北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁

王雨楠, 周保春, 王汝建, 肖文申

王雨楠,周保春,王汝建,等. 北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁[J]. 海洋地质与第四纪地质,2022,42(4): 39-49. DOI: 10.16562/j.cnki.0256-1492.2022021601
引用本文: 王雨楠,周保春,王汝建,等. 北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁[J]. 海洋地质与第四纪地质,2022,42(4): 39-49. DOI: 10.16562/j.cnki.0256-1492.2022021601
WANG Yunan,ZHOU Baochun,WANG Rujian,et al. Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records[J]. Marine Geology & Quaternary Geology,2022,42(4):39-49. DOI: 10.16562/j.cnki.0256-1492.2022021601
Citation: WANG Yunan,ZHOU Baochun,WANG Rujian,et al. Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records[J]. Marine Geology & Quaternary Geology,2022,42(4):39-49. DOI: 10.16562/j.cnki.0256-1492.2022021601

北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁

基金项目: 国家自然科学基金面上项目“中更新世以来西北冰洋深海氧化-还原环境的变化及其对碳循环的指示”(42176223);上海市自然科学基金“北冰洋全新世—晚第四纪介形类动物群及古气候复原”(14ZR1427600);中国科学院战略先导基金“关键地史时期生物与环境演变过程及其机制”(XDB26000000)
详细信息
    作者简介:

    王雨楠(1984—),女,助理研究员,主要从事早寒武纪节肢动物及第四纪介形虫研究,E-mail:wangyn@sstm.org.cn

    通讯作者:

    周保春(1963—),男,研究员,主要从事新生代介形虫分类、进化及古海洋学研究,E-mail:zhoubch@sstm.org.cn

    王汝建(1959—),男,教授,主要从事海洋地质学、古海洋学与古气候学研究,E-mail:rjwang@tongji.edu.cn

  • 中图分类号: P736.2

Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records

  • 摘要: 基于北冰洋中部阿尔法脊ARC3-B84A岩芯(水深2280 m)中的介形虫化石群记录,重建了MIS 13期以来该海域的古海洋环境变迁。从该岩芯获取的介形虫壳瓣逾7000枚,包含8属11种。由介形虫丰度所代表的底栖生物古生产力在MIS 13–10期很低,进入MIS 9期之后显著升高。海冰指示种Acetabulastoma arcticum显示常年海冰很可能是在MIS 9期之后出现的。在所有属种中,北冰洋中层水(AIW)指示种Polycope spp.和北冰洋深层水(AODW)指示种Cytheropteron sedovi的个体数量最多,二者在岩芯中的百分含量呈负相关,它们与其他属种(Microcythere medistriatum, Pseudocythere caudata, Pedicythere spp., Cytheropteron scoresbyi, Cytheropteron higashikawai, Henryhowella asperrima)一起,揭示该岩芯站位经历了如下的水团变迁历史:最初处于AODW上部(MIS 13–12),之后被上涌的AODW下部所取代(MIS 11–10);尔后,上方的AIW大幅下潜,取代了AODW(MIS 9期–MIS 5早期);在MIS 5中–晚期,AODW下部快速上涌,取代了AIW;最终在MIS 4之后,水团定格在AODW上部。
    Abstract: The paleoceanographic history of the central Arctic Ocean since Marine Isotope Stage (MIS) 13 was reconstructed based on ostracode assemblages in a gravity core from the Alpha Ridge (modern water depth 2280 m). Over 7000 ostracode valves, including 8 genera and 11 species, were obtained from the core. The biological productivity, as represented by ostracode abundance, is low during MIS 13-10 but is markedly high throughout MIS 9-1. The distribution of Acetabulastoma arcticum, a sea ice-dwelling species, indicates that perennial sea ice was probably absent during MIS 13-9. The ostracode assemblages are predominated by Polycope spp. (an indicator of Arctic Intermediate Water, AIW) and Cytheropteron sedovi (an indicator of Arctic Ocean Deep Water, AODW), and are accompanied by Microcythere medistriatum, Pseudocythere caudata, Pedicythere spp., Cytheropteron scoresbyi, Cytheropteron higashikawai, and Henryhowella asperrima. The relative frequencies (%) of Polycope spp. and Cytheropteron sedovi show inverse correlation throughout the core. The reconstructed paleo-watermass history is as follows: initially, the core site was occupied by the upper part of AODW (MIS 13-12) and lower part of AODW (MIS 11-10); after then, the overlying AIW shifted downward and took the place of AODW (MIS 9-early MIS 5); later, the lower part of AODW shifted up rapidly (middle to late MIS 5) and finally the upper part of AODW came to settle down at the site (MIS 4-1).
  • 图  1   西北冰洋阿尔法脊B84A岩芯平面位置(a)以及在海洋水团中的位置(b)

    淡黄色圆点表示本文提及的其他3个岩芯站位(详细信息见表1)。蓝色和粉红色点线分别表示1979—2006年间的平均海冰范围及近年(2012年数据)最小海冰范围[22],浅白色阴影部分表示推定的更新世冰盖范围[23-24]。EAIS-欧亚冰盖,GIS-格陵兰冰盖,LIS-劳伦太德冰盖,ESIS-东西伯利亚冰盖,EI-埃尔斯米尔岛,CAA-加拿大北极群岛,CB-加拿大海盆,EB-欧亚海盆,MB-马卡罗夫海盆,AR-阿尔法脊,LR-罗蒙诺索夫脊,CP-楚科奇海台,NR-北风脊,BG-波弗特环流,TPD-穿极洋流,PSW-极地表层水,AW-大西洋水,AIW-北冰洋中层水,AODW-北冰洋深层水。

    Figure  1.   Location of core B84A in a map view (a) and cross section (b)

    Section runs from the Eurasian Basin at point A, across to the Canada Basin at point B. The location where the core B84A was drilled is marked by red circle with white outline, and other cores mentioned in this paper are represented by light yellow circles (see Table 1 for more core information). Blue and pink dashed lines indicate climatological average (1979 to 2006) and recent minimum (2012) September sea ice extent, respectively[22]. Light shaded areas indicate tentative extent of Pleistocene glaciations around the Arctic Ocean[23-24]. Abbreviations: EAIS (Eurasian Ice Sheet), GIS (Greenland Ice Sheet), LIS (Laurentide Ice Sheet), ESIS (East Siberian Ice Sheet), EI (Ellesmere Island), CAA (Canadian Arctic Archipelago), CB (Canada Basin), EB (Eurasia Basin), MB (Makarov Basin), AR (Alpha Ridge), LR (Lomonosov Ridge), CP (Chukchi Plateau), NR (Northwind Ridge), BG (Beaufort Gyre), TPD (Transpolar Drift), PSW (Polar Surface Water), AW (Atlantic Water), AIW (Arctic Intermediate Water), and AODW (Arctic Ocean Deep Water).

    图  2   阿尔法脊B84A岩芯中介形虫标本扫描电子显微镜照片

    a. Polycope biretculata Joy and Clark 1977,右壳瓣;b. Polycope inornata Joy and Clark 1977,右壳瓣;c. Polycope horida Joy and Clark 1977,右壳瓣;d. Polycope moenia Joy and Clark 1977,右壳瓣;e. Polycope arcys Joy and Clark 1977,左壳瓣;f. Acetabulastoma arctium Schornikov 1970,左壳瓣;g. Cytheropteron scoresbyi Whatley and Coles 1987,左壳瓣;h. Cytheropteron sedovi Schneider 1969,右壳瓣;i. Microythere medistriatum Joy and Clark 1977,左壳瓣;j. Pedicythere neofluitans Joy and Clark 1977,右壳瓣;k. Henryhowella asperrima (Reuss 1850),右壳瓣;l. Pseudocyhere caudata Sars 1866,右壳瓣。

    Figure  2.   SEM photographs of ostracodes from core B84A

    a. Polycope biretculata Joy and Clark 1977, RV; b. Polycope inornata Joy and Clark 1977, RV; c. Polycope horida Joy and Clark 1977, RV; d. Polycope moenia Joy and Clark 1977, RV; e. Polycope arcys Joy and Clark 1977, LV; f. Acetabulastoma arctium Schornikov 1970, LV; g. Cytheropteron scoresbyi Whatley and Coles 1987, LV; h. Cytheropteron sedovi Schneider 1969, RV; i. Microythere medistriatum Joy and Clark 1977, LV; j. Pedicythere neofluitans Joy and Clark 1977, RV; k. Henryhowella asperrima (Reuss 1850), RV; l. Pseudocyhere caudata Sars 1866, RV.

    图  3   B84A岩芯中介形虫主要属种在现代北冰洋的分布

    BS:巴伦支海,N-GR:南森-迦凯脊,LR:罗蒙诺索夫脊,MR:门捷列夫脊,CB:加拿大海盆。

    Figure  3.   Distribution of key ostracode taxa in modern Arctic Ocean

    Abbreviations: BS (Barents Sea), N-GR (Nansen-Gakkel Ridge), LR (Lomonosov Ridge), MR (Mendeleev Ridge), CB (Canada Basin).

    图  4   B84A岩芯中有孔虫、介形虫丰度及介形虫主要属种百分含量变化

    年代框架和有孔虫丰度值引自Wang等[27]

    Figure  4.   Foraminiferal and ostracode abundances, and relative frequencies (%) of key ostracode taxa in core B84A

    Chronological framework and foranimiferal abundance data are from Wang et al.[27]

    表  1   本研究使用的岩芯及其信息汇总

    Table  1   Information for all the cores used in this study

    岩芯海域纬度(N)经度(W)水深/m来源
    ARC3-B84A阿尔法脊84°26.5′143°34.8′2280本文
    ARC3-P31楚科奇海台77°59.9′168°00.7′435文献[17]
    ARC6-R14楚科奇海台78°38.3′160°26.8′741文献[17]
    ARC7-P12楚科奇海台78°17.2′162°41.3′580文献[17]
    下载: 导出CSV

    表  2   B84A岩芯中的介形虫优势种和常见种在现代北冰洋各水团中的百分含量

    Table  2   Relative frequencies (%) of ostracode taxa, which are abundant or common in core B84A, in the Arctic water masses

    种名0~50 m
    (PSW)
    50~200 m
    (盐跃层)
    200~1000 m
    (AW)
    1000~2 000 m
    (AIW)
    >2 000 m
    (AODW)
    Polycope spp.0.381.478.4432.676.82
    Microcythere medistriatum000.202.071.92
    Pseudocythere caudata0.030.351.392.781.67
    Pedicythere spp.00.050.211.120.64
    Henryhowella asperrima0001.422.90
    Cytheropteron scoresbyi00.393.648.0510.47
    Cytheropteron sedovi00.021.119.7219.16
    Cytheropteron higashikawai00.422.312.975.80
    下载: 导出CSV

    表  3   B84A岩芯中介形虫主要属种指示的水团及其在各时代的百分含量

    Table  3   Correspondence of ostracode taxa with water masses, and their relative frequencies (%) in different times as recorded in core B84A

    种名对应的水团MIS 13–12MIS 11–10MIS 9–6MIS 5MIS 4–1
    Polycope spp.AIW44.97.766.434.142.8
    Cytheropteron sedoviAODW下部40.671.715.940.111.4
    Microcythere medistriatumAIW&AODW001.31.14.0
    Pseudocythere caudataAIW002.60.90.9
    Pedicythere spp.AIW00.50.51.70.9
    Henryhowella asperrimaAODW上部000024.0
    Cytheropteron scoresbyiAODW&AIW4.312.84.45.43.1
    Cytheropteron higashikawaiAODW下部01.40.71.84.4
    下载: 导出CSV
  • [1]

    Rudels B. Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009 [J]. Progress in Oceanography, 2015, 132: 22-67. doi: 10.1016/j.pocean.2013.11.006

    [2]

    Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation [J]. Journal of Geophysical Research:Oceans, 1989, 94(C10): 14485-14498. doi: 10.1029/JC094iC10p14485

    [3]

    Anderson L G, Björk G, Holby O, et al. Water masses and circulation in the Eurasian Basin: results from the Oden 91 expedition [J]. Journal of Geophysical Research, 1994, 99(C2): 3273-3283. doi: 10.1029/93JC02977

    [4]

    Jones E P. Circulation in the Arctic Ocean [J]. Polar Research, 2001, 20(2): 139-146. doi: 10.1111/j.1751-8369.2001.tb00049.x

    [5]

    Rudels B, Jones E P, Schauer U, et al. Atlantic sources of the Arctic Ocean surface and halocline waters [J]. Polar Research:Oceans, 2004, 23(2): 181-208. doi: 10.1111/j.1751-8369.2004.tb00007.x

    [6]

    Rudels B, Anderson L G, Jones E P. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 1996, 101(C4): 8807-8821. doi: 10.1029/96JC00143

    [7]

    Beszczynska-Möller A, Woodgate R A, Lee C M, et al. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean [J]. Oceanography, 2011, 24(3): 82-99. doi: 10.5670/oceanog.2011.59

    [8]

    Steele M, Boyd T. Retreat of the cold halocline layer in the Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 1998, 103(C5): 10419-10435. doi: 10.1029/98JC00580

    [9]

    Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean [J]. Global Biogeochemical Cycles, 2002, 16(4): 1098. doi: 10.1029/2001GB001849

    [10]

    Aagaard K, Coachman L K, Carmack E. On the halocline of the Arctic Ocean [J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1981, 28(6): 529-545. doi: 10.1016/0198-0149(81)90115-1

    [11]

    Giles K A, Laxon S W, Ridout A L, et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre [J]. Nature Geoscience, 2012, 5(3): 194-197. doi: 10.1038/ngeo1379

    [12]

    Proshutinsky A, Krishfield R, Toole J M, et al. Analysis of the Beaufort Gyre freshwater content in 2003–2018 [J]. Journal of Geophysical Research Oceans, 2019, 124(12): 9658-9689. doi: 10.1029/2019JC015281

    [13]

    Comiso J C. Large-scale characteristics and variability of the global sea ice cover [M]. //Thomas D N, Dieckmann G S. Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology. Chapter 4. Oxford: Wiley-Blackwell, 2003: 112–141.

    [14]

    Haley B A, Frank M, Spielhagen R F, et al. Influence of brine formation on Arctic Ocean circulation over the past 15 million years [J]. Nature Geoscience, 2008, 1: 68-72. doi: 10.1038/ngeo.2007.5

    [15]

    Cronin T M, Dwyer G S, Farmer J, et al. Deep Arctic Ocean warming during the last glacial cycle [J]. Nature Geoscience, 2012, 5: 631-634. doi: 10.1038/ngeo1557

    [16]

    Gemery L, Cronin T M, Briggs Jr W M, et al. An Arctic and Subarctic ostracode database: biogeographic and paleoceanographic applications [J]. Hydrobiologia, 2015, https://doi.org/10.1007/s10750-015-2587-4.

    [17]

    Zhou B C, Wang R J, Xiao W S, et al. Late Quaternary paleoceanographic history based on ostracode records from the Chukchi Plateau, western Arctic Ocean [J]. Marine Micropaleontology, 2021, 165: 101987. doi: 10.1016/j.marmicro.2021.101987

    [18]

    Poirier R K, Cronin T M, Briggs Jr W M, et al. Central Arctic paleoceanography for the last 50 kyr based on ostracode faunal assemblages [J]. Marine Micropaleontology, 2012, 88–89: 65–76.

    [19]

    Gemery L, Cronin T M, Poirier R K, et al. Central Arctic Ocean paleoceanography from ~50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition [J]. Climate of the Past, 2017, 13(11): 1473-1489. doi: 10.5194/cp-13-1473-2017

    [20] 周保春, 王汝建, 梅静. 末次冰消期后大西洋水进入楚科奇海台: 来自介形虫化石群的证据[J]. 海洋地质与第四纪地质, 2015, 35(3):73-82

    ZHOU Baochun, WANG Rujian, MEI Jing. The spreading of Atlantic Water onto Chukchi Plateau after Last Deglaciation: evidence from fossil ostracods [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 73-82.

    [21] 张海生. 中国第三次北极科学考察报告[M]. 北京: 海洋出版社, 2009.

    ZHANG Haisheng. The Report of 2008 Chinese Arctic Research Expedition [M]. Beijing: China Ocean Press, 2009.

    [22]

    Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1979–2006 [J]. Journal of Geophysical Research, 2008, 113: C07003. doi: 10.1029/2007JC004558

    [23]

    Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the east Siberian continental margin [J]. Nature Geoscience, 2013, 6: 842-846. doi: 10.1038/ngeo1904

    [24]

    Jakobsson M, Nilsson J, Anderson L, et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation [J]. Nature Communications, 2016, 7: 10365. doi: 10.1038/ncomms10365

    [25]

    Yasuhara M, Stepanova A, Okahashi H, et al. Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean [J]. Micropaleontology, 2014, 60(5): 399-444.

    [26]

    Schlitzer R. Ocean Data View [EB/OL]. (2022-03-04). http://odv.awi.de.

    [27]

    Wang R J, Polyak L, Xiao W S, et al. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales [J]. Quaternary Science Reviews, 2018, 181: 93-108. doi: 10.1016/j.quascirev.2017.12.006

    [28]

    Lisiecki E, Raymo E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records [J]. Paleoceanography, 2005, 20: PA1003. doi: 10.1029/2004PA001071

    [29]

    Cronin T M, Holtz Jr T R, Stein R, et al. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean [J]. Paleoceanography, 1995, 10(2): 259-281. doi: 10.1029/94PA03149

    [30]

    Cronin T M, Polyak L, Reed D, et al. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes [J]. Quaternary Science Reviews, 2013, 79: 157-167. doi: 10.1016/j.quascirev.2012.12.010

    [31]

    Joy J A, Clark D L. The distribution, ecology and systematics of the benthic Ostracoda of the central Arctic Ocean [J]. Micropaleontology, 1977, 23(2): 129-154. doi: 10.2307/1485329

    [32]

    Jones R Ll, Whatley R C, Cronin T M, et al. Reconstructing late Quaternary deep-water masses in the Eastern Arctic Ocean using benthonic Ostracoda [J]. Marine Micropaleontology, 1999, 37: 251-272. doi: 10.1016/S0377-8398(99)00022-5

    [33]

    Sars G O. Oversigt af Norges marine Ostracoder [J]. Forhandlinger I Videnskabs-Selskabet I Christiania, 1866, 1865(1): 1-130.

    [34]

    Cronin T M, DeNinno L H, Polyak L, et al. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean [J]. Marine Micropaleontology, 2014, 111: 118-133. doi: 10.1016/j.marmicro.2014.05.001

    [35]

    Cronin T M, Gemery L, Briggs Jr W M, et al. Quaternary sea-ice history in the Arctic Ocean based on a new ostracode sea-ice proxy [J]. Quaternary Science Reviews, 2010, 29(25-26): 3415-3429. doi: 10.1016/j.quascirev.2010.05.024

    [36]

    Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(1-2): 73-93. doi: 10.1016/S0031-0182(03)00661-8

    [37]

    Spielhagen R F, Baumann K H, Erlenkeuser H, et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history [J]. Quaternary Science Reviews, 2004, 23: 1455-1483. doi: 10.1016/j.quascirev.2003.12.015

    [38]

    Adler R E, Polyak L, Crawford K A, et al. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge [J]. Global and Planetary Change, 2009, 68: 18-29. doi: 10.1016/j.gloplacha.2009.03.026

图(5)  /  表(3)
计量
  • 文章访问数:  1475
  • HTML全文浏览量:  416
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-03-16
  • 录用日期:  2022-03-16
  • 网络出版日期:  2022-05-25
  • 刊出日期:  2022-08-27

目录

    /

    返回文章
    返回