南黄海西部日照近海悬浮泥沙分布、输运及控制因素

卢鹏飞, 岳英洁, 朱龙海, 胡日军, 尹砚军, 冷星

卢鹏飞,岳英洁,朱龙海,等. 南黄海西部日照近海悬浮泥沙分布、输运及控制因素[J]. 海洋地质与第四纪地质,2022,42(3): 36-49. DOI: 10.16562/j.cnki.0256-1492.2021080901
引用本文: 卢鹏飞,岳英洁,朱龙海,等. 南黄海西部日照近海悬浮泥沙分布、输运及控制因素[J]. 海洋地质与第四纪地质,2022,42(3): 36-49. DOI: 10.16562/j.cnki.0256-1492.2021080901
LU Pengfei,YUE Yingjie,ZHU Longhai,et al. Distribution, transport and controlling factors of suspended sediment near Rizhao in the west of South Yellow Sea[J]. Marine Geology & Quaternary Geology,2022,42(3):36-49. DOI: 10.16562/j.cnki.0256-1492.2021080901
Citation: LU Pengfei,YUE Yingjie,ZHU Longhai,et al. Distribution, transport and controlling factors of suspended sediment near Rizhao in the west of South Yellow Sea[J]. Marine Geology & Quaternary Geology,2022,42(3):36-49. DOI: 10.16562/j.cnki.0256-1492.2021080901

南黄海西部日照近海悬浮泥沙分布、输运及控制因素

基金项目: 国家自然科学基金“山东半岛海湾对泥沙的捕获机制——以威海湾为例”(41776059)
详细信息
    作者简介:

    卢鹏飞(1995—),男,硕士研究生,主要从事海洋沉积动力研究,E-mail:lupengfei7@163.com

    通讯作者:

    岳英洁(1982—),女,高级工程师,主要从事海洋环境影响和海域使用动态监视监测研究,E-mail:yueyingjie@shandong.cn

  • 中图分类号: P736.21

Distribution, transport and controlling factors of suspended sediment near Rizhao in the west of South Yellow Sea

  • 摘要: 基于2020年10月日照近岸海域大潮期水文泥沙观测资料,研究了海流和悬浮泥沙时空分布特征,利用单宽通量机制分解等方法,探讨了悬浮泥沙输运机制和控制因素。结果表明,日照近岸海域悬浮泥沙浓度平面上呈由岸向海逐渐降低的分布特征,垂向上呈由表层至底层逐渐升高的趋势。悬浮泥沙浓度变化与潮周期流速变化趋势总体一致,但具有滞后效应。研究区单宽净输沙率为4.72~24.68 g/(s·m),近岸单宽净输沙率明显大于远岸输沙率。悬浮泥沙输运以平流输运为主,其次为潮泵效应或垂向净环流输运。研究区水体垂向混合均匀,对悬浮泥沙垂向分布影响微弱。潮流引起研究区悬浮泥沙浓度的潮周期变化,南黄海西部近海悬浮泥沙净输运方向和潮余流方向大体相同,在远岸开阔海域总体呈向南的净输运趋势。研究成果有利于完善南黄海西部近海泥沙输运规律理论成果,对日照近岸工程建设具有一定的指导意义。
    Abstract: In this paper, based on the hydrological and sediment observation data collected from the coastal area of Rizhao in October 2020 during the spring tide, the spatial and temporal distribution pattern of ocean current and suspended sediment are studied, and the transport mechanism and controlling factors of the suspended sediment discussed by means of single wide flux mechanism decomposition. The results show that the concentration of suspended sediment in the studied coastal area decreases gradually from shore to sea laterally, and increases gradually from top to bottom vertically. The variation trend of suspended sediment concentration is consistent with the velocity change of tidal cycle, except for the hysteresis effect. The net sediment transport rate per width in the study area varies between 4.72 and 24.68 g/(s·m), and the net sediment transport rate per width near shore is significantly higher than that offshore. The main transport of suspended sediment is advection, followed by tidal pump effect or vertical net circulation. The vertical mixing of water body in the study area is uniform, and its effect on vertical distribution of suspended sediment is rather weak. Tidal current is the major process to cause the tidal cycle change of suspended sediment concentration in the study area. The net transport direction of suspended sediment and tidal residual current are roughly the same in the west coast of the South Yellow Sea, and there is southward net transport trend in general in the far shore area of the open sea. The research results are beneficial to improve the theoretical results of sediment transport pattern in the west of the South Yellow Sea and have certain guiding significance to the engineering construction in the Rizhao coast.
  • 海水悬浮体(SPM)主要由非生物(矿物)和生物(浮游植物、碎屑、部分浮游细菌、孢子)颗粒构成[1]。在海洋环境中,SPM不仅是陆架和洋盆沉积的主要物质来源,同时也作为主要的反应物质或催化剂参与生物地球化学过程[1]。海水中SPM含量受水动力条件、物理化学过程、生物过程等控制,是进行海洋沉积过程、物质循环研究的可靠材料[2-3]

    北冰洋拥有巨大的河水径流流量[4],河流将风化产生的颗粒和溶解物质转移到海洋[5],使得大量SPM汇入北冰洋。前人对北冰洋陆架区域的SPM进行了大量的研究,取得了丰硕的成果。在楚科奇海南部SPM以硅藻为主,其分布受到经白令海峡西侧流入的富营养盐的阿纳德尔流影响[6],反映出SPM中颗粒组分的分布与河流、洋流有着密切的联系。在喀拉海中部和西部的SPM浓度最低,鄂毕河和叶尼塞河河口SPM浓度最高,且鄂毕河口SPM浓度高于叶尼塞河,大多数侵蚀物质被困在20 km的近岸海域,SPM主要向东传播[7]。无冰期的拉普捷夫海SPM浓度分别由南至北、由东至西减小[8],而且汇入的三条河流中SPM的Sr浓度分布差别很大[9]

    本文以2019年中俄北极联合考察(AMK78航次)期间所获取的喀拉海、拉普捷夫海、东西伯利亚海表层海水SPM为素材,开展了SPM的浓度、颗粒组成、岩石磁学研究,通过分析SPM在空间上的分布差异探讨其在各海域的分布规律,并围绕洋流、径流、海岸侵蚀等多种因素对海域表层海水SPM分布特征的影响,探究SPM分布的控制因素。该研究成果对该海域现代沉积过程具有重要意义。

    喀拉海、拉普捷夫海、东西伯利亚海是位于俄罗斯北部的北冰洋边缘海(图1a),分布在西伯利亚大陆架上。喀拉海接收了整个欧亚北极地区约50%的河流径流,大部分流量由鄂毕河(Ob)和叶尼塞河(Yenisei)贡献[7],两者流量表现出强烈的季节和年际变化。在6月观察到两条河流最大的排放速率,大约有45%~65%的年淡水径流和80%的年SPM被释放[10]。拉普捷夫海被5个向北和西北方向的海底通道切割,是保持北冰洋淡水和冰态平衡的关键区域[11]。勒那河(Lena)流入拉普捷夫海东部,春季的淡水和河流泥沙输入最高[8]。东西伯利亚海具有世界上最宽阔的大陆架,海底冻土广泛发育。流入东西伯利亚海最大的两条河流是因迪吉尔卡河(Indigirka)和科雷马河(Kolyma)。汇入拉普捷夫海的勒那河虽没有直接注入东西伯利亚海,但由于其巨大的径流量与输沙量,在西伯利亚沿岸流的影响下,可以向东西伯利亚海西部供应沉积物[12]

    图  1  北极西伯利亚陆架概况和主要洋流[13-18](a)及采样站位(b)
    Figure  1.  Environment setting of Siberian Arctic Shelf and the schematically major currents[13-18] (a) and the sampling sites (b)

    巴伦支海分流(Barents Sea Branch,BSB)由北大西洋水经淡水输入、海冰融化和净降水等过程改造而来[13],一部分沿海岸进入新地岛以南的喀拉海,另一部分沿新地岛北部向东与西斯匹次卑尔根洋流在喀拉海北部合并[14-15]图1a)。西伯利亚沿岸流(Siberian Coastal Current,SCC)发源于东西伯利亚海西部,受到风力和浮力的驱动,向东通过德米特里拉普捷夫海峡(图1a)。拉普捷夫海海水与勒那河河水交汇流入德米特里拉普捷夫海峡,与东西伯利亚海的因迪吉尔卡河、科雷马河河水合并沿陆架向东穿过朗格海峡流至楚科奇海[16]

    中俄北极联合考察AMK78航次于2019年在喀拉海、拉普捷夫海、东西伯利亚海的海区共进行了50个站位的悬浮体调查。采样站位分别为P1—P46站位以及6489、6495、6498、6500站位(图1b)。各站位表层海水样品由船上表层海水温室气体实时分析的采水系统采集。水样选用提前称量至恒重的直径47 mm、孔径0.45 µm的Millipore醋酸纤维滤膜进行抽滤,过滤后的滤膜放置在−20 ℃的环境中保存。由于P38站位在采集时见大量暗色碎屑,可能为管路堵塞后的沉渣,不能表示该站位SPM的特征,故本研究中将该站位样品予以剔除。

    为了测量SPM质量浓度,在过滤前后分别使用Sartorius电子天平(精度为0.01 mg)称量冷冻干燥后的滤膜。海水中SPM浓度(ρ,单位mg/L):

    $$ \rho=\frac{M_{\rm p}-M_{\rm s}}{V} $$

    式中Mp为滤后膜重的平均值(mg);Ms为滤前膜重的平均值(mg);V为过滤水样的体积(L)。

    为了观察SPM的形貌特征,在自然资源部第三海洋研究所使用FEI Quanta 450型环境扫描电镜(scanning electron microscope,SEM)对滤膜上SPM的形态特征进行图像扫描。

    磁学实验在中国地质大学(北京)古地磁与环境磁学实验室及中国地震局岩石磁学实验室完成。将空白滤膜和带有SPM的滤膜置于已完成磁化率测试的8 cm3无磁性的塑料方盒中。用MFK1-FA卡帕桥磁化率仪分别进行低频(976 Hz)磁化率与高频(15616 Hz)磁化率测试,扣除样品盒体积磁化率以及空白滤膜体积磁化率后,分别获得SPM的低频体积磁化率(κlf)与高频体积磁化率(κhf)。对体积磁化率进行质量浓度归一化后获得低频和高频质量磁化率(χlfχhf),并计算获得SPM的频率磁化率百分比(χfd%=(χlfχhf)/χlf×100%)。使用配套有CS-3温度控制系统的KLY-4S卡帕桥磁化率仪测定SPM磁化率随温度变化(κ-T)曲线,温度变化为–195 ℃至室温,升温速度为5 ℃/min。

    SPM样品的天然剩磁(natural remanent magnetization,NRM)在磁屏蔽室(<300 nT)内用755-4K低温超导磁力仪测量获得。使用MicroMag 3900变梯度振动磁力仪测试SPM的磁滞回线(Loop)、等温剩磁(isothermal remanent magnetization,IRM)获得曲线及反向场退磁曲线,最大外加磁场为1 T。从Loop测试数据中读取样品矫顽力(coercivity,Bc)、饱和磁化强度(saturation magnetization,Ms)以及饱和剩余磁化强度(saturation remanent magnetization,Mrs)参数。剩磁矫顽力(coercivity of remanence,Bcr)参数从反向场退磁曲线中读取。

    AMK78航次各站位表层海水SPM浓度为0.18~32.25 mg/L(图2)。浓度高值主要分布在两个区域,分别是位于新西伯利亚群岛与西伯利亚大陆之间的德米特里拉普捷夫海峡和位于喀拉海的叶尼塞河和鄂毕河河口。其中在德米特里拉普捷夫海峡SPM浓度自西向东逐渐增加,在其东部的P15站位达到最高值32.25 mg/L。从拉普捷夫海勒那河三角洲向大陆架北部延伸SPM浓度逐渐降低,直到P31站位达到最低值0.22 mg/L。新西伯利亚群岛以北、泰梅尔半岛以西、亚马尔半岛以西SPM浓度均为低值。

    图  2  SPM浓度空间分布特征
    Figure  2.  Spatial distribution characteristics of SPM concentration

    对不同区域采集的悬浮体滤膜进行扫描电镜分析发现,SPM由陆源碎屑颗粒和硅质生物碎屑(硅藻和鞭毛藻)(图3)组成。在远离岸线的海域,如P1和P10站位,滤膜上的SPM零散分布,硅质生物碎屑在SPM中的占比高(图3a—d)。在近岸和海峡海域,SPM含量高,完全覆盖滤膜,SPM中硅质生物碎屑的占比相对较低,SPM以陆源碎屑颗粒为主。以位于德米特里拉普捷夫海峡东侧的P15站位为例,其SPM多为不同粒径的片状矿物,硅质生物碎屑含量极少(图3e)。位于叶尼塞河河口北侧的P39站位,其SPM也以陆源碎屑颗粒为主,硅质生物碎屑含量少于15%(图3f、g)。位于鄂毕河口北侧的P42站位,仍以陆源碎屑矿物为主,但硅藻含量较叶尼塞河口外侧多(图3h、i)。

    图  3  典型SPM颗粒组分扫描电镜照片
    a、 b. P1站位,c、 d. P10站位,e. P15站位,f、 g. P39站位,h、i. P42站位。
    Figure  3.  The SEM images of representative SPM compositions in sites P1(a, b), P10 (c, d), P15 (e), P39 (f, g), and P42 (h, i)

    磁化率随温度变化曲线可以根据磁性矿物特有的相变温度来鉴别磁性矿物类型[19]。本文对悬浮体进行了低温κ-T测试(图4),结果显示从−192℃开始温度上升磁化率值急剧下降,在−150℃左右出现一个高值,之后磁化率值保持稳定。在−150~−149℃(120~124 K)时,磁铁矿晶体结构中电子热能减小使得铁离子被冻结在各自的位置上,导致整个晶体不再对称,变为单斜结构,这个温度点称为Verwey转换温度(Tv[20]。低温κ-T测试表明样品中存在磁铁矿。

    图  4  P17站位低温κ-T曲线
    蓝色线:磁化率随温度变化曲线,橙色线:求导曲线。
    Figure  4.  Low temperature κ-T curve at site P17
    Blue line: magnetic susceptibility curve with temperature, Orange line: derivative curve.

    Loop形态及其相关的磁滞参数可以用来判别样品磁性矿物颗粒的类型和粒径大小[21]。图5显示,顺磁矫正前样品显示了顺磁性矿物(图5中P17、P42站位)和抗磁性矿物(图5中P5、P33站位)的不同影响,其中抗磁性主要受醋酸纤维材质滤膜的影响。顺磁矫正后的Loop形态基本一致,在400 mT时曲线均趋于闭合,整体呈现为中间宽而两头窄的“粗腰型”形态。样品的Bcr在34~43 mT范围内,表明样品中磁性矿物矫顽力较低,存在单畴的磁铁矿。

    图  5  SPM代表性样品Loop曲线
    蓝色线:顺磁矫正前,粉色线:顺磁矫正后。
    Figure  5.  Loop curves of representative samples of SPM
    Blue line: before paramagnetic correction, pink line: after paramagnetic correction.

    Day图可以指示磁性矿物的磁畴状态[22]。将获得的磁滞参数Mrs/MsBcr/Bc两组比值投到Day图上[23-24],结果表明表层海水SPM中磁性矿物的磁畴状态为单畴(single domain,SD)、多畴(multidomain,MD)混合(图6)。

    图  6  磁性矿物Day图
    SD:单畴,MD:多畴,SP:超顺磁,PSD:假单畴。
    Figure  6.  The Day plot of magnetic minerals
    SD: single domain, MD: multidomain,SP: superparamagnetic, PSD: pseudo-single domain.

    磁化率的大小主要取决于磁性矿物含量的多少[25]。表层海水SPM的χlf值为−4.21×10−6~4.87×10−6 m3/kg(图7)。磁化率高值区域位于泰梅尔半岛以西,其中P41站位磁化率最高,为4.87×10−6 m3/kg。磁化率低值区域位于勒那河三角洲和新西伯利亚群岛以东,拉普捷夫海大部分海域及亚马尔半岛以西悬浮体磁化率值介于中间。SPM磁化率的空间分布反映了从喀拉海到拉普捷夫海再到东西伯利亚海悬浮体中磁性矿物含量呈减少趋势。频率磁化率反映从单畴到超顺磁磁铁矿的存在,指示样品中较细磁性矿物的含量[26]。表层海水SPM的χfd%值为(–3.25×106~2.47×105)%(图8),位于德米特里拉普捷夫海峡的P19站位值最低,位于拉普捷夫海大陆架边缘的P30站位次之,整体分布均匀,说明超顺磁矿物含量变化不明显。

    图  7  SPM磁化率空间分布特征
    Figure  7.  Spatial distribution characteristics of SPM magnetic susceptibility
    图  8  SPM频率磁化率空间分布特征
    Figure  8.  Spatial distribution characteristics of SPM frequency magnetic susceptibility

    NRM的数值反映了样品中亚铁磁性矿物的含量。表层悬浮体的NRM为4.60×10−6~1.32×10−3 A/m(图9),最高值在P26站位,位于拉普捷夫海中部,位于鄂毕河口的P41站位次之,最低值在更靠近河口的P42站位,更靠近河口。在其他海域NRM数值均较低。表示亚铁磁性矿物主要集中于拉普捷夫海中部。

    图  9  SPM天然剩磁空间分布特征
    Figure  9.  Spatial distribution characteristics of SPM natural remanence

    喀拉海SPM含量在河口区域较高,磁性矿物含量较多,磁性矿物粒径较细。在鄂毕河河口的P41站位SPM含量最高,亚铁磁性矿物含量最多,SPM中以陆源碎屑颗粒为主。P41站位相较于叶尼塞河河口的P39站位硅藻含量多,可能是由于P39站位距离河口较远,营养盐较少导致生物碎屑少。而距离鄂毕河河口较近的P42站位SPM含量低于P41站位,亚铁磁性矿物含量最低,推测该处河流流速较快,河水径流将陆源物质继续向海水里输送。喀拉海东部和西部海域陆源输入较少,SPM含量普遍较少。

    拉普捷夫海SPM含量普遍低,亚铁磁性矿物在中部聚集,磁性矿物粒径较细,但在外陆架P31站位甲烷渗漏区粒径较粗。SPM含量从勒那河河口向中部海域逐渐降低,亚铁磁性矿物集中在中部海域的P26站位,北部海域含量最低。北部海域的SPM中硅质生物碎屑占比较高,与其离岸远有关。沿勒那河河口向东部海域SPM含量逐渐升高,磁性矿物含量降低,磁性矿物粒径逐渐变粗。

    东西伯利亚海西部的SPM含量,最高值位于德米特里拉普捷夫海峡的东部P15站位,SPM以陆源碎屑颗粒为主,硅质生物碎屑的占比极低,磁性矿物含量在海峡附近较高,粒径较粗。在其他海域,SPM含量相对较低,磁性矿物含量相对较少,粒径相对较粗,P10站位由于距离海岸远SPM中硅质碎屑占比较高。

    喀拉海SPM含量在河口区域P41站位较高,这是由于在河口河流流速降低,淡水与盐水混合(盐度2~10),细颗粒SPM在絮凝作用下发生快速积累(沉淀),大多数河流SPM被困在河口[10]。叶尼塞河的SPM来自于普托拉纳地块广泛分布的三叠纪高原玄武岩和凝灰岩沉积物;而鄂毕河的SPM来源于西伯利亚低地,相比于叶尼塞河,磁化率值非常低[10]。但由于叶尼塞河口的P39站位和P40站位距离河口较远,SPM困在河口较近的区域,与海水混合后SPM含量较P41站位低。随着与河口距离的增加,SPM中陆源碎屑颗粒也随之减少,而河口丰富的营养盐会使得站位中的生物碎屑相对较多。

    晚全新世以来,勒那河三角洲逐渐突出河口向东偏转[27],勒那河河口向东至德米特里拉普捷夫海峡SPM含量逐渐增加,但勒那河河口外侧SPM含量整体较低。德米特里拉普捷夫海峡SPM磁性矿物的粒径较粗,反映出德米特里拉普捷夫海峡及其东侧的高浓度SPM是海岸侵蚀作用形成的,而非来自勒那河搬运入海的颗粒物。

    受BSB影响,维利基茨基海峡西部SPM磁性矿物的含量与BSB方向一致,随洋流运移呈现出不断递减的趋势。由于海峡全年浮冰覆盖,自西向东的BSB表层洋流流速变缓,SPM在此聚集导致含量较高,亚铁磁性矿物含量较多。

    从勒那河河口向东至德米特里拉普捷夫海峡SPM含量逐渐增加,磁性矿物粒径也较粗,是由于该处受到了强烈的SCC对海岸的侵蚀。

    (1)SPM中组分主要来自陆源碎屑及硅质浮游生物。SPM含量由南向北逐渐递减,由陆向海扩散。陆源碎屑集中分布在近岸和河流入海口附近海域,离海岸和河口较远海域SPM中硅质生物碎屑的占比升高。

    (2)SPM中磁性矿物为单畴、多畴磁铁矿,磁性矿物与流域内岩石类型有关,通过河流输送至海洋中。

    (3)SPM分布受控于河水径流、沿岸流等因素,河口处浓度高、磁性矿物多,磁性矿物集中在表层流流速缓慢的区域,粒径普遍较细,主要受到SCC的影响。粒径较粗的磁性矿物分布在沿岸地区,可能与海岸侵蚀有关。

    致谢:感谢2019年中俄北极联合考察的全体科考队员。

  • 图  1   日照海域调查站位图

    Figure  1.   Location map of survey stations in Rizhao Sea area

    图  2   实测浊度与悬浮泥沙浓度相关曲线图

    Figure  2.   Correlation curve of measured turbidity and sediment concentration

    图  3   各站位垂向潮流矢量

    Figure  3.   Vertical power flow vector at each station

    图  4   平均悬浮泥沙浓度随涨落潮分布图

    Figure  4.   Distribution of average suspended sediment concentration with fluctuating tide

    图  5   秋季大面站悬浮泥沙浓度平面分布图

    Figure  5.   Plane distribution map of suspended sediment concentration at large surface station in autumn

    图  6   研究区表层悬浮泥沙浓度平面分布图

    Figure  6.   Plane distribution of surface suspended sediment concentration in the study area

    图  7   秋季典型断面悬沙浓度垂向分布图

    Figure  7.   Vertical distribution of suspended sediment concentration at typical sections in autumn

    图  8   流速和悬浮泥沙浓度随时间变化分布图

    Figure  8.   Distribution of velocity and suspended sediment concentration over time

    图  9   1#、3#、4#站位温度、盐度随时间变化分布图

    Figure  9.   Distribution of temperature and salinity at stations 1, 3 and 4 over time

    图  10   大面站温度、盐度平面分布图

    Figure  10.   Planar distribution of temperature and salinity of the large surface station

    图  11   悬浮泥沙输运通量与余流矢量叠置图

    注:1#、4#站位悬沙输运项缩小至原来的1/2,5#站位悬沙输运项扩大至原来的2倍。

    Figure  11.   Overlay diagram of suspended sediment transport volume and residual flow vector

    图  12   各站位垂向Richardson数时间序列图

    Figure  12.   Vertical Richardson number time series diagram of each station

    图  13   大面站盐度分层系数平面分布图

    Figure  13.   Planar distribution of salinity stratification coefficient of Dameen Station

    图  14   日照近海悬浮泥沙输运模式概念图

    Figure  14.   Concept diagram of suspended sediment transport model in Rizhao Offshore

    表  1   各站位海流观测结果

    Table  1   Marine current observation results at each station

    涨潮落潮
    站位层位最大平均最大平均
    流速/(cm/s)流向
    /(°)
    流速/(cm/s)流向
    /(°)
    流速/(cm/s)流向
    /(°)
    流速/(cm/s)流向
    /(°)
    1#表层78.78274.251.69223.1467.93108.445.0368.19
    中层66.50294.546.22239.2256.2197.141.2658.04
    底层53.43271.332.06233.1040.9091.329.8959.91
    2#表层94.56277.955.50216.1577.60134.150.5565.71
    中层92.17351.755.36242.5169.24181.642.4766.52
    底层63.54267.244.16228.0744.79123.328.2569.73
    3#表层105.80345.958.30255.9975.60152.552.1374.80
    中层89.95336.955.27256.6177.48120.053.5361.68
    底层67.35355.132.76267.5945.89113.928.5047.94
    4#表层96.21279.058.30254.5779.06105.649.9160.66
    中层85.10303.052.24261.0375.26135.547.6559.28
    底层61.33277.034.50248.2567.88103.931.8461.78
    5#表层83.70347.553.89260.5352.00144.338.1170.11
    中层78.60320.451.30257.5144.60140.933.8563.83
    底层57.10308.133.22251.3431.70135.520.3690.33
    下载: 导出CSV

    表  2   各站位垂向余流特征值

    Table  2   Vertical residual power flow characteristic values at each station

    站位表层中层底层
    流速/(cm/s)流向
    /(°)
    流速/(cm/s)流向
    /(°)
    流速/(cm/s)流向
    /(°)
    1#10.1107.07.556.66.671.9
    2#4.9140.84.7193.95.6198.6
    3#3.8264.55.4312.43.4324.5
    4#8.914.68.715.85.534.6
    5#3.3297.02.5279.73.9241.3
    下载: 导出CSV

    表  3   各海流观测站位平均悬浮泥沙浓度垂向变化统计

    Table  3   Statistical table of vertical variation of average suspended sediment concentration at each current observation station

    mg/L 
    站位1#2#3#4#5#
    表层34.9212.9212.6230.5512.67
    中层44.6119.0616.3039.1217.61
    底层63.0038.2535.3259.6135.19
    下载: 导出CSV

    表  4   悬浮泥沙浓度特征值

    Table  4   List of characteristic values of suspended sediment concentration

    mg/L 
    表层中层底层
    最小值14.7919.4333.25
    最大值45.2253.8585.53
    平均值23.9730.2250.19
    下载: 导出CSV

    表  5   1#、3#、4#站位温度、盐度特征值

    Table  5   The characteristic values of temperature and salinity at stations 1, 3 and 4

    站位温度/℃盐度/PSU
    最小值最大值平均值最小值最大值平均值
    1#20.0120.5120.2928.4528.6528.57
    3#20.9321.2821.1028.9929.3129.15
    4#18.6620.3219.5426.8528.0227.44
    下载: 导出CSV

    表  6   大面站温度、盐度特征值

    Table  6   Table of characteristic values of temperature and salinity of the main surface station

    层位温度/℃盐度/PSU
    最小值最大值平均值最小值最大值平均值
    表层18.7021.2220.0727.3829.6928.60
    中层18.3021.2320.0827.4629.7028.61
    底层18.4221.2320.0927.4929.6828.63
    下载: 导出CSV

    表  7   悬浮泥沙输运项及单宽净输沙率

    Table  7   Suspended sediment transport items and net sediment transport rate per width

    站位输沙项T1T2T3+T4T5T6+T7+T8T1+T2T
    1#输沙率/(g/(s·m))30.389.825.312.150.4724.4619.12
    方向/(°)80.09214.97232.65308.1831.3296.62103.02
    2#输沙率/(g/(s·m))7.908.390.373.751.0611.6413.42
    方向/(°)128.20217.06178.32234.0042.02174.31184.97
    3#输沙率/(g/(s·m))7.667.112.102.131.217.339.11
    方向/(°)335.83215.20232.30340.3549.06279.22286.92
    4#输沙率/(g/(s·m))38.969.957.341.980.5530.2524.68
    方向/(°)25.47230.62248.42187.1248.3317.445.61
    5#输沙率/(g/(s·m))4.363.751.701.970.434.457.62
    方向/(°)304.62190.64241.68234.1450.10254.26247.69
    下载: 导出CSV

    表  8   各悬浮泥沙输运项在单宽净输沙率中占比

    Table  8   Proportion of suspended sediment transport terms in net sediment transport rate per width %

    站位T1T2T3+T4T5T6+T7+T8T1+T2
    1#158.8851.3727.7711.262.47129.72
    2#58.8858.882.7627.987.9286.73
    3#84.1278.1323.0623.3913.3480.52
    4#157.8940.3129.738.042.22122.6
    5#57.2749.2422.3625.865.6858.42
      注:各悬浮泥沙输运项为具有方向的矢量值,因此,部分悬浮泥沙输运项在净输沙率中占的比例大于100%。
    下载: 导出CSV

    表  9   各站位涨落潮悬浮泥沙输运通量

    Table  9   Suspended sediment transport at each station at ebb and flow tide

    站名输沙率/(g/(s·m))输沙方向/(°)
    涨潮落潮涨潮落潮
    1#207.86153.78229.6860.97
    2#189.41111.06238.5069.08
    3#212.53104.16252.2359.36
    4#290.63205.09255.7259.24
    5#150.7371.60248.2263.59
    下载: 导出CSV
  • [1]

    Bian C W, Jiang W S, Quan Q, et al. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011 [J]. Journal of Marine Systems, 2013, 121-122: 24-35. doi: 10.1016/j.jmarsys.2013.03.013

    [2]

    Bouchez J, Gaillardet J, France-Lanord C, et al. Grain size control of river suspended sediment geochemistry: clues from Amazon River depth profiles [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.

    [3]

    Bian C W, Jiang W S, Greatbatch R J, et al. The suspended sediment concentration distribution in the Bohai Sea, Yellow Sea and East China Sea [J]. Journal of Ocean University of China, 2013, 12(3): 345-354. doi: 10.1007/s11802-013-1916-3

    [4]

    Ma M, Feng Z, Guan C, et al. DDT, PAH and PCB in sediments from the intertidal zone of the Bohai Sea and the Yellow Sea [J]. Marine Pollution Bulletin, 2001, 42(2): 132-136. doi: 10.1016/S0025-326X(00)00118-1

    [5]

    Zhang J, Liu S M, Xu H, et al. Riverine sources and estuarine fates of particulate organic carbon from North China in late summer [J]. Estuarine, Coastal and Shelf Science, 1998, 46(3): 439-448. doi: 10.1006/ecss.1997.0277

    [6] 韦钦胜, 刘璐, 臧家业, 等. 南黄海悬浮体浓度的平面分布特征及其输运规律[J]. 海洋学报, 2012, 34(2):73-83

    WEI Qinsheng, LIU Lu, ZANG Jiaye, et al. The distribution and transport of suspended matter in the Southern Huanghai Sea [J]. Acta Oceanologica Sinica, 2012, 34(2): 73-83.

    [7] 刘芳, 黄海军, 郜昂. 春、秋季黄东海海域悬浮体平面分布特征及海流对其分布的影响[J]. 海洋科学, 2006, 30(1):68-72 doi: 10.3969/j.issn.1000-3096.2006.01.014

    LIU Fang, HUANG Haijun, GAO Ang. Distribution of suspended matter on the Yellow Sea and the East China Sea and effect of ocean current on its distribution [J]. Marine Sciences, 2006, 30(1): 68-72. doi: 10.3969/j.issn.1000-3096.2006.01.014

    [8] 蔡德陵, 石学法, 周卫健, 等. 南黄海悬浮体和沉积物的物质来源和运移: 来自碳稳定同位素组成的证据[J]. 科学通报, 2003, 48(S1):21-29 doi: 10.1007/BF02900936

    CAI Deling, SHI Xuefa, ZHOU Weijian, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: evidence from stable carbon isotopes [J]. Chinese Science Bulletin, 2003, 48(S1): 21-29. doi: 10.1007/BF02900936

    [9] 范恩梅, 陈沈良, 张国安. 连云港海域水文泥沙运动特征[J]. 世界科技研究与发展, 2009, 31(4):703-707 doi: 10.3969/j.issn.1006-6055.2009.04.040

    FAN Enmei, CHEN Shenliang, ZHANG Guoan. The hydrological and sediment characteristics in Lianyungang coastal waters [J]. World Sci-Tech R & D, 2009, 31(4): 703-707. doi: 10.3969/j.issn.1006-6055.2009.04.040

    [10] 郭瑜璇. 渤、黄、东海悬浮物传输过程和机制的数值模拟[D]. 自然资源部第一海洋研究所硕士学位论文, 2019.

    GUO Yuxuan. Numerical simulation of suspended sediment transport process and its mechanism of the Bohai Sea, Yellow Sea and East China Sea[D]. Master Dissertation of the First Institute of Oceanography, 2019.

    [11] 庞重光, 杨扬, 刘志亮. 黄东海悬浮泥沙输运结构及其形成机制[J]. 泥沙研究, 2010(3):24-30

    PANG Chongguang, YANG Yang, LIU Zhiliang. Transportation pattern of suspended sediment and its forming mechanism in the Yellow and East China Sea [J]. Journal of Sediment Research, 2010(3): 24-30.

    [12] 余佳, 王厚杰, 毕乃双, 等. 基于MODIS L1B数据的黄海悬浮体季节性分布的反演[J]. 海洋地质与第四纪地质, 2014, 34(1):1-9

    YU Jia, WANG Houjie, BI Naishuang, et al. Seasonal distribution and variation of suspended sediment in the Yellow Sea in 2010 based on retrieved monthly data from Modis L1B imagery [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 1-9.

    [13] 李文建, 王珍岩, 黄海军. 夏季南黄海悬浮体粒度分布及其影响因素[J]. 海洋地质与第四纪地质, 2020, 40(6):49-60

    LI Wenjian, WANG Zhenyan, HUANG Haijun. Grain size distribution pattern and influencing factors of suspended matters in the Southern Yellow Sea during summer season [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 49-60.

    [14] 仲毅, 乔璐璐, 王震, 等. 南黄海中部悬浮体垂直分布及其季节变化[J]. 海洋与湖沼, 2016, 47(3):518-526

    ZHONG Yi, QIAO Lulu, WANG Zhen, et al. Vertical distribution and seasonal variation of suspended particulate matter in the central South Yellow Sea [J]. Oceanologia et Limnologia Sinica, 2016, 47(3): 518-526.

    [15] 李建超, 乔璐璐, 李广雪, 等. 基于LISST数据的冬季南黄海悬浮体分布[J]. 海洋地质与第四纪地质, 2013, 33(5):13-25

    LI Jianchao, QIAO Lulu, LI Guangxue, et al. Distribution of winter suspended particulate matters in the South Yellow Sea based on LISST data [J]. Marine Geology & Quaternary Geology, 2013, 33(5): 13-25.

    [16] 高建华, 高抒, 董礼先, 等. 鸭绿江河口地区沉积物特征及悬沙输送[J]. 海洋通报, 2003, 22(5):26-33 doi: 10.3969/j.issn.1001-6392.2003.05.005

    GAO Jianhua, GAO Shu, DONG Lixian, et al. Sediment distribution and suspended sediment transport in Yalu River Estuary [J]. Marine Science Bulletin, 2003, 22(5): 26-33. doi: 10.3969/j.issn.1001-6392.2003.05.005

    [17] 刘运令, 汪亚平, 吴祥柏, 等. 南黄海苏北近岸西洋水道水沙输运机制分析[J]. 海洋科学, 2011, 35(11):120-127

    LIU Yunling, WANG Yaping, WU Xiangbai, et al. Mechanism of water and suspended sediment transport in the Xiyang Channel along the Southwestern Yellow Sea coast [J]. Marine Sciences, 2011, 35(11): 120-127.

    [18] 英晓明, 丁平兴. 洋山港海域水体和悬沙输运机制研究[J]. 海洋通报, 2011, 30(2):135-140 doi: 10.3969/j.issn.1001-6392.2011.02.003

    YING Xiaoming, DING Pingxing. Research on transport mechanism of water and suspended sediment in the Yangshan harbor waters [J]. Marine Science Bulletin, 2011, 30(2): 135-140. doi: 10.3969/j.issn.1001-6392.2011.02.003

    [19]

    Liu J H, Yang S L, Zhu Q, et al. Controls on suspended sediment concentration profiles in the shallow and turbid Yangtze Estuary [J]. Continental Shelf Research, 2014, 90: 96-108. doi: 10.1016/j.csr.2014.01.021

    [20] 杜家笔, 裴艳东, 高建华, 等. 弱动力浅海中的悬沙输运机制: 以天津港附近海域为例[J]. 海洋学报, 2012, 34(1):136-144

    DU Jiabi, PEI Yandong, GAO Jianhua, et al. The suspended sediment transport associated with low flow patterns in shallow waters: a case study from the Tianjin subtidal area [J]. Acta Oceanologica Sinica, 2012, 34(1): 136-144.

    [21] 孟令鹏, 胡日军, 李毅, 等. 福宁湾海域冬季大潮期悬浮泥沙输运特征[J]. 海洋地质与第四纪地质, 2020, 40(3):61-73

    MENG Lingpeng, HU Rijun, LI Yi, et al. Transport characteristics of suspended sediment in Funing Bay during spring tide in winter [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 61-73.

    [22] 刘伟, 范代读, 涂俊彪, 等. 椒江河口春季悬沙输运特征及通量机制研究[J]. 海洋地质与第四纪地质, 2018, 38(1):41-51

    LIU Wei, FAN Daidu, TU Junbiao, et al. Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring [J]. Marine Geology & Quaternary Geology, 2018, 38(1): 41-51.

    [23] 秦亚超, 高飞, 苏大鹏, 等. 南黄海西部日照至连云港海域的春季温跃层和化学跃层[J]. 海洋地质与第四纪地质, 2021, 41(3):22-32

    QIN Yachao, GAO Fei, SU Dapeng, et al. Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(3): 22-32.

    [24] 宋红瑛, 刘金庆, 印萍, 等. 日照近海表层沉积物粒度特征与沉积环境[J]. 中国海洋大学学报, 2016, 46(3):96-104

    SONG Hongying, LIU Jinqing, YIN Ping, et al. Grain size characteristics of the surface sediment and sedimentary environment in Rizhao offshore [J]. Periodical of Ocean University of China, 2016, 46(3): 96-104.

    [25] 薛刚. 岚山港西突堤工程对海底冲淤影响预测[D]. 中国海洋大学博士学位论文, 2007.

    XUE Gang. Prediction on erosion and accumulation of the seabed by the project of western jetty of Lanshan Harbor[D]. Doctor Dissertation of Ocean University of China, 2007.

    [26]

    Dyer K R. The salt balance in stratified estuaries [J]. Estuarine and Coastal Marine Science, 1974, 2(3): 273-281. doi: 10.1016/0302-3524(74)90017-6

    [27]

    Ingram R G. Characteristics of the great Whale River Plume [J]. Journal of Geophysical Research, 1981, 86(C3): 2017-2023. doi: 10.1029/JC086iC03p02017

    [28]

    Uncles R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary [J]. Estuaries, 1985, 8(3): 256-269. doi: 10.2307/1351486

    [29]

    Trowbridge J H. A simple description of the deepening and structure of a stably stratified flow driven by a surface stress [J]. Journal of Geophysical Research, 1992, 97(C10): 15529-15543. doi: 10.1029/92JC01512

    [30]

    Prandle D. On salinity regimes and the vertical structure of residual flows in narrow tidal estuaries [J]. Estuarine, Coastal and Shelf Science, 1985, 20(5): 615-635. doi: 10.1016/0272-7714(85)90111-8

    [31] 陈斌, 周良勇, 刘健, 等. 废黄河口海域潮流动力与悬沙输运特征[J]. 海洋科学, 2011, 35(5):73-81

    CHEN Bin, ZHOU Liangyong, LIU Jian, et al. The relationship between the suspended sediment movement and tidal current dynamic characteristic in Old Yellow River Delta [J]. Marine Sciences, 2011, 35(5): 73-81.

    [32] 鲁号号, 杨旸, 唐杰平, 等. 南黄海废黄河口近岸海域近底部悬沙输运观测[J]. 海洋地质与第四纪地质, 2019, 39(1):38-48

    LU Haohao, YANG Yang, TANG Jieping, et al. Observation of near-bottom transport of suspended sediment in the offshore area of abandoned Yellow River mouth [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 38-48.

    [33] 周良勇, 陈斌, 刘健, 等. 江苏废黄河口外夏季悬浮泥沙运动[J]. 海洋地质与第四纪地质, 2009, 29(6):17-24

    ZHOU Liangyong, CHEN Bin, LIU Jian, et al. Observation of currents and suspended sediment concentration off Northern Jiangsu Coast, China [J]. Marine Geology & Quaternary Geology, 2009, 29(6): 17-24.

    [34] 杨林, 杨红, 吉新磊, 等. 废黄河口海域悬沙输运特征[J]. 海洋湖沼通报, 2018(6):1-8

    YANG Lin, YANG Hong, JI Xinlei, et al. Sediment transportation in the Abandoned Yellow River Delta [J]. Transactions of Oceanology and Limnology, 2018(6): 1-8.

    [35] 徐粲, 高建华, 杨旸, 等. 南黄海辐射沙脊群潮汐水道的悬沙输运特征[J]. 海洋学报, 2014, 36(11):150-162

    XU Can, GAO Jianhua, YANG Yang, et al. Suspended sediment transport patterns in the tidal channels in the southwestern Yellow Sea [J]. Acta Oceanologica Sinica, 2014, 36(11): 150-162.

    [36] 庞重光, 白学志, 胡敦欣. 渤、黄、东海海流和潮汐共同作用下的悬浮物输运、沉积及其季节变化[J]. 海洋科学集刊, 2004(46):32-41

    PANG Chongguang, BAI Xuezhi, HU Dunxin. The transport and sedimentation of suspended matter and their seasonal variation are affected by circulation and tide current in the Bohai Sea, the Yellow Sea and the East China Sea [J]. Studia Marina Sinica, 2004(46): 32-41.

    [37] 陈沈良, 张国安, 杨世伦, 等. 长江口水域悬沙浓度时空变化与泥沙再悬浮[J]. 地理学报, 2004, 59(2):260-266 doi: 10.3321/j.issn:0375-5444.2004.02.012

    CHEN Shenliang, ZHANG Guoan, YANG Shilun, et al. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters [J]. Acta Geographica Sinica, 2004, 59(2): 260-266. doi: 10.3321/j.issn:0375-5444.2004.02.012

    [38] 曹祖德, 王桂芬. 波浪掀沙、潮流输沙的数值模拟[J]. 海洋学报, 1993, 15(1):107-118

    CAO Zude, WANG Guifen. Numerical simulation of wave lifting sand and tidal current transporting sand [J]. Acta Oceanologica Sinica, 1993, 15(1): 107-118.

    [39] 邢飞, 汪亚平, 高建华, 等. 江苏近岸海域悬沙浓度的时空分布特征[J]. 海洋与湖沼, 2010, 41(3):459-468 doi: 10.11693/hyhz201003025025

    XING Fei, WANG Yaping, GAO Jianhua, et al. Seasonal distributions of the concentrations of suspended sediment along Jiangsu coastal sea [J]. Oceanologia et Limnologia Sinica, 2010, 41(3): 459-468. doi: 10.11693/hyhz201003025025

    [40] 秦蕴珊, 李凡, 郑铁民, 等. 南黄海冬季海水中悬浮体的研究[J]. 海洋科学, 1986, 10(6):1-7

    QIN Yunshan, LI Fan, ZHENG Tiemin, et al. Study on suspended matter of the South Yellow Sea in winter [J]. Marine Science, 1986, 10(6): 1-7.

    [41] 秦蕴珊, 李凡, 徐善民, 等. 南黄海海水中悬浮体的研究[J]. 海洋与湖沼, 1989, 20(2):101-112 doi: 10.3321/j.issn:0029-814X.1989.02.002

    QIN Yunshan, LI Fan, XU Shanmin, et al. Suspended matter in the south Yellow Sea [J]. Oceanologia et Limnologia Sinica, 1989, 20(2): 101-112. doi: 10.3321/j.issn:0029-814X.1989.02.002

    [42] 左书华, 庞启秀, 杨华, 等. 海州湾海域悬沙分布特征及运动规律分析[J]. 山东科技大学学报:自然科学版, 2013, 32(1):10-17

    ZUO Shuhua, PANG Qixiu, YANG Hua, et al. Analysis on the distribution and movement of suspended sediment in Haizhou Bay sea area [J]. Journal of Shandong University of Science and Technology:Natural Science, 2013, 32(1): 10-17.

    [43] 赵季伟, 李占海, 徐圣, 等. 长江口北港上段河道枯季悬沙浓度垂向分布特征研究[J]. 长江流域资源与环境, 2019, 28(9):2207-2218

    ZHAO Jiwei, LI Zhanhai, XU Sheng, et al. Vertical profile of suspended sediment concentration in the upper reach of north channel in the Changjiang Estuary during the dry season [J]. Resources and Environment in the Yangtze Basin, 2019, 28(9): 2207-2218.

    [44] 郑铁民, 赵一阳, 李凡, 等. 南黄海夏季海水中悬浮体的研究[J]. 海洋学报, 1990, 12(6):749-757,806

    ZHENG Tiemin, ZHAO Yiyang, LI Fan, et al. A study on total suspended matter in winter in the south Yellow Sea [J]. Acta Oceanologica Sinica, 1990, 12(6): 749-757,806.

    [45]

    Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: Wiley, 1986.

    [46] 文明征, 陈天, 胡云壮, 等. 波流作用下海底边界层沉积物再悬浮与影响因素研究[J]. 海洋学报, 2020, 42(3):97-106

    WEN Mingzheng, CHEN Tian, HU Yunzhuang, et al. Sediment resuspension of bottom boundary layer under waves and currents [J]. Acta Oceanologica Sinica, 2020, 42(3): 97-106.

  • 期刊类型引用(4)

    1. 林建伟,魏观渊,游远新,刘国昕,许文彬. 三沙湾悬浮泥沙运移分布及其对海上养殖的影响分析. 渔业研究. 2024(06): 664-674 . 百度学术
    2. 杨传训,李勇,杨骥,舒思京. 机器学习模型的珠江口悬浮泥沙遥感反演与规律分析. 测绘通报. 2023(09): 117-123 . 百度学术
    3. 甘双庆,朱龙海,张立奎,宋彦,胡日军,白杏,林超然,谢波. 蓬莱近岸海域夏季悬浮泥沙输运及控制因素. 海洋地质前沿. 2023(12): 12-25 . 百度学术
    4. 伍先锋,胡兴艺,李广源,谭云辉. 基于红外光传感器的泥沙在线监测方法应用研究. 水利信息化. 2022(04): 41-44+61 . 百度学术

    其他类型引用(0)

图(14)  /  表(9)
计量
  • 文章访问数:  11103
  • HTML全文浏览量:  991
  • PDF下载量:  203
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-08-08
  • 修回日期:  2021-10-10
  • 录用日期:  2021-10-10
  • 网络出版日期:  2021-12-12
  • 刊出日期:  2022-06-27

目录

/

返回文章
返回