山东弥河流域现代洪水沉积特征与水动力过程反演

李华勇, 袁俊英, 杨艺萍, 梁志姣, 李智慧, 吴帅虎, 张虎才

李华勇,袁俊英,杨艺萍,等. 山东弥河流域现代洪水沉积特征与水动力过程反演[J]. 海洋地质与第四纪地质,2022,42(2): 178-189. DOI: 10.16562/j.cnki.0256-1492.2021071601
引用本文: 李华勇,袁俊英,杨艺萍,等. 山东弥河流域现代洪水沉积特征与水动力过程反演[J]. 海洋地质与第四纪地质,2022,42(2): 178-189. DOI: 10.16562/j.cnki.0256-1492.2021071601
LI Huayong,YUAN Junying,YANG Yiping,et al. Characteristics of modern flood deposits in the Drainage basin of Mi River, Shandong Province and the reconstruction of hydrodynamic processes[J]. Marine Geology & Quaternary Geology,2022,42(2):178-189. DOI: 10.16562/j.cnki.0256-1492.2021071601
Citation: LI Huayong,YUAN Junying,YANG Yiping,et al. Characteristics of modern flood deposits in the Drainage basin of Mi River, Shandong Province and the reconstruction of hydrodynamic processes[J]. Marine Geology & Quaternary Geology,2022,42(2):178-189. DOI: 10.16562/j.cnki.0256-1492.2021071601

山东弥河流域现代洪水沉积特征与水动力过程反演

基金项目: 国家自然科学基金青年项目“云南阳宗海沉积物中细菌脱镁叶绿素含量的气候学意义及全新世古气候定量重建”(41807447);河南省自然科学基金青年项目“雅鲁藏布江中游极端洪水事件研究”(212300410101)
详细信息
    作者简介:

    李华勇(1986—),男,博士,讲师,主要从事沉积学与全新世环境演化研究,E-mail:lihuayong2010@hotmail.com

    通讯作者:

    张虎才(1962—),男,博士,教授,主要研究湖泊沉积和生态与第四纪气候变化,E-mail:zhanghc@ynu.edu.cn

  • 中图分类号: P534.63

Characteristics of modern flood deposits in the Drainage basin of Mi River, Shandong Province and the reconstruction of hydrodynamic processes

  • 摘要: 随着全球气候变化加剧,强天气过程以及由此引发的洪水危害愈来愈严重。理解现代洪水沉积特征,不仅可以为减轻洪水灾害提供理论指导,而且也为识别古洪水沉积提供参照依据。2018年8月中旬,山东弥河流域受双台风影响发生洪涝灾害,对当地社会发展、人民生活造成严重影响。在对洪水淹没区考察基础上,于下游高河漫滩区、洪水沉积物保存完好的地点获取21.5 cm长岩芯MH1(含现代土壤),并进行了粒度、孢粉、磁化率、烧失量分析。结果显示:钻孔岩芯洪水层沉积物以黏土和细粉砂为主,平均砂含量仅为1.7%,反映洪水强度不大;洪水沉积层粒度可识别出7.9和30.0 μm两个敏感组分,根据其含量变化特征,可将此次洪水过程划分为洪水初期、第一次洪峰、高水位期、第二次洪峰、退水期5个阶段;洪水沉积层烧失量显著高于土壤层,而磁化率值整体低于下伏土壤层;洪水层与土壤层孢粉特征无明显差异,表明两者孢粉组合均能反映小流域植被状况,但洪水堆积层孢粉丰度(7313.96粒/g)远高于下伏土壤层(1562.65粒/g)。实验结果揭示洪水沉积环境有利于孢粉富集,磁化率值可能反映土壤发育过程中磁性矿物的产生与积累(成壤强度),因此可作为识别古洪水层与古土壤层的参考指标,但其地理空间适用性有待进一步探讨。
    Abstract: With the aggravation of global climate change, severe weather processes and resulted flood disasters become more and more serious nowadays. Understanding the characteristics of modern flood deposition, not only provide theoretical guidance for flood mitigation, but also offer evidence and referential benchmarks for the identification of paleoflood deposits and reconstruction of paleoenvironment. In the mid-August of 2018, two typhoons hit the drainage basin of the Mihe River in the northern Shandong Province and caused serious damage and economic loss. Based on the surveys of the flooded areas, a 21.5-cm-long sediments core labeled MH1, including modern soil, was drilled in the high floodplain of downstream area where flood deposits are well preserved, and the grain size, pollen, magnetic susceptibility, and loss-on -ignition are analyzed. The results suggest that flood layer deposits are mainly composed of clay and fine silt, and the average content of sand is only 1.7%, indicating that the flood intensity was quite low. Two environmentally sensitive grain size components, 7.9 μm and 30 μm respectively, are identified in the flood sediment layer. According to the variation characteristics of sediments, the flood process can be divided into five stages: initial flooding, first flood peak, high-water level period, second flood peak, and flood recession period. The loss-on-ignition of flood sediment layer is also significantly higher than that of soil layer, with a lower magnetic susceptibility value. There is no significant difference in pollen characteristics between the flood layer and soil layer, suggesting that the pollen assemblages of flood plain soil and flood sediment can both be used to define the vegetation of the watershed. However, the pollen abundance of flood accumulation layer (7313.96 grains/g) is much higher than that of underlying soil layer (1562.65 grains/g). The experimental results suggest that the flood has the function to enrich the sporopollen to certain extent, and the magnetic susceptibility value may reflect the generation and accumulation of magnetic minerals in the process of soil formation. Therefore, they can be used as a reference index to identify palaeoflood and palaeosoil layers. However, the geospatial scope of their use needs to be further investigated.
  • 黄河三角洲北部河口地区位于山东省东北部,区内软土分布广泛,主要为新近沉积黏土、淤泥质粉质黏土以及淤泥。黄河三角洲研究程度较高[1-16],但对河口区软土这类不良土体的工程特性、空间分布规律等尚未进行过系统研究。随着黄河三角洲地区上升为国家战略,以及国家生态文明建设的要求,基于各类工程建设基础稳定性要求,对在该地区分布广泛、厚度较大的不良土体软土工程特性及分布的研究显得尤其重要。鉴于此,本文利用近年来在该地区开展的国家基金及省地勘项目成果,运用最新的大量工程地质钻孔实测数据资料,以现代数理统计分析为手段,对软土的物理力学性质、空间分布、沉积环境及物质成分等方面进行了综合分析,给出该区软土工程特性及分布规律。本文结果对于该地区的生态文明建设及经济可持续发展具有支持价值。

    黄河三角洲是一典型扇形三角洲(图1),由黄河携带泥沙不断淤积扩张填海造陆形成,属河流冲积物覆盖海相层的二元相结构[17-18]。黄河三角洲地区受黄河下游冲淤积及滨海沉积作用,地层岩性较为复杂,存在较多沉积相变、间断及透镜体格局,沉积模式主要与河流过程、黄河来水、泥沙有关。在这种海相沉积层和河口三角洲相沉积层不断沉积变化过程中,有较多软土层分布,这种含水量大、压缩性高、承载力低的软土是黄河三角洲及河口地区重要的地质环境问题之一。

    图  1  黄河三角洲北部(河口区)区位图
    Figure  1.  Location map of the study area

    河口区地处现代黄河三角洲平原北部,该区濒临渤海,是河流的最下游。河道游荡较频繁,地形地貌反复变化,水沙条件也随之变化,因此,区内土体结构一般无巨厚和广延的单层岩性沉积,多为多层沉积结构[19]。在垂向上,岩性沉积为河流沉积陆相层夹薄层海相层沉积,层理较为发育,大小互层叠置是本区沉积结构上的重要特征。本文依据在黄河三角洲河口地区的92个工程地质钻探孔资料,分析总结该区软土工程特性及分布规律。

    软土类土一般是指在水流缓慢的沉积环境中和有微生物参与作用的条件下沉积形成的含较多有机质、疏松软弱(天然孔隙比大于1,天然含水率大于液限)的含较多粉粒的黏性土。它一般是近代未经固结的在滨海、湖泊、沼泽、废河道等地区沉积的一种特殊土类[20-24],包括淤泥、淤泥质土、淤泥质粉质黏土等,由于形成条件近似,不同成因形成的软土类土的性质是很相似的。黄河三角洲地区地处渤海之滨,具有软土的沉积环境,根据本次黄河三角洲北部1∶5万综合水工环地质调查中原状测试样品的物理力学指标的统计,不论浅海相、过渡相黏性土,还是三角洲相黏性土,软土主要物理力学特征表现为天然含水量高,绝大多数大于35%,天然含水量大于液限,饱和度高,高孔隙比(大于1.0),透水性极弱,高压缩性(图2),多呈软塑或流塑状态,具较显著的触变性和蠕变性,抗剪强度和地基承载力低,地基承载力普遍小于90 kPa。表1为92个实际钻孔的152件软土样品的测试指标统计值。

    表  1  黄河三角洲北部(河口区)软土的物理力学性质指标统计值
    Table  1.  Physical and mechanical properties of soft soil in the study area
    指标范围值平均值指标范围值平均值
    含水率w/%32.6~60.243.55塑限wp/%18.1~29.121.91
    比重Gs2.71~2.762.74塑性指数Ip11.1~25.816.85
    密度ρ/(g.cm−3)1.62~1.881.79液性指数IL1.00~1.651.29
    干密度ρd/(g.cm−3)1.02~1.361.25压缩系数α/MPa0.43~1.390.77
    孔隙比e1.005~1.7131.21压缩模量Es/MPa1.78~4.863.05
    饱和度Sr/%88~10097.73黏聚力c/kPa11.1~28.216.88
    液限wL/%29.6~54.938.76内摩擦角φ/(°)0.5~8.33.69
    下载: 导出CSV 
    | 显示表格
    图  2  黄河三角洲北部(河口区)典型软土样固结曲线图
    Figure  2.  The typical soft soil consolidation curve of the study area

    在样品的钻探采集过程中,由于人为、机器等不确定因素都会引起样品一系列测值的变异性,以致软土参数很难被准确确定,研究成果的代表性不足,因此,准确地分析掌握软土参数的统计概率分布,对于软土工程特性研究的准确性至关重要[25-26]。本文通过对该地区最新钻探钻孔软土样品的土工试验分析数据,对黄河三角洲北部(河口区)软土(淤泥质土、淤泥质粉质黏土和淤泥)样品的各项物理力学性质指标的概率分布分别进行数理统计分析,从主要指标的概率分布图(图3)中可以看出,河口地区软土的含水量、孔隙比、液限、塑限、压缩系数、压缩模量基本符合正态分布,这也提高了本文在该地区开展软土特性研究数据的准确性和可靠度。通过计算,软土样品物理性质指标中,比重、密度、含水率、孔隙比、液限、塑限变异系数δ分别为0.001、0.03、0.14、0.14、0.13、0.10,均小于0.2,表现了较好的稳定性;力学性质各项指标中压缩系数、压缩模量变异系数δ分别为0.28、0.22,稳定性相对较好。

    图  3  黄河三角洲北部(河口区)软土物理力学性质指标概率及正态分布曲线图
    Figure  3.  Probability distribution of physical-mechanical properties of soft clay in estuarine area

    图4中可见,黄河三角洲北部河口地区软土随着液限的增大,其塑性指数整体呈增大态势,液限与塑性指数呈显著线性相关,相关系数R2达到0.98。在我国塑性图(图5)上,研究区域的软土数据大都落在A线以上、C线的右侧,靠近A线并大致平行于A线分布,为塑性较高的淤泥质粉质黏土、淤泥质黏土[7, 28]

    图  4  液限与塑性指数相关图
    Figure  4.  Relation between liquid limit and plasticity index
    图  5  黄河三角洲北部软土在塑性图上的位置
    Figure  5.  The location of the study area soft soil in the plastic figure of China

    图6可以看出,黄河三角洲北部地区软土测试指标中的含水量与孔隙比呈现线型正相关关系,孔隙比随着含水量的不断增加而增加,相关系数R2达到0.93,相关性非常显著。同理,由图7可以看出,该地区软土孔隙比与压缩系数呈现线性相关性关系,压缩系数随着孔隙比不断增长亦随之增长,相关系数R2达到0. 62,相关性较高。

    图  6  含水量与孔隙比相关图
    Figure  6.  Relation between water content and porosity
    图  7  孔隙比和压缩系数相关图
    Figure  7.  Relation between porosity and compressibility coefficient

    研究依据92个实际钻孔的土工试验成果表中天然含水率、液限、土命名等物理力学指标数据来判定黄河三角洲北部(河口区)的软土分布区域。钻探结果表明,区内软土呈片状分布,并呈现大面积广泛分布,软土分布面积约占总面积的85%,北部沿海地段皆为软土分布区域。从钻探岩心编录及取样分析来看,该区域内软土厚度一般不超过15 m,最小厚度1 m左右,最大厚度11 m左右且位于仙河镇四号桩附近(表2),平面分布和厚度不均匀(图8),从垂向空间上看,软土层厚度大多数小于5 m,顶板埋深大多小于5 m或5~10 m,尤其是在滨海海岸带滩涂近海区域,顶板埋深较浅,大于10 m的局部分布,底板埋深多数为10~20 m(图9)。

    表  2  黄河三角洲北部(河口区)软土分布钻孔及特征
    Table  2.  Distribution and characteristics of drilling holes in the north of Yellow River delta(Estuarine district)
    钻孔
    编号
    软土
    分布
    软土命名顶板埋
    深/m
    软土总
    厚度/m
    钻孔
    编号
    软土
    分布
    软土命名顶板埋
    深/m
    软土总
    厚度/m
    ZT01淤泥质粉质黏土8.04.0ZT45淤泥质粉质黏土、淤泥质黏土10.65.1
    ZT02淤泥质粉质黏土7.91.3ZT46淤泥质粉质黏土、淤泥质黏土7.09.0
    ZT03淤泥质粉质黏土14.02.7ZT47淤泥质粉质黏土、淤泥质黏土7.010.8
    ZT05淤泥质黏土8.31.4ZT48淤泥质粉质黏土2.16.5
    ZT06淤泥质粉质黏土、淤泥质黏土、淤泥7.36.0ZT50淤泥质粉质黏土4.58.5
    ZT07淤泥质黏土5.08.9ZT51淤泥、、淤泥质黏土、淤泥质粉质黏土4.06.0
    ZT08淤泥质黏土10.02.3ZT52淤泥质粉质黏土、淤泥质黏土4.08.8
    ZT10淤泥质粉质黏土9.53.8ZT56淤泥质粉质黏土7.08.0
    ZT11淤泥质粉质黏土6.06.7ZT57淤泥质粉质黏土2.81.2
    ZT12淤泥质黏土11.82.2ZT58淤泥质黏土10.71.3
    ZT13淤泥质粉质黏土、淤泥质黏土11.56.2ZT59淤泥质黏土、淤泥质粉质黏土6.55.0
    ZT15淤泥质粉质黏土14.02.0ZT60淤泥质黏土11.22.7
    ZT16淤泥质粉质黏土、淤泥质黏土7.72.6ZT61淤泥质粉质黏土0.02.8
    ZT17淤泥质粉质黏土7.02.0ZT63淤泥质粉质黏土7.91.5
    ZT18淤泥质粉质黏土9.01.0ZT64淤泥质粉质黏土5.61.7
    ZT20淤泥质粉质黏土16.01.9ZT65淤泥、淤泥质黏土2.46.1
    ZT21淤泥质粉质黏土10.02.3ZT66淤泥质黏土4.31.7
    ZT23淤泥质粉质黏土14.02.0ZT68淤泥、淤泥质黏土4.06.1
    ZT24淤泥质粉质黏土14.01.5ZT69淤泥质粉质黏土10.53.0
    ZT26淤泥质黏土10.12.9ZT70淤泥质粉质黏土16.02.3
    ZT28淤泥质黏土7.93.6ZT74淤泥质粉质黏土、淤泥质黏土14.03.5
    ZT29淤泥质黏土13.92.5ZT75淤泥质粉质黏土4.98.5
    ZT30淤泥质黏土8.84.3ZT76淤泥质粉质黏土、淤泥质黏土5.87.5
    ZT31淤泥质粉质黏土6.74.8ZT77淤泥质粉质黏土5.09.5
    ZT32淤泥、淤泥质粉质黏土7.08.0ZT78淤泥质粉质黏土、淤泥质黏土4.53.1
    ZT33淤泥质黏土10.06.0ZT79淤泥质黏土14.01.0
    ZT34淤泥质黏土13.02.0ZT80淤泥质粉质黏土11.73.3
    ZT35淤泥、淤泥质粉质黏土、淤泥质黏土7.87.2ZT81淤泥质粉质黏土5.64.4
    ZT36淤泥质粉质黏土3.44.4ZT82淤泥质粉质黏土、淤泥质黏土8.03.7
    ZT37淤泥质粉质黏土、淤泥质黏土7.05.5ZT83淤泥质黏土14.41.6
    ZT38淤泥质粉质黏土、淤泥质黏土8.77.8ZT85淤泥质粉质黏土12.01.7
    ZT39淤泥质黏土9.01.0ZT86淤泥质黏土11.62.4
    ZT40淤泥质粉质黏土、淤泥质黏土10.56.0ZT87淤泥质粉质黏土8.83.2
    ZT41淤泥质粉质黏土、淤泥质黏土0.06.4ZT89淤泥质粉质黏土9.82.7
    ZT42淤泥质粉质黏土8.05.5ZT90淤泥质黏土11.04.0
    ZT43淤泥质黏土9.03.0ZT91淤泥质粉质黏土6.62.4
    ZT44淤泥质粉质黏土、淤泥质黏土6.111.7ZT92淤泥质粉质黏土13.03.0
      注:刁口乡行政上不隶属于河口区,本次未进行钻孔布设,故亦未开展软土的圈定。
    下载: 导出CSV 
    | 显示表格
    图  8  黄河三角洲北部(河口区)软土平面分布图
    Figure  8.  soft soil distribution map in the north of Yellow River delta (Estuarine district)
    图  9  黄河三角洲北部(河口区)软土顶板埋深分区图
    Figure  9.  Buried depth map of soft soil roof in the north of Yellow River delta (Estuarine district)

    据本次92个工程地质钻探孔剖面(图10)及岩芯统计分析,河口区地下50 m内第四系全新统冲积海积物岩性以粉土最为广泛,其次为粉质黏土、粉砂、黏土,局部有细砂,上部多为土黄—灰黄色粉土、粉质黏土;中部为灰黑色粉质黏土或淤泥质土,具腥味;下部多为浅灰色粉砂土层,其物理力学性质在水平和垂向上均有较大的变化,揭露6个主层,1层为素填土,2层为第一陆相层,3层为第一海相层,4层为第二陆相层,5层为第二海相层,6层为第三陆相层。1—4层为30 m以浅地层,5—6层是30~50 m地层。

    图  10  黄河三角洲北部(河口区)Ⅰ-Ⅰ'、Ⅱ-Ⅱ' 钻孔地层剖面图(剖面位置见图8
    Figure  10.  Stratigraphic profiles of Ⅰ-Ⅰ' and Ⅱ-Ⅱ' cross the study area (see figure 8 for section location)

    河口区地下水位皆较浅,本次钻探场区50.0 m深度范围内地下水为第四系孔隙潜水-微承压水,地下水位埋深0.20~4.30 m,水位标高−1.30~5.44 m,水位变幅1.00~3.00 m。河口地区形成的软土主要为新近沉积的淤泥质黏土、淤泥质粉质黏土以及淤泥,其物质成分主要是粉质亚黏土,除部分石英、长石矿物外,还含有大量黏土矿物,并含有少量的水溶盐类矿物,有机质含量较多。从外观上看,常呈灰色、灰绿和灰黑等暗色,污染手指,伴有臭味,结构形式多为蜂窝状或海绵状,疏松多孔,被扰动后,结构已破坏,强度降低,呈现流塑状态。定向排列明显,层理较发育,具薄层构造,常含有粉砂夹层或泥炭透镜体。根据该区域最新的同位素年龄,属全新世新近沉积土,是由于黄河按照淤积→延伸→抬高→摆动→改道规律经历的历次河道摆动迁移淤积,同时不断向海淤进,在河流和海水双重作用下,形成陆海相交互的连续沉积体[6-7, 27]

    按形成和分布情况,我国软土类土基本上可以分为两大类:一类是沿海沉积的淤泥类土(瀉湖相、溺谷相、滨海相、三角洲相);一类是内陆和山区湖盆地及山前谷地沉积的淤泥类土。

    黄河三角洲河口地区为沿海沉积的淤泥类土,具体可分为滨海相、三角洲相软土。

    滨海相软土的分布受古地形、古海岸线的控制,主要分布在河口地区靠近沿海的地段,海相与陆相地层交替沉积,有软土形成的环境条件和物质来源,沉积物表层多为数米的褐黄色亚黏土,以下为含淤泥质黏性土或淤泥质黏性土,常夹带有粉砂薄层或透镜体,这种粉砂夹层是由黏土或粉砂交替形成,呈细微条带状构造,含有海生物,具有向海倾斜的斜层理[7, 24]

    三角洲相软土主要分布在相对靠南的内陆部分,其分布与地形地貌、水文地质等条件关系密切,分布地段在地貌上处于滨海平原区和冲积平原与滨海平原的交接地带及黄河三角洲平原区,软土层分布宽阔,厚度相对比较稳定,由于受滨海海流与波浪的影响,分选程度较差,多有交错斜层理或不规则的透镜体夹层,地势平缓,地下水、地表水排泄不畅,在这种特殊的滨海三角洲环境中,河口区沉积了水平层理发育良好的软弱黏性土[6-7, 24]

    黄河三角洲河口地区软土不良土体的主要工程地质问题表现在两个方面:一是该地区地处广泛的河口三角洲冲积平原区,在新近沉积的土层上部荷载压力作用下,土层自固结沉降量很大,且沉降不均匀。软土层在河口地区的大面积分布,是该区域地面沉降自固结地面沉降的主要贡献层,由于其渗透性低,孔隙水排出过程相当缓慢,因此,其土层的固结过程亦很缓慢,有的地基甚至几十年后仍可能有沉降发生[3, 6]。二是该地区软土层尤其是靠近沿海的滨海地段,软土层分布不均匀厚度稳定,多具向海倾斜的斜层理或呈透镜体状,易引起建筑物地基不均匀沉降,发生剪切破坏或倾斜挤出,这在港口、码头地段尤其要引起建设规划部门的重视[6]

    针对河口地区软土工程特性存在的不良工程地质问题,建议采取以下地基处理方法:

    (1)桩基法。在深厚的软土地基上,当建筑物的荷载较大,或对地基变形和稳定性要求较高,而采用其他处理措施不能满足要求时,宜采用桩基方案。桩基具有承载力高、沉降量小和沉降较为均匀等优点,因而在软土地区得到广泛应用。

    (2)排淤换填法。由于河口地区靠近沿海,在沿海地段,有大量的围垦、堤防、港口、码头等,在这些地方,可以利用抛石体的自重下沉到相对稳定的土层中,以抛石体护底形成建筑物地基支撑围堤、堆场等上部结构来加固地层,对于地基中有较厚软土层而又无法完全清除的情况,可挖去一定深度的软土层,代之以人工填筑的砂石层,以扩大基础底面积,提高地基的强度。

    (3)堆载预压法。适用于处理深厚软土地基,采用预定荷载加压,使之固结,一般在地基中打入砂井或塑料排水带对软土进行堆载预压、加速排水固结,提高淤泥或淤泥质土的强度,但要注意加荷总量和速度都不易过大,以免地基失稳。

    (4)电化学加固法。电渗排水和硅化加固相结合,在压力双液硅化法的基础上设置电报通入直流电,在电渗作用下,孔隙水由阳极流向阴极,化学溶液也随之渗流分布于土的孔隙中,经化学反应后生成硅胶,经过电渗作用还可以使硅胶部分脱水,加速加固过程,并增加其强度。

    (1)黄河三角洲北部河口地区软土具有典型的软土特征:含水量高、孔隙比高、压缩性高、透水性低、低抗剪强度、低承载力等,其物理力学性质指标变异系数较小,数据稳定性较好,指标数据统计基本服从正态曲线分布规律,具有较好的代表性,分析研究结果可靠程度较高,软土各类物理力学性质指标间的相关性较为显著。

    (2)黄河三角洲河口地区软土的空间分布,从垂向上来说主要为分布在30 m以浅的第一陆相层及第一海相层的淤泥质黏土、淤泥质粉质黏土、淤泥,沉积环境主要为三角洲相和滨海相沉积两大类。靠南区域的三角洲相软土,分布范围相对较小,埋藏较浅,厚度较小;滨海相软土,分布范围较广,埋藏较深,厚度较大,具向海倾斜的斜层理。从平面上来说,整个河口区软土分布面积较大,占据了近85%的范围,滨海近岸地段皆为软土存在区域,在西部新户镇、义和镇及南部区域有部分零星无软土分布区。

    (3)软土大面积存在会导致长时间累积的地面沉降及地基不均匀沉降等工程地质问题,换土垫层法、桩基法、电化学加固法等方法是处理软土不良工程问题的良好手段,建议加大这方面的研究及推广应用。

  • 图  1   弥河下游流域及钻孔位置

    a. 弥河流域位置图,b. 弥河下游流域图,c. 采样点位置遥感图,d. MH1钻孔岩芯图。

    Figure  1.   Location of the downstream of Mi river and the drilling point

    a. Location of Mi River basin, b. The lower reaches of Mi River, c. Location of sampling site, d. The lithology of MH1 core.

    图  2   MH1钻孔粒度参数及组分随深度变化曲线

    Figure  2.   Curves of grain size parameters and components with depth in MH1 core

    图  3   MH1钻孔洪水沉积层平均粒度频率曲线(a)与概率累积曲线(b)

    Figure  3.   Distribution frequency(a) and probability accumulation curves(b) of the flood deposits in the MH1 core

    图  4   MH1孔烧失量、磁化率变化曲线

    Figure  4.   Curves of ignition loss and magnetic susceptibility of MH1 core

    图  5   MH1浅钻主要孢粉谱

    Figure  5.   Pollen percentage diagram for main taxa of MH1 core

    图  6   MH1钻孔洪水沉积物粒度敏感组分

    Figure  6.   Sensitive grain-size components of the flood sediments of MH1 core

    图  7   MH1钻孔粒度敏感组分含量变化特征与洪水阶段划分

    Figure  7.   Results of sensitive grain-size components contents of flood layer in MH1 core and the division of flood stage

    图  8   MH1钻孔烧失量、磁化率与中值粒径相关关系散点图

    Figure  8.   Correlation between ignition loss, magnetic susceptibility and median grain size of MH1 core

    图  9   MH1钻孔孢粉种类与浓度分布图

    ★号表示取样位置。

    Figure  9.   Distribution and concentration of pollen species in MH1 core

    表  1   MH1孔各指标参数数值

    Table  1   Values of index parameters of MH1 core

    深度/cm中值粒径/μm黏土含量/%砂含量
    /%
    有机质含量
    /%
    碳酸盐含量
    /%
    磁化率χlf
    /(10−8 m3/kg)
    孢粉丰度
    /(粒/g)
    0~0.56.9332.210.037.246.358.03
    0.5~18.1223.920.626.776.45
    1~1.58.4827.970.236.476.548.32
    1.5~210.0226.140.276.136.227.76
    2~2.59.4529.910.955.785.688.466608.14
    2.5~38.9223.862.386.685.928.71
    3~3.58.8827.271.646.096.178.47
    3.5~49.4623.842.576.076.26
    4~4.59.3326.820.905.886.188.78
    4.5~510.7720.902.696.156.038.69
    5~5.510.3124.783.105.876.198.68
    5.5~611.3820.313.345.916.117.91
    6~6.511.6519.902.996.125.847.948019.79
    6.5~712.3419.053.136.015.997.21
    7~7.512.0321.380.795.926.627.32
    7.5~811.5121.562.695.976.737.05
    8~8.511.2023.670.425.966.786.52
    8.5~910.9621.152.416.187.73
    9~9.524.8115.7314.356.407.556.48
    9.5~1022.4917.2112.214.943.17
    10~10.522.0716.9814.154.343.179.251614.49
    10.5~1122.4914.8314.065.543.02
    11~11.522.1517.3412.634.682.689.36
    11.5~1218.4715.5311.664.422.899.20
    12~12.519.5917.0913.345.132.729.23
    12.5~1322.8916.9113.144.882.699.63
    13~13.521.5217.9011.404.402.709.52
    13.5~1423.2816.6713.184.012.489.24
    14~14.522.8315.4313.523.812.659.03
    14.5~1520.9116.9613.043.732.429.55
    15~15.522.3116.8210.634.752.629.431510.82
    15.5~1622.1816.6514.694.952.429.62
    16~16.521.9917.5513.584.032.319.50
    16.5~1719.9217.4111.014.102.509.83
    17~17.521.0018.5512.574.172.319.25
    17.5~1821.2317.2913.043.872.519.17
    18~18.521.1715.4014.433.702.639.34
    18.5~1920.3118.9310.803.852.639.44
    19~19.523.1017.1112.393.772.659.28
    19.5~2022.0117.5410.674.342.649.36
    20~20.522.0517.9113.574.232.269.59
    20.5~2118.2414.5911.863.872.669.50
    21~21.523.0416.5513.633.742.809.04
    下载: 导出CSV
  • [1] 白九江, 邹后曦, 朱诚. 玉溪遗址古洪水遗存的考古发现和研究[J]. 科学通报, 2008, 53(S1):18-27

    BAI Jiujiang, ZOU Houxi, ZHU Cheng. Archaeological discovery and research on the remains of the paleoflood of the Yuxi site [J]. Chinese Science Bulletin, 2008, 53(S1): 18-27.

    [2] 李兰, 白九江, 代玉彪. 重庆永川汉东城遗址地层记录的长江上游唐代洪水事件[J]. 第四纪研究, 2020, 40(2):556-567 doi: 10.11928/j.issn.1001-7410.2020.02.24

    LI Lan, BAI Jiujiang, DAI Yubiao. Flood event recorded by the layer of Handongcheng site and its significance to the upper reaches of Yangtze River [J]. Quaternary Sciences, 2020, 40(2): 556-567. doi: 10.11928/j.issn.1001-7410.2020.02.24

    [3]

    Zhang L H, Zhang Z K, Chen Y Y, et al. Sediment characteristics, floods, and heavy metal pollution recorded in an overbank core from the lower reaches of the Yangtze River [J]. Environmental Earth Sciences, 2015, 74(11): 7451-7465. doi: 10.1007/s12665-015-4733-8

    [4]

    Huang C C, Pang J L, Zha X C, et al. Extraordinary hydro-climatic events during the period AD 200−300 recorded by slackwater deposits in the upper Hanjiang River valley, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 274-283. doi: 10.1016/j.palaeo.2013.02.001

    [5] 朱诚, 马春梅, 王慧麟, 等. 长江三峡库区玉溪遗址T0403探方古洪水沉积特征研究[J]. 科学通报, 2008, 53(S1):1-17

    ZHU Cheng, MA Chunmei, Xu Weifeng, et al. Characteristics of paleoflood deposits archived in unit T0403 of Yuxi Site in the Three Gorges Reservoir areas, China [J]. Chinese Science Bulletin, 2008, 53(S1): 1-17.

    [6] 朱诚, 郑朝贵, 马春梅, 等. 长江三峡库区中坝遗址地层古洪水沉积判别研究[J]. 科学通报, 2005, 50(21):2493-2504 doi: 10.1007/BF03183641

    ZHU Cheng, ZHENG Chaogui, MA Chunmei, et al. Identifying paleoflood deposits archived in Zhongba Site, the Three Gorges reservoir region of the Yangtze River, China [J]. Chinese Science Bulletin, 2005, 50(21): 2493-2504. doi: 10.1007/BF03183641

    [7]

    Hattingh J, Zawada P K. Relief peels in the study of palaeoflood slack-water sediments [J]. Geomorphology, 1996, 16(2): 121-126. doi: 10.1016/0169-555X(95)00137-T

    [8]

    Lam D, Croke J, Thompson C, et al. Beyond the gorge: palaeoflood reconstruction from slackwater deposits in a range of physiographic settings in subtropical Australia [J]. Geomorphology, 2017, 292: 164-177. doi: 10.1016/j.geomorph.2017.05.008

    [9] 王慧颖, 王萍, 胡钢, 等. 溃决大洪水的地貌、沉积特征与水力学重建[J]. 第四纪研究, 2020, 40(5):1334-1349 doi: 10.11928/j.issn.1001-7410.2020.05.21

    WANG Huiying, WANG Ping, HU Gang, et al. Landform, sedimentary features and hydraulic models of high-magnitude outburst flood [J]. Quaternary Sciences, 2020, 40(5): 1334-1349. doi: 10.11928/j.issn.1001-7410.2020.05.21

    [10] 李长安, 黄俊华, 张玉芬, 等. 黄河上游末次冰盛期古洪水事件的初步研究[J]. 地球科学——中国地质大学学报, 2002, 27(4):456-458

    LI Chang’an, HUANG Junhua, ZHANG Yufen, et al. Preliminary study of Paleoflood of last glacial maximum in upper reaches of the Yellow River [J]. Earth Science—Journal of China University of Geosciences, 2002, 27(4): 456-458.

    [11] 王军, 高红山, 潘保田, 等. 早全新世沙沟河古洪水沉积及其对气候变化的响应[J]. 地理科学, 2010, 30(6):943-949

    WANG Jun, GAO Hongshan, PAN Baotian, et al. Pleoflood sediment of Shagou river and its response to the climate change During early Holocene [J]. Scientia Geographica Sinica, 2010, 30(6): 943-949.

    [12] 张玉芬, 李长安, 陈亮, 等. 基于磁组构特征的江汉平原全新世古洪水事件[J]. 地球科学——中国地质大学学报, 2009, 34(6):985-992 doi: 10.3799/dqkx.2009.112

    ZHANG Yufen, LI Chang’an, CHEN Liang, et al. Magnetic fabric of holocene palaeo-floods events in Jianghan plain [J]. Earth Science—Journal of China University, 2009, 34(6): 985-992. doi: 10.3799/dqkx.2009.112

    [13] 张强, 姜彤, 施雅风, 等. 6 000a BP以来长江下游地区古洪水与气候变化关系初步研究[J]. 冰川冻土, 2003, 25(4):368-374

    ZHANG Qiang, JIANG Tong, SHI Yafeng, et al. Relationship between climate changes and the flood occurrences since 6 000 a BP in the Yangtze River Delta [J]. Journal of Glaciology and Geocryology, 2003, 25(4): 368-374.

    [14] 朱诚, 张芸, 张强, 等. 江苏江阴祁头山新石器时代遗址考古地层研究[J]. 地层学杂志, 2003, 27(4):314-317,323 doi: 10.3969/j.issn.0253-4959.2003.04.008

    ZHU Cheng, ZAHNG Yun, ZHANG Qiang, et al. Research on the archaeological strata of the Qitoushan neolithic site, Jiangyin, Jiangsu Province [J]. Journal of Stratigraphy, 2003, 27(4): 314-317,323. doi: 10.3969/j.issn.0253-4959.2003.04.008

    [15]

    Xie S C, Pancost R D, Chen L, et al. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the late Miocene [J]. Geology, 2012, 40(4): 291-294. doi: 10.1130/G32570.1

    [16] 张凌华, 张振克. 河漫滩沉积与环境研究进展[J]. 海洋地质与第四纪地质, 2015, 35(5):153-163

    ZHANG Linghua, ZHANG Zhenke. Research progress of river overbank deposits and implications for environment [J]. Marine Geology & Quaternary Geology, 2015, 35(5): 153-163.

    [17] 吴庆龙, 赵志军, 刘莉, 等. 公元前1920年溃决洪水为中国大洪水传说和夏王朝的存在提供依据[J]. 中国水利, 2017(3):1-5 doi: 10.3969/j.issn.1000-1123.2017.03.002

    WU Qinglong, ZHAO Zhijun, LIU Li, et al. Outburst flood at 1920 BC supports historicity of China's Great Flood and the Xia dynasty [J]. China Water Resources, 2017(3): 1-5. doi: 10.3969/j.issn.1000-1123.2017.03.002

    [18]

    Dong G H, Zhang F Y, Liu F W, et al. Multiple evidences indicate no relationship between prehistoric disasters in Lajia site and outburst flood in upper Yellow River valley, China [J]. Science China Earth Sciences, 2018, 61(4): 441-449. doi: 10.1007/s11430-017-9079-3

    [19] 李长安, 张玉芬, 袁胜元, 等. 江汉平原洪水沉积物的粒度特征及环境意义: 以2005年汉江大洪水为例[J]. 第四纪研究, 2009, 29(2):276-281 doi: 10.3969/j.issn.1001-7410.2009.02.11

    LI Chang’an, ZHANG Yufen, YUAN Shengyuan, et al. Grain size characteristics and environmental significance of Hanjiang 2005 flood sediments [J]. Quaternary Sciences, 2009, 29(2): 276-281. doi: 10.3969/j.issn.1001-7410.2009.02.11

    [20]

    Sheffer N A, Rico M, Enzel Y, et al. The Palaeoflood record of the Gardon River, France: a comparison with the extreme 2002 flood event [J]. Geomorphology, 2007, 98(1-2): 71-83.

    [21] 伍俊斌, 刘雷震, 田丰, 等. 面向重大洪涝灾害应急响应的灾情动态评估方法研究: 以2018年8月山东寿光洪涝灾害为例[J]. 北京师范大学学报:自然科学版, 2020, 56(6):846-855

    WU Junbin, LIU Leizhen, TIAN Feng, et al. Dynamic emergency assessment of flood disaster with emergency disaster index: case of Shouguang, Shandong Province in August, 2018 [J]. Journal of Beijing Normal University:Natural Science, 2020, 56(6): 846-855.

    [22] 黄振国, 陈仲新, 刘芳清, 等. 基于HJ-1影像的大棚菜地遥感监测技术研究: 以山东寿光市为例[J]. 中国农业资源与区划, 2013, 34(5):102-106 doi: 10.7621/cjarrp.1005-9121.20130516

    HUANG Zhenguo, CHEN Zhongxin, LIU Fangqing, et al. Monitoring of greenhouse vegetables land using HJ-1 remotely-sensed imagery [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(5): 102-106. doi: 10.7621/cjarrp.1005-9121.20130516

    [23] 李华勇, 唐倩玉, 张虎才, 等. MS2000激光粒度仪测量第四纪沉积物粒度的定量进样研究[J]. 海洋地质与第四纪地质, 2020, 40(2):200-207

    LI Huayong, TANG Qianyu, ZHANG Hucai, et al. Quantitative sampling for grain size analysis by MS2000 laser analyzer [J]. Marine Geology & Quaternary Geology, 2020, 40(2): 200-207.

    [24] 丁喜桂, 叶思源, 宫少军, 等. 黄河三角洲ZK1孔岩心环境敏感粒度组分及沉积环境分析[J]. 世界地质, 2010, 29(4):575-581 doi: 10.3969/j.issn.1004-5589.2010.04.007

    DING Xigui, YE Siyuan, GONG Shaojun, et al. Analysis on environmentally sensitive grain-size population and sedimentary environment of ZK1 drilling core in Yellow River delta [J]. Global Geology, 2010, 29(4): 575-581. doi: 10.3969/j.issn.1004-5589.2010.04.007

    [25] 胡彩莉, 马玉贞, 郭超, 等. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境, 2016, 44(1):110-118

    HU Caili, MA Yuzhen, GUO Chao, et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method [J]. Earth and Environment, 2016, 44(1): 110-118.

    [26] 张文河, 穆桂金. 烧失法测定有机质和碳酸盐的精度控制[J]. 干旱区地理, 2007, 30(3):455-459 doi: 10.3321/j.issn:1000-6060.2007.03.021

    ZHANG Wenhe, MU Guijin. Precision control on measuring organic and carbonate content with loss on ignition method [J]. Arid Land Geography, 2007, 30(3): 455-459. doi: 10.3321/j.issn:1000-6060.2007.03.021

    [27] 王喜生, 杨振宇, Løvlie R, 等. 黄土高原东南缘黄土-古土壤序列的环境磁学结果及其古气候意义[J]. 科学通报, 2006, 51(22):2755-2762 doi: 10.1007/s11434-006-2192-z

    WANG Xisheng, YANG Zhenyu, Løvlie R, et al. Environmental magnetism and paleoclimatic interpretation of the Sanmenxia loess-paleosol sequence in the southeastern extremity of the Chinese Loess Plateau [J]. Chinese Science Bulletin, 2006, 51(22): 2755-2762. doi: 10.1007/s11434-006-2192-z

    [28] 李春海, 何翠玲. 黄土孢粉HF处理方法[J]. 微体古生物学报, 2004, 21(3):346-348 doi: 10.3969/j.issn.1000-0674.2004.03.012

    LI Chunhai, HE Cuiling. Preparation technique of HF treatment for extracting pollen and spores from loess sediments [J]. Acta Micropalaeontologica Sinica, 2004, 21(3): 346-348. doi: 10.3969/j.issn.1000-0674.2004.03.012

    [29]

    McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell, 1988: 63-85.

    [30] 黄春长, 庞奖励, 查小春, 等. 黄河流域关中盆地史前大洪水研究: 以周原漆水河谷地为例[J]. 中国科学:地球科学, 2011, 41(11):1658-1669 doi: 10.1360/zd-2011-41-11-1658

    HUANG Chunchang, PANG Jiangli, ZHA Xiaochun, et al. Prehistorical floods in the Guanzhong Basin in the Yellow River drainage area: a case study along the Qishuihe River valley over the Zhouyuan Loess Tableland [J]. Scientia Sinica Terrae, 2011, 41(11): 1658-1669. doi: 10.1360/zd-2011-41-11-1658

    [31] 张跞颖, 李长安, 张玉芬, 等. 长江武汉段4.5~2.5 ka沉积地层与古洪水标志识别[J]. 地质论评, 2019, 65(4):973-982

    ZHANG Luoying, LI Chang’an, ZHANG Yufen, et al. Sedimentary strata and paleoflood identification indexes of Wuhan section, Yangtze River, during 4.5~2.5 ka BP [J]. Geological Review, 2019, 65(4): 973-982.

    [32]

    Yu S Y, Colman S M, Li L X. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions [J]. Mathematical Geosciences, 2016, 48(6): 723-741. doi: 10.1007/s11004-015-9611-0

    [33]

    Qin X G, Cai B G, Liu T. Loess record of the aerodynamic environment in the east Asia monsoon area since 60, 000 years before present [J]. Journal of Geophysical Research, 2005, 110(B1): B01204.

    [34]

    Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144)[M]//Prell W L, Wang P, Blum P, et al. Proceedings of the Ocean Drilling Program, Scientific Results. 2003: 1-21.

    [35] 万世明, 李安春, Stuut J B W, 等. 南海北部ODP1146站粒度揭示的近20 Ma以来东亚季风演化[J]. 中国科学 D辑:地球科学, 2007, 50(10):1536-1547 doi: 10.1007/s11430-007-0082-0

    WAN Shiming, LI Anchun, Stuut J B W, et al. Grain-size records at ODP site 1146 from the northern South China Sea: implications on the East Asian monsoon evolution since 20 Ma [J]. Science in China Series D:Earth Sciences, 2007, 50(10): 1536-1547. doi: 10.1007/s11430-007-0082-0

    [36] 陈桥, 刘东艳, 陈颖军, 等. 粒级-标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比[J]. 地球与环境, 2013, 41(3):319-325

    CHEN Qiao, LIU Dongyan, CHEN Yingjun, et al. Comparative analysis of grade-standard deviation method and factors analysis method for environmental sensitive factor analysis [J]. Earth and Environment, 2013, 41(3): 319-325.

    [37]

    de Mahiques M M, Goya S C, da Silva Nogueira de Matos M C, et al. Grain-size end-members and environmentally sensitive grain-size components: a comparative study in the mud shelf depocenters off southern Brazil [J]. International Journal of Sediment Research, 2021, 36(2): 317-327. doi: 10.1016/j.ijsrc.2020.07.004

    [38]

    Ma L, Abuduwaili J, Liu W. Environmentally sensitive grain-size component records and its response to climatic and anthropogenic influences in Bosten Lake region, China [J]. Scientific Reports, 2020, 10(1): 942. doi: 10.1038/s41598-020-57921-y

    [39] 赵西西, 王天阳, 朱丽东, 等. 庐山JL剖面粒度敏感组分的提取与环境意义初探[J]. 地理与地理信息科学, 2015, 31(2):115-118,124 doi: 10.3969/j.issn.1672-0504.2015.02.023

    ZHAO Xixi, WANG Tianyang, ZHU Lidong, et al. Extraction of environmentally sensitive grain size group from JL section and initial exploration of its environmental significance [J]. Geography and Geo-Information Science, 2015, 31(2): 115-118,124. doi: 10.3969/j.issn.1672-0504.2015.02.023

    [40] 肖舜, 周爱锋, 黄小忠, 等. 柴达木盆地表土与大气降尘粒度Weibull组成及其环境意义[J]. 中国沙漠, 2012, 32(5):1193-1200

    XIAO Shun, ZHOU Aifeng, HUANG Xiaozhong, et al. Grain-size Weibull composition of surface dust deposits and atmospheric dustfall, and their environmental implications in Qaidam basin, China [J]. Journal of Desert Research, 2012, 32(5): 1193-1200.

    [41] 邓慧平, 李爱贞, 刘厚风, 等. 气候波动对莱州湾地区水资源及极端旱涝事件的影响[J]. 地理科学, 2000, 20(1):56-60 doi: 10.3969/j.issn.1000-0690.2000.01.010

    DENG Huiping, LI Aizhen, LIU Houfeng, et al. Impacts of climate fluctuations on water resources and extremes in the Laizhou Bay area [J]. Scientia Geographica Sinica, 2000, 20(1): 56-60. doi: 10.3969/j.issn.1000-0690.2000.01.010

    [42]

    Grill G, Lehner B, Thieme M, et al. Mapping the world’s free-flowing rivers [J]. Nature, 2019, 569(7755): 215-221. doi: 10.1038/s41586-019-1111-9

    [43] 俞海, 黄季焜, Rozelle S, 等. 中国东部地区耕地土壤肥力变化趋势研究[J]. 地理研究, 2003, 22(3):380-388 doi: 10.3321/j.issn:1000-0585.2003.03.015

    YU Hai, HUANG Jikun, Rozelle S, et al. Soil fertility changes of cultivated land in Eastern China [J]. Geographical Research, 2003, 22(3): 380-388. doi: 10.3321/j.issn:1000-0585.2003.03.015

    [44] 李华, 杨世伦, Ysebaert T, 等. 长江口潮间带淤泥质沉积物粒径空间分异机制[J]. 中国环境科学, 2008, 28(2):178-182 doi: 10.3321/j.issn:1000-6923.2008.02.017

    LI Hua, YANG Shilun, Ysebaert T, et al. Spatial difference mechanism of sludge sediment grain size in tidal wetlands of Yangtze delta [J]. China Environmental Science, 2008, 28(2): 178-182. doi: 10.3321/j.issn:1000-6923.2008.02.017

    [45] 杨冰洁, 余凤玲, 郑卓, 等. 南澳岛青澳湾沉积物粒度与烧失量指示的全新世沉积环境变化[J]. 海洋地质与第四纪地质, 2015, 35(6):41-51

    YANG Bingjie, YU Fengling, ZHENG Zhuo, et al. Changes in Holocene depositional environment of Qin′ao embayment on Nan′ao island inferred from sediment grain-size and loss-on-ignition [J]. Marine Geology & Quaternary Geology, 2015, 35(6): 41-51.

    [46] 蔡进功, 曾翔, 韦海伦, 等. 从水体到沉积物: 探寻有机质的沉积过程及其意义[J]. 古地理学报, 2019, 21(1):49-66 doi: 10.7605/gdlxb.2019.01.003

    CAI Jingong, ZENG Xiang, WEI Hailun, et al. From water body to sediments: Exploring the depositional processes of organic matter and their implications [J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(1): 49-66. doi: 10.7605/gdlxb.2019.01.003

    [47] 何良彪. 黄河三角洲沿岸及邻近海区细粒沉积物中的碳酸盐[J]. 海洋科学, 1991(3):41-45

    HE Liangbiao. Study of carbonate in the fine grained sediment from the coastal zone of the Huanghe delta and adjacent Bohai gulf [J]. Marine Sciences, 1991(3): 41-45.

    [48] 王艳君, 金秉福. 黄河河口段与海河河口段沉积物碳酸盐对比分析[J]. 海洋科学, 2017, 41(7):94-104 doi: 10.11759/hykx20161208001

    WANG Yanjun, JIN Bingfu. Comparative analysis of carbonates in sediments of the Yellow River and the Haihe River estuaries [J]. Marine Sciences, 2017, 41(7): 94-104. doi: 10.11759/hykx20161208001

    [49]

    Maher B A, Taylor R M. Origin of soil magnetite [J]. Nature, 1989, 340(6229): 106. doi: 10.1038/340106c0

    [50]

    Liu D X, Ma J H, Wu P F, et al. A new indicator for dividing sedimentary rhythms in alluvial deposits: a pollen-based method [J]. CATENA, 2020, 189: 104500. doi: 10.1016/j.catena.2020.104500

    [51] 刘德新, 马建华, 谷蕾, 等. 全新世中后期开封西郊黄泛沉积序列的孢粉记录[J]. 地理学报, 2016, 71(5):852-863 doi: 10.11821/dlxb201605013

    LIU Dexin, MA Jianhua, GU Lei, et al. The middle and late Holocene pollen record from the Yellow River flooding sedimentary sequence in the western suburbs of Kaifeng City, China [J]. Acta Geographica Sinica, 2016, 71(5): 852-863. doi: 10.11821/dlxb201605013

    [52] 崔安宁, 马春梅, 朱诚, 等. 长江三峡库区玉溪遗址的环境与人类活动的孢粉记录[J]. 微体古生物学报, 2015, 32(2):161-173

    CUI Anning, MA Chunmei, ZHU Cheng, et al. Pollen records of the Yuxi culture site in the three gorges reservoir area, Yangtze River [J]. Acta Micropalaeontologica Sinica, 2015, 32(2): 161-173.

    [53]

    Long Y, Zhang X B, Li M, et al. Identification of the deposited layers in landslides reservoir and investigation of the sediment yields during the later sixteenth century on the Hill Loess Plateau, China [J]. Chinese Science Bulletin, 2008, 53(24): 3908-3913.

    [54] 常婧, 惠争闯, 耿豪鹏, 等. 黑河中游现代孢粉传播过程研究[J]. 地理科学, 2017, 37(12):1925-1932

    CHANG Jing, HUI Zhengchuang, GENG Haopeng, et al. Modern pollen transportation process in the middle reach of the Heihe River [J]. Scientia Geographica Sinica, 2017, 37(12): 1925-1932.

    [55] 许清海, 王子惠, 朱宣清. 滹沱河饶阳段表土花粉的初步研究[J]. 河北省科学院学报, 1991(3):49-55

    XU Qinghai, WANG Zihui, ZHU Xuanqing. Preliminary study on surface pollen in Raoyang section of the Hutuo river [J]. Journal of the Hebei Academy of Sciences, 1991(3): 49-55.

图(9)  /  表(1)
计量
  • 文章访问数:  2134
  • HTML全文浏览量:  655
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-10-12
  • 录用日期:  2021-10-12
  • 网络出版日期:  2022-02-12
  • 刊出日期:  2022-04-27

目录

/

返回文章
返回