达到80%[46]。吴霜等在赣北黄茅洪水地层研究中也发现Zr/Rb比与平均粒径(Φ值)呈负相关关系,但结合器测降水记录和地层年代,得出截然相反的结论,即Zr/Rb低值对应洪水期沉积[47](图5b)。MH1和DH2浅钻洪水沉积层以黏土和细粉砂为主,其Zr/Rb值相较于土壤层值低,因此低值对应钻孔中洪水期沉积(图4a、b)。与DH2钻孔临近的DH1浅钻,因位于堤坝内侧较窄的行洪河道内,洪水前期以弱水动力条件下的细粒沉积物为主,Zr/Rb比达到钻孔谷值,后期洪水流速增大,沉积典型洪水粉砂层,Zr/Rb值随之升高(图4c[11,44]。与下伏河漫滩沉积物基础上发育的现代土壤层相比,洪水黏土层Zr/Rb比明显较低,而洪水粉砂层则大致与之持平。该发现拓宽了过去认为Zr/Rb比的峰值(或谷值)对应洪水沉积的单一认识,其深层次原因在于洪水水动力和沉积类型存在多样性,不同河段、地貌单元和水文条件,可能造成洪水层粒度特征出现多种模式[944]

    图  5  不同地区洪水沉积物中Zr/Rb、Rb/Sr与粒度的相关性分析
    a、b、d、f为本研究岩芯[44],c为赣北黄茅潭[47],e为长江三峡段[42]与武汉段[43]。 a-e元素比值进行了标准化处理。
    Figure  5.  Analyses on correlation of Zr/Rb and Rb/Sr ratios with the grain size of flood sediments in different areas
    a, b, d, f: Cores of this study[44], c: Huangmaotan Lake, north Jiangxi Province[47], e: The Three Gorges Section[42] and Wuhan Section of the Yangtze River[43]. The elemental ratios in a-e have been standardized.

    在含有洪水沉积层的古地层研究中,Rb/Sr值的环境学意义有风化淋溶说和粒度机械组成说两种解释[42,48]。前者认为,Rb的化学性质比较稳定,Sr的化学活性则较高,二者在表生地球化学过程中常发生分馏,离子半径较小的Sr主要以游离态形式被地表水或地下水带走,原地残留洪水沉积物中Rb/Sr值会随时间推移逐渐增大。因而,Rb/Sr值的大小实际上指示了与洪水发生密切相关的降水量的大小[43]。持粒度机械组成说的学者认为,Sr元素与Zr元素相同,本身主要富集在粗粒矿物中(图23),而Rb元素主要在黏土矿物中富集,因而典型洪水粉砂层Rb/Sr比值通常较低[42]。MH1和DH2钻孔现代耕土层Rb/Sr比显著低于洪水层(图4),一方面可以解释为离子半径较小的Sr元素主要以游离态形式被洪水带走,使洪水层中Rb/Sr比升高[49];另一方面,按照Rb/Sr比低值对应粗粒沉积的一般认识,两根岩芯洪水沉积层均为细粒沉积,则应对应Rb/Sr比峰值。就所经受的化学风化和降水淋溶作用而言,新鲜洪水沉积显然没有土壤层充分,但粒度较细的现代洪水沉积物Rb/Sr值明显高于化学风化程度更高的表土层,因此Rb/Sr值实际上主要反映洪水沉积物原始粒度粗细状况,后期风化淋溶对其影响是次要的[48]。长江流域三峡玉溪遗址[42]和武汉SK10钻孔数据[43]也显示Rb/Sr比与平均粒径(Φ值)呈正相关关系(图5),即粒度越细,对应Rb/Sr比值越高,但不同区域Rb/Sr比差异较大,可能与当地环境背景值有关。

    综上,Zr/Rb和Rb/Sr比值在洪水沉积层中的指示意义具有不确定,应考量所处河段地貌和洪水水文特征及其在沉积物粒度上的体现,必要时需结合磁化率、孢粉、烧失量、同位素、重金属元素等其他指标综合判定[50]

    明确了粒度为Rb/Sr比值大小的单一影响因素,则Rb/Sr也被赋予了与粒度指标相同的指示洪水事件和水动力强度的意义[51]。台风“摩羯”降水引发丹河水位上升,淹没DH1钻孔位置,粒度特征显示此时洪水水动力较弱,孢粉组合特征揭示该时期沉积主要来自区域内部,后在台风“温比亚”降水和上游水库泄洪双重影响下,丹河下游水位大幅升高,流速显著加快,沉积典型洪水粉砂层(图4c)[11]。Rb/Sr比变化特征独立揭示了两次洪水事件,并可反映其水动力变化过程[52]。将3个钻孔洪水沉积层Rb/Sr比与中值粒径进行相关分析,发现两者之间具有较好的负相关关系,即Rb/Sr比值越大,揭示洪水水动力越弱,Rb/Sr谷值对应黏土质洪水沉积,峰值对应粒度粗组分高值的粉砂质洪水沉积[53]。但在河流下游泛滥平原地区,对地层进行研究时应首先甄别古河道沉积、河漫滩沉积、洪水沉积,同一类型沉积物之间进行Rb/Sr值比较才具有讨论意义[13,53]

    (1)MH1和DH2钻孔位置洪水水动力较弱,洪水层粒度较细,土壤层粒度稍粗。Mg、Al、Ti、Si、Ca、Fe、Sr、Zr等绝大多数元素信号强度与粒度相关性显著,表明其受粒度控制明显,并最终受控于洪水水动力强度;Rb元素信号强度与粒度相关性弱,在钻孔中的含量变化较为稳定,仅在沉积界面处有所降低,可能与裂隙造成的实验误差有关。

    (2)相关性分析显示Sr、Zr两个元素显著正相关,且与粒度具有负相关关系,在洪水沉积层表现为信号强度低值,Mg、Al、Ti、Si、Ca、Fe等元素具有正相关关系,且与粒度呈现一定的正相关性,在洪水堆积层信号强度较高。

    (3)Zr/Rb比受控于粒度特征,谷值对应粒度中值粒径低值;Rb/Sr值主要受控于沉积物粒度特征,与风化淋溶作用无关。Zr/Rb峰值和Rb/Sr谷值对应黏土质洪水沉积,Zr/Rb谷值和Rb/Sr峰值对应粒度粗组分高值的粉砂质洪水沉积,两者均可作为识别古洪水沉积的参考依据,但运用时需综合考量洪水水动力特征、采样点位置及洪水沉积层粒度表现形式。

    致谢:感谢两位审稿专家的宝贵修改意见和建议,感谢河南大学硕士研究生王船舟在样品采集中给予的帮助。

  • 图  1   研究区与钻孔位置

    a. 研究区所在位置,b. 弥河下游水系,c. MH1钻孔位置,d. DH1、DH2钻孔位置。

    Figure  1.   The location of study area and the drilling sites

    a: Location of the study area, b: downstream water system of Mihe River, c: position of MH1, d: positions of DH1 and DH2.

    图  2   MH1岩芯中值粒径及XRF扫描元素强度变化

    Figure  2.   The median grain size and the XRF profiles of elements of Core MH1

    图  3   DH2岩芯中值粒径及XRF扫描元素强度变化

    Figure  3.   The median grain size and the XRF profiles of elements of Core DH2

    图  4   DH2(a)、MH1(b)和DH1(c)[44]钻孔Zr/Rb比和Rb/Sr比变化特征

    Figure  4.   Variations of Zr/Rb and Rb/Sr ratios in DH2 (a), MH1 (b), and DH1 (c) cores

    图  5   不同地区洪水沉积物中Zr/Rb、Rb/Sr与粒度的相关性分析

    a、b、d、f为本研究岩芯[44],c为赣北黄茅潭[47],e为长江三峡段[42]与武汉段[43]。 a-e元素比值进行了标准化处理。

    Figure  5.   Analyses on correlation of Zr/Rb and Rb/Sr ratios with the grain size of flood sediments in different areas

    a, b, d, f: Cores of this study[44], c: Huangmaotan Lake, north Jiangxi Province[47], e: The Three Gorges Section[42] and Wuhan Section of the Yangtze River[43]. The elemental ratios in a-e have been standardized.

    表  1   MH1、DH2岩芯不同沉积地层元素平均扫描强度

    Table  1   Average scanning intensity of elements in different sedimentary strata of Cores MH1 and DH2

    元素强度Al/104Ti/104Si/105Ca/105Fe/105Rb/104Sr/104Zr/104
    MH1洪水层1.351.541.151.441.610.350.620.65
    土壤层1.001.241.090.551.130.320.791.29
    DH2洪水层1.231.751.061.131.990.300.680.64
    土壤层0.951.420.950.711.440.280.790.86
    下载: 导出CSV

    表  2   MH1浅钻元素相关性分析

    Table  2   Results of element correlation analysis for Core MH1

    AlTiSiCaFeRbSrZr
    Al1
    Ti0.884**1
    Si0.831**0.773**1
    Ca0.804**0.819**0.437**1
    Fe0.847**0.912**0.605**0.924**1
    Rb0.779**0.765**0.707**0.612**0.704**1
    Sr-0.381*-0.339**0.128-0.726**-0.547**-0.0611
    Zr-0.480**-0.480**0.018-0.854**-0.663**-0.2330.927**1
    注:*在0.05级别(双尾),相关性显著;**在0.01级别(双尾),相关性显著。
    下载: 导出CSV

    表  3   DH2岩芯元素相关性分析结果

    Table  3   Results of element correlation analysis for Core DH2

    AlTiSiCaFeRbSrZr
    Al1
    Ti0.950**1
    Si0.950**0.912**1
    Ca0.838**0.866**0.694**1
    Fe0.867**0.936**0.787**0.938**1
    Rb0.774**0.747**0.749**0.712**0.727**1
    Sr-0.133-0.2050.115-0.527**-0.387*0.0001
    Zr-0.214-0.2790.052-0.618**-0.439**-0.0840.911**1
    注:*在0.05级别(双尾),相关性显著;**在0.01级别(双尾),相关性显著。
    下载: 导出CSV
  • [1]

    Seneviratne S I, Nicholls N, Easterling D, et al. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC)[M]. Cambridge: Cambridge University Press, 2012.

    [2]

    Kundzewicz Z W, Kanae S, Seneviratne S I, et al. Flood risk and climate change: global and regional perspectives [J]. Hydrological Sciences Journal, 2014, 59(1): 1-28.

    [3] 周成虎, 万庆, 黄诗峰, 等. 基于GIS的洪水灾害风险区划研究[J]. 地理学报, 2000, 55(1):15-24 doi: 10.3321/j.issn:0375-5444.2000.01.003

    ZHOU Chenhu, WAN Qing, HUANG Shifeng, et al. A GIS-based approach to flood risk zonation [J]. Acta Geographica Sinica, 2000, 55(1): 15-24. doi: 10.3321/j.issn:0375-5444.2000.01.003

    [4]

    St. George S, Hefner A M, Avila J. Paleofloods stage a comeback [J]. Nature Geoscience, 2020, 13(12): 766-768. doi: 10.1038/s41561-020-00664-2

    [5]

    Huang C C, Pang J L, Zha X C, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China [J]. Quaternary Science Reviews, 2011, 30(3-4): 460-468. doi: 10.1016/j.quascirev.2010.12.007

    [6]

    Lam D, Croke J, Thompson C, et al. Beyond the gorge: palaeoflood reconstruction from slackwater deposits in a range of physiographic settings in subtropical Australia [J]. Geomorphology, 2017, 292: 164-177. doi: 10.1016/j.geomorph.2017.05.008

    [7]

    Dong G H, Zhang F Y, Liu F W, et al. Multiple evidences indicate no relationship between prehistoric disasters in Lajia site and outburst flood in upper Yellow River valley, China [J]. Science China Earth Sciences, 2018, 61(4): 441-449. doi: 10.1007/s11430-017-9079-3

    [8] 吴庆龙, 张培震, 张会平, 等. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J]. 中国科学D辑:地球科学, 2009, 39(8):1148-1159

    WU Qinglong, ZHANG Peizhen, ZHANG Huiping, et al. A palaeo-earthquake induced damming and bursting of Yellow River and the abnormal flood that destroyed Lajia relic [J]. Science in China Series D:Earth Sciences, 2009, 39(8): 1148-1159.

    [9] 李晓刚, 黄春长. 黄河晋陕峡谷2012年大洪水滞流沉积物性质分析[J]. 干旱区资源与环境, 2015, 29(10):165-171 doi: 10.13448/j.cnki.jalre.2015.346

    LI Xiaogang, HUANG Chunchang. Characteristics of the flood slackwater deposits occurred in 2012 in the Jin-Shaan Gorges of the Yellow River [J]. Journal of Arid Land Resources and Environment, 2015, 29(10): 165-171. doi: 10.13448/j.cnki.jalre.2015.346

    [10]

    Zhan W, Yang S Y, Liu X L, et al. Reconstruction of flood events over the last 150 years in the lower reaches of the Changjiang River [J]. Chinese Science Bulletin, 2010, 55(21): 2268-2274. doi: 10.1007/s11434-010-3263-8

    [11] 李华勇, 赵楠, 杨艺萍, 等. 山东丹河2018年洪水沉积特征、物源分析及水文过程重建[J]. 地质力学学报, 2022, 28(2):226-236

    LI Huayong, ZHAO Nan, YANG Yiping, et al. Sedimentary characterization and provenance analysis of the 2018 flooding along the Dan River, Shandong, and the hydrodynamic process reconstruction [J]. Journal of Geomechanics, 2022, 28(2): 226-236.

    [12]

    Kermode S J, Cohen T J, Reinfelds I V, et al. Modern depositional processes in a confined, flood-prone setting: benches on the Shoalhaven River, NSW, Australia [J]. Geomorphology, 2015, 228: 470-485. doi: 10.1016/j.geomorph.2014.09.022

    [13] 张凌华, 张振克. 河漫滩沉积与环境研究进展[J]. 海洋地质与第四纪地质, 2015, 35(5):153-163 doi: 10.16562/j.cnki.0256-1492.2015.05.018

    ZHANG Linghua, ZHANG Zhenke. Research progress of river overbank deposits and implications for environment [J]. Marine Geology & Quaternary Geology, 2015, 35(5): 153-163. doi: 10.16562/j.cnki.0256-1492.2015.05.018

    [14]

    Croudace I W, Rindby A, Rothwell R G. ITRAX: description and evaluation of a new multi-function X-ray core scanner [J]. Geological Society, London, Special Publications, 2006, 267: 51-63. doi: 10.1144/GSL.SP.2006.267.01.04

    [15]

    Kylander M E, Ampel L, Wohlfarth B, et al. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies [J]. Journal of Quaternary Science, 2011, 26(1): 109-117. doi: 10.1002/jqs.1438

    [16]

    Zhang X N, Zhang H C, Chang F Q, et al. Application of corrected methods for high-resolution XRF core scanning elements in lake sediments [J]. Applied Sciences, 2020, 10(22): 8012. doi: 10.3390/app10228012

    [17] 牛洁, 张文翔, 张虎才, 等. 基于XRF连续扫描的云南抚仙湖沉积物元素特征及环境意义[J]. 光谱学与光谱分析, 2019, 39(7):2223-2227

    NIU Jie, ZHANG Wenxiang, ZHANG Hucai, et al. The characteristics of geochemical elements in Fuxian Lake sediments and its environmental significance based on XRF core scanning [J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2223-2227.

    [18] 雷国良, 张虎才, 常凤琴, 等. 湖泊沉积物XRF元素连续扫描与常规ICP-OES分析结果的对比及校正: 以兹格塘错为例[J]. 湖泊科学, 2011, 23(2):287-294 doi: 10.18307/2011.0220

    LEI Guoliang, ZHANG Hucai, CHANG Fengqin, et al. Comparison and correction of element measurements in lacustrine sediments using X-ray fluorescence core-scanning with ICP-OES method: a case study of Zigetang Co [J]. Journal of Lake Sciences, 2011, 23(2): 287-294. doi: 10.18307/2011.0220

    [19]

    Yang H F, Zhao Y, Cui Q Y, et al. Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: a case study in the Zoige Basin in the eastern Tibetan Plateau [J]. Science China Earth Sciences, 2021, 64(1): 80-95. doi: 10.1007/s11430-020-9667-7

    [20] 张晓楠, 张灿, 吴铎, 等. 基于XRF岩心扫描的中国西部湖泊沉积物元素地球化学特征[J]. 海洋地质与第四纪地质, 2015, 35(1):163-174

    ZHANG Xiaonan, ZHANG Can, WU Duo, et al. Element geochemistry of lake deposits measured by X-Ray Fluorescencecore scanner in Northwest China [J]. Marine Geology & Quaternary Geology, 2015, 35(1): 163-174.

    [21] 张喜林, 范德江, 王亮, 等. X-射线岩心扫描系统对海洋沉积物成分测定质量的综合评价和校正[J]. 海洋学报, 2013, 35(6):86-95

    ZHANG Xilin, FAN Dejiang, WANG Liang, et al. The calibration and quality evaluation of elemental analysis results of marine sediment measured by an X-ray fluorescence core scanner [J]. Acta Oceanologica Sinica, 2013, 35(6): 86-95.

    [22] 杨欢, 曾蒙秀, 彭海军, 等. 基于XRF岩芯扫描的贵州喀斯特地区晚全新世泥炭古环境研究[J]. 第四纪研究, 2020, 40(5):1154-1169 doi: 10.11928/j.issn.1001-7410.2020.05.06

    YANG Huan, ZENG Mengxiu, PENG Haijun, et al. Application of XRF core scanning method in Late Holocene environment change study derived from a peat core from southwestern Guizhou, Southwestern China [J]. Quaternary Sciences, 2020, 40(5): 1154-1169. doi: 10.11928/j.issn.1001-7410.2020.05.06

    [23]

    Li D, Tan L C, Guo F, et al. Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems [J]. Science China Earth Sciences, 2019, 62(6): 964-973. doi: 10.1007/s11430-018-9344-2

    [24]

    Bi S B, Bi S J, Lu Y, et al. Temporal and spatial characteristics of droughts and floods in northern China from 1644 to 1911 [J]. Journal of Earth System Science, 2019, 128(4): 98. doi: 10.1007/s12040-019-1121-x

    [25]

    Shen H Y, Yu L P, Zhang H M, et al. OSL and radiocarbon dating of flood deposits and its paleoclimatic and archaeological implications in the Yihe River Basin, East China [J]. Quaternary Geochronology, 2015, 30: 398-404. doi: 10.1016/j.quageo.2015.03.005

    [26] 栾玉洁, 郭金运, 高永刚, 等. 基于Sentinel-1B SAR数据的2018年寿光洪水遥感监测及灾害分析[J]. 自然灾害学报, 2021, 30(2):168-175

    LUAN Yujie, GUO Jinyun, GAO Yonggang, et al. Remote sensing monitoring of flood and disaster analysis in Shouguang in 2018 from Sentinel-1B SAR data [J]. Journal of Natural Disasters, 2021, 30(2): 168-175.

    [27] 徐立荣. 气候变化对莱州湾地区水文极端事件的影响研究: 以弥河流域为例[D]. 山东师范大学硕士学位论文, 2001

    XU Lirong. Studies on impacts of climate changes on hydrologic extermes in Mihe Basin, Laizhou Bay area of China[D]. Master Dissertation of Shandong Normal University, 2001.

    [28] 郭广军, 贺芳丁. 从台风影响谈对水库加固建设与管理的几点反思[J]. 中国水利, 2018(20):66-69 doi: 10.3969/j.issn.1000-1123.2018.20.017

    GUO Guangjun, HE Fangding. Reflections on reservoirs reinforcement under the impact of typhoon [J]. China Water Resources, 2018(20): 66-69. doi: 10.3969/j.issn.1000-1123.2018.20.017

    [29] 李华勇, 于正松. 气候变化和人为活动双重胁迫下山前平原地区洪灾发生机制与防治对策[J]. 陕西水利, 2021(1):75-77,82

    LI Huayong, YU Zhengsong. The occurrence mechanism and prevention countermeasures of flood disaster in the piedmont plain area under the dual stress of climate change and human activities [J]. Shaanxi Water Resources, 2021(1): 75-77,82.

    [30] 李华勇, 朱佳丽, 张虎才, 等. 鲁北丹河下游洪水决口扇沉积岩芯粒度特征与沉积过程重建[J]. 干旱区资源与环境, 2021, 35(2):176-182 doi: 10.13448/j.cnki.jalre.2021.057

    LI Huayong, ZHU Jiali, ZHANG Hucai, et al. Grain-size characteristics of crevasse splays from the lower reaches of Dan River in northern Shandong province and reconstruction of sedimentary process [J]. Journal of Arid Land Resources and Environment, 2021, 35(2): 176-182. doi: 10.13448/j.cnki.jalre.2021.057

    [31] 章桂芳, 郑卓, 乐远福, 等. 福州盆地第四纪钻孔XRF连续扫描的元素特征及沉积相指示意义[J]. 光谱学与光谱分析, 2016, 36(9):2971-2977

    ZHANG Guifang, ZHENG Zhuo, LUE Yuanfu, et al. Continuous XRF element characteristics and significance of sedimentary facies indication of the quaternary core from Fuzhou Basin [J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 2971-2977.

    [32] 李华勇, 袁俊英, 杨艺萍, 等. 山东弥河流域现代洪水沉积特征与水动力过程反演[J]. 海洋地质与第四纪地质, 2022, 42(2):178-189

    LI Huayong, YUAN Junying, YANG Yiping, et al. Characteristics of modern flood deposits in the Drainage basin of Mi River, Shandong Province and the reconstruction of hydrodynamic processes [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 178-189.

    [33] 马雪洋, 陈豆, 阳亚平, 等. 哈拉湖岩芯XRF扫描元素统计分析及其环境意义[J]. 盐湖研究, 2014, 22(4):1-10

    MA Xueyang, CHEN Dou, YANG Yaping, et al. Statistical analysis of XRF scanned elements and their environmental significance in Hala Lake, Qinghai, China [J]. Journal of Salt Lake Research, 2014, 22(4): 1-10.

    [34] 吴旭东, 沈吉, 汪勇. 湖光岩玛珥湖沉积物反映的全新世以来古环境演化[J]. 海洋地质与第四纪地质, 2011, 31(4):155-162

    WU Xudong, SHEN Ji, WANG Yong. Holocene paleoenvironmental evolution of the Huguangyan Maar Lake [J]. Marine Geology & Quaternary Geology, 2011, 31(4): 155-162.

    [35]

    Wünnemann B, Wagner J, Zhang Y Z, et al. Implications of diverse sedimentation patterns in Hala Lake, Qinghai Province, China for reconstructing Late Quaternary climate [J]. Journal of Paleolimnology, 2012, 48(4): 725-749. doi: 10.1007/s10933-012-9641-2

    [36] 金章东. 湖泊沉积物的矿物组成、成因、环境指示及研究进展[J]. 地球科学与环境学报, 2011, 33(1):34-44,77 doi: 10.3969/j.issn.1672-6561.2011.01.005

    JIN Zhangdong. Composition, origin and environmental interpretation of minerals in lake sediments and recent progress [J]. Journal of Earth Sciences and Environment, 2011, 33(1): 34-44,77. doi: 10.3969/j.issn.1672-6561.2011.01.005

    [37]

    Cuven S, Francus P, Lamoureux S F. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic [J]. Journal of Paleolimnology, 2010, 44(3): 803-817. doi: 10.1007/s10933-010-9453-1

    [38] 岳大鹏, 袁晓宁, 李奎, 等. 陕北子洲黄土洼坝淤地淤积剖面元素分布特征分析[J]. 干旱区地理, 2014, 37(5):875-882

    YUE Dapeng, YUAN Xiaoning, LI Kui, et al. Distribution features of deposition profile elements on dammed silt land in Huangtuwa of Zizhou County, Northern Shaanxi [J]. Arid Land Geography, 2014, 37(5): 875-882.

    [39] 王国平, 刘景双. 向海湿地元素地球化学特征与高分辨沉积记录[J]. 地理科学, 2003, 23(2):208-212 doi: 10.3969/j.issn.1000-0690.2003.02.013

    WANG Guoping, LIU Jingshuang. Characteristics of element geochemistry and high-resolution sedimentation records in Xianghai wetlands [J]. Scientia Geographica Sinica, 2003, 23(2): 208-212. doi: 10.3969/j.issn.1000-0690.2003.02.013

    [40]

    Wu L, Wilson D J, Wang R J, et al. Evaluating Zr/Rb ratio from XRF scanning as an indicator of grain-size variations of glaciomarine sediments in the Southern Ocean [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11): e2020GC009350.

    [41] 胡砚泊, Wünnemann B, 张永战, 等. 14 ka以来苦海沉积物地球化学记录及其古环境意义[J]. 沉积学报, 2019, 37(1):104-114

    HU Yanbo, Wünnemann B, ZHANG Yongzhan, et al. Geochemistry record and their environmental implications during the past 14 ka in Kuhai Lake, NE Tibetan Plateau [J]. Acta Sedimentologica Sinica, 2019, 37(1): 104-114.

    [42] 张跞颖, 李长安, 张玉芬, 等. 长江武汉段4.5~2.5 ka沉积地层与古洪水标志识别[J]. 地质论评, 2019, 65(4):973-982

    ZHANG Luoying, LI Chang'an, ZHANG Yufen, et al. Sedimentary strata and paleoflood identification indexes of Wuhan section, Yangtze River, during 4.5~2.5 ka BP [J]. Geological Review, 2019, 65(4): 973-982.

    [43] 朱诚, 马春梅, 王慧麟, 等. 长江三峡库区玉溪遗址T0403探方古洪水沉积特征研究[J]. 科学通报, 2008, 53(S1):1-17

    ZHU Cheng, MA Chunmei, WANG Huilin, et al. Characteristics of paleoflood deposits archived in unit T0403 of Yuxi Site in the Three Gorges Reservoir areas, China [J]. Chinese Science Bulletin, 2008, 53(S1): 1-17.

    [44] 李华勇, 王倩, 张虎才, 等. 鲁北丹河现代洪水沉积物地球化学特征及古洪水识别意义[J]. 云南大学学报:自然科学版, 2021, 43(3):503-512

    LI Huayong, WANG Qian, ZHANG Hucai, et al. Geochemical characteristics of modern flood sediment from Danhe River Basin in northern Shandong Province and its significance of paleoflood identification [J]. Journal of Yunnan University:Natural Sciences Edition, 2021, 43(3): 503-512.

    [45]

    Wang M J, Zheng H B, Xie X, et al. A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records [J]. Chinese Science Bulletin, 2011, 56(2): 188-195. doi: 10.1007/s11434-010-4212-2

    [46] 韦璐, 范代读, 吴伊婧, 等. 近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机理[J]. 地质通报, 2021, 40(5):707-720

    WEI Lu, FAN Daidu, WU Yijing, et al. High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism [J]. Geological Bulletin of China, 2021, 40(5): 707-720.

    [47] 吴霜, 刘倩, 曹向明, 等. 赣北黄茅潭湖泊沉积记录的240年以来古洪水事件[J]. 地理科学进展, 2017, 36(11):1413-1422 doi: 10.18306/dlkxjz.2017.11.010

    WU Shuang, LIU Qian, CAO Xiangming, et al. A 240-year sedimentary record of paleoflood events from the Huangmaotan Lake, northern Jiangxi Province [J]. Progress in Geography, 2017, 36(11): 1413-1422. doi: 10.18306/dlkxjz.2017.11.010

    [48] 吴立, 朱诚, 李冰, 等. 江汉平原石家河谭家岭遗址新石器时代环境考古[J]. 地球环境学报, 2016, 7(2):140-152 doi: 10.7515/JEE201602004

    WU Li, ZHU Cheng, LI Bing, et al. Environmental archaeology of the Tanjialing Neolithic Site in the Shijiahe Ancient City, the Jianghan Plain of Central China [J]. Journal of Earth Environment, 2016, 7(2): 140-152. doi: 10.7515/JEE201602004

    [49] 朱诚, 李兰, 林留根, 等. 江苏全新世灾变事件考古地层学若干问题探讨[J]. 地层学杂志, 2009, 33(4):413-419 doi: 10.3969/j.issn.0253-4959.2009.04.009

    ZHU Cheng, LI Lan, LIN Liugen, et al. Catastrophic events in archaeological stratigraphy during the Holocene in Jiangsu province [J]. Journal of Stratigraphy, 2009, 33(4): 413-419. doi: 10.3969/j.issn.0253-4959.2009.04.009

    [50] 朱诚, 郑朝贵, 马春梅, 等. 长江三峡库区中坝遗址地层古洪水沉积判别研究[J]. 科学通报, 2005, 50(21):2493-2504 doi: 10.3321/j.issn:0023-074X.2005.20.011

    ZHU Cheng, ZHENG Chaogui, MA Chunmei, et al. Identifying paleoflood deposits archived in Zhongba Site, the Three Gorges reservoir region of the Yangtze River, China [J]. Chinese Science Bulletin, 2005, 50(21): 2493-2504. doi: 10.3321/j.issn:0023-074X.2005.20.011

    [51] 王浩宇, 张玉柱, 黄春长, 等. 洛阳盆地龙山文化晚期大洪水地球化学特征及其社会影响研究[J]. 地层学杂志, 2021, 45(2):168-179 doi: 10.19839/j.cnki.dcxzz.2021.0013

    WANG Haoyu, ZHANG Yuzhu, HUANG Chunchang, et al. Geochemical characteristics and social influence of paleoflood events in the late Longshan culture within the Luoyang Basin [J]. Journal of Stratigraphy, 2021, 45(2): 168-179. doi: 10.19839/j.cnki.dcxzz.2021.0013

    [52] 李中轩, 孙艳丽, 徐永新, 等. 颍河上游的地貌变迁对新石器晚期聚落分布的影响[J]. 海洋地质与第四纪地质, 2020, 40(2):174-182 doi: 10.16562/j.cnki.0256-1492.2018122501

    LI Zhongxuan, SUN Yanli, XU Yongxin, et al. Impact of fluvial landform changes on the Neolithic settlement distribution in the upper reaches of the Yinghe River [J]. Marine Geology & Quaternary Geology, 2020, 40(2): 174-182. doi: 10.16562/j.cnki.0256-1492.2018122501

    [53] 吴立, 朱诚, 李枫, 等. 江汉平原钟桥遗址地层揭示的史前洪水事件[J]. 地理学报, 2015, 70(7):1149-1164 doi: 10.11821/dlxb201507011

    WU Li, ZHU Cheng, LI Feng, et al. Prehistoric flood events recorded at the Zhongqiao Neolithic Site in the Jianghan Plain, Central China [J]. Acta Geographica Sinica, 2015, 70(7): 1149-1164. doi: 10.11821/dlxb201507011

图(5)  /  表(3)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  98
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-05
  • 录用日期:  2022-12-05
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2023-06-27

目录

/

返回文章
返回