基于改进的广义S变换的海洋地震资料随机噪音压制

尉佳, 岳龙, 杨睿, 徐清风, 李志强, 刘云

尉佳,岳龙,杨睿,等. 基于改进的广义S变换的海洋地震资料随机噪音压制[J]. 海洋地质与第四纪地质,2022,42(3): 184-193. DOI: 10.16562/j.cnki.0256-1492.2021072801
引用本文: 尉佳,岳龙,杨睿,等. 基于改进的广义S变换的海洋地震资料随机噪音压制[J]. 海洋地质与第四纪地质,2022,42(3): 184-193. DOI: 10.16562/j.cnki.0256-1492.2021072801
WEI Jia,YUE Long,YANG Rui,et al. Random noise suppression of marine seismic data based on improved generalized S transform[J]. Marine Geology & Quaternary Geology,2022,42(3):184-193. DOI: 10.16562/j.cnki.0256-1492.2021072801
Citation: WEI Jia,YUE Long,YANG Rui,et al. Random noise suppression of marine seismic data based on improved generalized S transform[J]. Marine Geology & Quaternary Geology,2022,42(3):184-193. DOI: 10.16562/j.cnki.0256-1492.2021072801

基于改进的广义S变换的海洋地震资料随机噪音压制

基金项目: 中国地质调查局项目(DD20191003);山东省地震局青年基金项目(JJ1702Y)
详细信息
    作者简介:

    尉佳(1985—),男,博士,助理研究员,从事海洋地球物理调查与技术方法研究,E-mail:chinwjia@163.com

    通讯作者:

    徐清风(1969—),男,高级工程师,从事地震数据分析处理,E-mail:845882668@qq.com

  • 中图分类号: P738

Random noise suppression of marine seismic data based on improved generalized S transform

  • 摘要: 常规广义S变换采用固定的高斯窗参数,在时频分析时不能够兼顾高低频端的信号,同时标准S逆变换在时频域滤波时会产生滤波噪音。本文提出了基于变频率高斯窗的广义S变换,同时改进了S逆变换公式。该方法不仅提升了信号时频谱的聚焦度,而且还消除了滤波噪音。通过计算包含随机噪声干扰信号的瞬时信噪比阈值,然后根据不同阈值有针对性的选择压制随机噪音的处理策略。合成数据和实际地震数据处理结果表明,该方法能够有效的压制随机噪音,提高地震数据信噪比。
    Abstract: Conventional generalized S transform (GST) uses fixed parameters for Gaussian window, which makes it impossible to take into account the high and low frequency signals in the time-frequency analysis. At the same time, the standard S inverse transform produces filtering noise when filtering in the time-frequency domain. In this paper, a generalized S transform based on variable frequency Gaussian window is proposed, and the inverse S transform formula is revised. This method not only improves the focus of the frequency spectrum of the signal, but also eliminates the filtering noise. By calculating the instantaneous signal-to-noise ratio threshold value of the signal containing random interference noise, and according to different threshold values, the processing strategy of suppressing the random noise is selected in a targeted manner. The processing results of synthetic data and actual seismic data show that the method can effectively suppress random noise and improve the signal-to-noise ratio of seismic data.
  • 图  1   理想时频谱与不同控制参数的广义S变换的时频谱

    a. 理想时频;b. p=0.7,λ=1对应的时频谱;c. p=0.9, λ=1对应的时频谱;d. p=1,λ=1标准S变换时频谱;e. p=1.2,λ=1对应的时频谱;f. p=1,λ=1.2对应的时频谱;g. p=1,λ=0.9对应的时频谱;h. p=1,λ=0.6对应的时频谱。

    Figure  1.   Ideal time-frequency spectrum and time-frequency spectrum of S transform using different control factors

    a. ideal time-frequency spectrum, b. p=0.7, λ=1 corresponding to time-frequency spectrum, c. p=0.9, λ=1 corresponding to time-frequency spectrum, d. p=1, λ=1 corresponding to time-frequency spectrum, e. p=1.2, λ=1 corresponding to time-frequency spectrum, f. p=1, λ=1.2 corresponding to time-frequency spectrum, g. p=1, λ=0.9 corresponding to time-frequency spectrum, h. p=1, λ=0.6 corresponding to time-frequency spectrum.

    图  2   合成信号时频谱图

    a. 标准S变换,b. 广义S变换(p=0.8,λ=1),c. 改进的广义S变换(p=0→1,λ=1)。

    Figure  2.   Synthetic signal time-frequency spectrum

    a. the standard S transform, b. conventional generalized S transform (p=0.8, λ=1), c. improved generalized S transform (p=0→1, λ=1).

    图  3   含随机噪声的地震信号时频谱图

    a. 标准S变换,b. 广义S变换(p=0.8, λ=1),c. 改进的广义S变换(p=0→1, λ=1)。

    Figure  3.   Time-frequency spectrum of seismic signal with random noise

    a. the standard S transform, b. conventional generalized S transform (p=0.8, λ=1), c. improved generalized S transform (p=0→1, λ=1) .

    图  4   标准S逆变换时频滤波效果图

    a. 合成信号,b. 合成信号时频域滤波,c. 时间域滤波效果。

    Figure  4.   Effect of time and frequency filtering of standard S inverse transform

    a. synthetic signal, b. time and frequency filtering of synthetic signal, c. filtering effect of time field.

    图  5   准确滤波结果和不同滤波方法计算的差值

    a. 准确滤波结果,b. 标准逆变换计算差值(红色)和改进逆变换(蓝色)计算差值。

    Figure  5.   Accurate filtering result and difference calculated by different filtering methods

    a. accurate filtering result, b. difference calculated by standard S inverse transform (red) and difference calculated by improved S inverse transform (blue).

    图  6   含噪地震记录去噪效果图

    a. 48道模拟地震记录, b. 含白噪声的模拟地震记录, c. 去除噪声的模拟地震记录。

    Figure  6.   Denoising effect for seismic records with noise

    a. 48 channels simulated seismic record, b. simulated seismic record with white noise, c. simulated seismic record after denoising.

    图  7   单道信号对比图

    a. 加白噪声后与未加噪声单道信号对比, b. 去噪后与未加噪声单道信号对比。

    Figure  7.   Comparison of single channel signals

    a. comparison of single channel signals with noise and those without noise, b. comparison of single channel signals without noise and those after noise reduction.

    图  8   时频域滤波效果对比

    a. 不含白噪声模拟地震道的时频谱,b. 含白噪声模拟地震道的时频谱,c. 去除噪声模拟地震道的时频谱。

    Figure  8.   Comparison of filtering effects in time-frequency domain

    a. time and frequency spectrum of simulated seismic channel without noise, b. time and frequency spectrum of simulated seismic channel with white noise, c. time and frequency spectrum of simulated seismic channel after noise reduction.

    图  9   地震叠前单炮剖面

    Figure  9.   Seismic pre-stack single shot profile

    图  10   两种方法压制噪声效果对比

    a. 改进广义S变换压噪后剖面,b. 传统广义S变换压噪后剖面,c. 改进广义S变换去除的噪声,d. 传统广义S变换去除的噪声。

    Figure  10.   Comparison of noise suppression effects between two methods

    a. denoised profile by improved generalized S transform, b. denoised profile by traditional generalized S transform, c. noise removal by improved generalized S transform, d. noise removal by generalized S transform.

  • [1]

    Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform [J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001. doi: 10.1109/78.492555

    [2] 付勋勋, 徐峰, 秦启荣, 等. 基于改进的广义S变换求取地层品质因子Q值[J]. 石油地球物理勘探, 2012, 47(3):457-461

    FU Xunxun, XU Feng, QIN Qirong, et al. Estimation of quality factor based on improved generalized S-transform [J]. Oil Geophysical Prospecting, 2012, 47(3): 457-461.

    [3] 吴淑玉, 刘俊. 时频分析在北黄海东部坳陷中生界储层的应用[J]. 海洋地质与第四纪地质, 2016, 36(1): 189-196

    WU Shuyu, LIU Jun. Application of time-frequency analysis to the Mesozoic reservoir, eastern depression of North Yellow Sea[J], 2016, 36(1): 189-196.

    [4]

    Pinnegar C R, Mansinha L. The S-transform with windows of arbitrary and varying shape [J]. Geophysics, 2003, 68(1): 381-385. doi: 10.1190/1.1543223

    [5] 陈学华, 贺振华, 黄德济. 广义S变换及其时频滤波[J]. 信号处理, 2008, 24(1):28-31 doi: 10.3969/j.issn.1003-0530.2008.01.007

    CHEN Xuehua, HE Zhenhua, HUANG Deji. Generalized S transform and its time-frequency filtering [J]. Signal Processing, 2008, 24(1): 28-31. doi: 10.3969/j.issn.1003-0530.2008.01.007

    [6] 高静怀, 陈文超, 李幼铭, 等. 广义S变换与薄互层地震响应分析[J]. 地球物理学报, 2003, 46(4):526-532 doi: 10.3321/j.issn:0001-5733.2003.04.015

    GAO Jinghuai, CHEN Wenchao, LI Youming, et al. Generalized S transform and seismic response analysis of thin interbeds [J]. Chinese Journal of Geophysics, 2003, 46(4): 526-532. doi: 10.3321/j.issn:0001-5733.2003.04.015

    [7]

    Radad M, Gholami A, Siahkoohi H R. S-transform with maximum energy concentration: Application to non-stationary seismic deconvolution [J]. Journal of Applied Geophysics, 2015, 118: 155-166. doi: 10.1016/j.jappgeo.2015.04.010

    [8] 周竹生, 刘冰. 基于含可变因子S变换的面波压制技术[J]. 物探化探计算技术, 2013, 35(5):555-560 doi: 10.3969/j.issn.1001-1749.2013.05.11

    ZHOU Zhusheng, LIU Bing. Surface wave suppression technology based on S-transform with variable factor [J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(5): 555-560. doi: 10.3969/j.issn.1001-1749.2013.05.11

    [9] 黄捍东, 冯娜, 王彦超, 等. 广义S变换地震高分辨率处理方法研究[J]. 石油地球物理勘探, 2014, 49(1):82-88

    HUANG Handong, FENG Na, WANG Yanchao, et al. High-resolution seismic processing based on generalized S transform [J]. Oil Geophysical Prospecting, 2014, 49(1): 82-88.

    [10] 张固澜, 熊晓军, 容娇君, 等. 基于改进的广义S变换的地层吸收衰减补偿[J]. 石油地球物理勘探, 2010, 45(4):512-515

    ZHANG Gulan, XIONG Xiaojun, RONG Jiaojun, et al. Stratum absorption and attenuation compensation based on improved generalized S-transform [J]. Oil Geophysical Prospecting, 2010, 45(4): 512-515.

    [11] 陈学华, 贺振华, 黄德济, 等. 时频域油气储层低频阴影检测[J]. 地球物理学报, 2009, 52(1):215-221

    CHEN Xuehua, HE Zhenhua, HUANG Deji, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain [J]. Chinese Journal of Geophysics, 2009, 52(1): 215-221.

    [12]

    Yu Z, McMechan G A, Ferguson J F, et al. Adaptive wavelet filtering of seismic data in the wavelet transform domain [J]. Journal of Seismic Exploration, 2002, 11(3): 223-246.

    [13] 赵淑红, 朱光明. S变换时频滤波去噪方法[J]. 石油地球物理勘探, 2007, 42(4):402-406 doi: 10.3321/j.issn:1000-7210.2007.04.008

    ZHAO Shuhong, ZHU Guangming. Time-frequency filtering to denoise by S transform [J]. Oil Geophysical Prospecting, 2007, 42(4): 402-406. doi: 10.3321/j.issn:1000-7210.2007.04.008

    [14] 李雪英, 侯相辉. 基于广义S变换的叠前高频噪声压制[J]. 石油地球物理勘探, 2011, 46(4):545-549

    LI Xueying, HOU Xianghui. Prestack high frequency noise suppression based on generalized S transform [J]. Oil Geophysical Prospecting, 2011, 46(4): 545-549.

    [15] 王云专, 兰金涛, 龙玉沙. 基于S变换的随机噪声压制方法[J]. 地球物理学进展, 2010, 25(2):562-567 doi: 10.3969/j.issn.1004-2903.2010.02.026

    WANG Yunzhuan, LAN Jintao, LONG Yusha. The method for attenuating random noise based on S transform [J]. Progress in Geophysics, 2010, 25(2): 562-567. doi: 10.3969/j.issn.1004-2903.2010.02.026

    [16]

    Schimmel M, Gallart J. The inverse S-transform in filters with time-frequency localization [J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4417-4422. doi: 10.1109/TSP.2005.857065

    [17] 王德营, 李振春, 王姣. S域时频滤波分析与改进[J]. 石油物探, 2015, 54(4):396-403 doi: 10.3969/j.issn.1000-1441.2015.04.005

    WANG Deying, LI Zhenchun, WANG Jiao. The analysis and improvement on time-frequency filtering in S-transform domain [J]. Geophysical Prospecting for Petroleum, 2015, 54(4): 396-403. doi: 10.3969/j.issn.1000-1441.2015.04.005

    [18]

    Pinnegar C R. Comments on “The Inverse S-Transform in Filters With Time-Frequency Localization” [J]. IEEE Transactions on Signal Processing, 2007, 55(10): 5117-5120. doi: 10.1109/TSP.2007.896050

    [19]

    Pei S C, Wang P W. Modified inverse s transform for filtering in time-frequency spectrum[C]//2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, HI, USA: IEEE, 2007: III-1169-III-1172.

    [20] 张军华, 藏胜涛, 周振晓, 等. 地震资料信噪比定量计算及方法比较[J]. 石油地球物理勘探, 2009, 44(4):481-486 doi: 10.3321/j.issn:1000-7210.2009.04.018

    ZHANG Junhua, ZANG Shengtao, ZHOU Zhenxiao, et al. Quantitative computation and comparison of S/N ratio in seismic data [J]. Oil Geophysical Prospecting, 2009, 44(4): 481-486. doi: 10.3321/j.issn:1000-7210.2009.04.018

    [21] 王小杰, 颜中辉, 刘欣欣, 等. 基于小波分频的Q值补偿技术在东海中深层油气勘探中的应用[J]. 海洋地质与第四纪地质, 2019, 39(6):200-206

    WANG Xiaojie, YAN Zhonghui, LIU Xinxin, et al. The application of formation Q value compensation method based on wavelet frequency division to the exploration of middle-deep hydrocarbon in the East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 200-206.

  • 期刊类型引用(3)

    1. 刘景良,苏杰龙,戴逸宸,李宇祖,黄永,郑文婷. 基于滑动窗宽优化的LMSSGST识别非平稳信号瞬时频率. 振动与冲击. 2024(19): 183-193 . 百度学术
    2. 李雪英,王鑫. 二阶同步提取变换的沉积旋回界面定位与追踪识别. 黑龙江科技大学学报. 2023(04): 614-621 . 百度学术
    3. 吴耀乐,邓敏. 基于残差卷积神经网络的随机噪声压制网络的海洋地震资料去噪技术研究. 中国石油和化工标准与质量. 2022(22): 175-177 . 百度学术

    其他类型引用(4)

图(10)
计量
  • 文章访问数:  5948
  • HTML全文浏览量:  501
  • PDF下载量:  90
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-07-27
  • 修回日期:  2021-10-18
  • 录用日期:  2021-10-09
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回