莺歌海盆地异常高温高压环境下天然气运聚成藏规律

何家雄, 夏斌, 张树林, 孙东山

何家雄, 夏斌, 张树林, 孙东山. 莺歌海盆地异常高温高压环境下天然气运聚成藏规律[J]. 海洋地质与第四纪地质, 2006, 26(4): 81-90.
引用本文: 何家雄, 夏斌, 张树林, 孙东山. 莺歌海盆地异常高温高压环境下天然气运聚成藏规律[J]. 海洋地质与第四纪地质, 2006, 26(4): 81-90.
HE Jia-xiong, XIA Bin, ZHANG Shu-lin, SUN Dong-shan. MIGRATION-ACCUMULATION OF GAS UNDER THE ABNORMAL HIGH GEOTEMPERATURE AND SUPERPRESSURE CIRCUMSTANCE IN YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 81-90.
Citation: HE Jia-xiong, XIA Bin, ZHANG Shu-lin, SUN Dong-shan. MIGRATION-ACCUMULATION OF GAS UNDER THE ABNORMAL HIGH GEOTEMPERATURE AND SUPERPRESSURE CIRCUMSTANCE IN YINGGEHAI BASIN[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 81-90.

莺歌海盆地异常高温高压环境下天然气运聚成藏规律

基金项目: 

中国科学院知识创新工程项目(KZCX2-SW-117-03)

国家自然科学基金项目(40306010)

详细信息
    作者简介:

    何家雄(1956-),男,研究员,博士,从事油气勘探与地质综合研究

  • 中图分类号: P736.21

MIGRATION-ACCUMULATION OF GAS UNDER THE ABNORMAL HIGH GEOTEMPERATURE AND SUPERPRESSURE CIRCUMSTANCE IN YINGGEHAI BASIN

  • 摘要: 莺歌海盆地属南海北部被动大陆边缘新生代异常高温高压盆地,其异常高温高压地层系统主要展布于盆地中部莺歌海坳陷区泥底辟构造带,因此,泥底辟热流体上侵活动,尤其是上新世后期的热流体活动与异常高压区带的展布,控制了天然气及CO2的运聚富集特征。根据所获大量地质地球化学、地球物理资料及近年来天然气勘探成果,重点对盆地异常高温高压特征、高温高压环境下天然气成藏主控因素及运聚规律等进行了综合剖析与探讨,以期对该区进一步天然气勘探及研究有所裨益。
    Abstract: Yinggehai basin developed in the Cenozoic is an abnormal high geotemperature and superpressure basin that belongs to the passive continental margin in the north of the South China Sea. The high geotemperature and superpressure system is mainly located in the diapir belt of the Yinggehai depression in the middle of the basin, so the intrusion of heat flow in the diapir belt, especially the movement of heat fluids of the late Pliocene and the distribution of abnormal high geotemperature and superpressure control the migration-accumulation of gas and CO2.Based on close relationships between the distribution of abnormal high geotemperature and superpressure in the basin and the characteristics of migration-accumulation of gas, we can analyse and predict the regulation of migration-accumulation of gas so as to provide a decision-making for gas exploration plan.
  • 天然气水合物是在低温、高压条件下,甲烷等气体与水作用形成的笼形晶体化合物[1],分布广、储量大、能量密度高,是最为重要的替代能源之一。我国陆地和海洋中的水合物资源相当丰富[2-3]。根据地质构造和储层条件,水合物藏可分为4类(Ⅰ—Ⅳ类)[4-5]。如图1所示,其中,Ⅱ类水合物藏由水合物层和下伏水层组成,顶底为非渗透层。从地质学、地球化学及热力学等角度分析,Ⅱ类水合物藏是分布最为广泛的一种类型,最有希望得到大规模开发利用[6]

    图  1  水合物藏类型示意图(据文献[7]修改)
    Figure  1.  Sketch map of hydrate reservoir types (from reference [7])

    从经济和技术角度看,降压法[8]和热激法[9]是实际水合物藏开采最为可行的方式,常用于现场的开采试验[10-14]。但与常规油气藏不同,水合物藏在开采过程中会发生相变,即固态的水合物吸热分解为可动流体(气和水),单一的降压法或热激法的作用效果往往十分有限。Moridis等[15]研究了定流量抽取地层水,以实现Ⅱ类水合物藏储层降压的方法,但产气效果并不理想。Gao等[16]开展的降压分解实验也表明,在单纯降压条件下,Ⅱ类水合物岩心的生产指标欠佳。杨圣文[17]研究了定井底流压结合井筒加热进行Ⅱ类水合物藏开采的方法,分析了不同井底流压下的开采效果,结果表明,降低井底流压能改善水合物藏的开采效果。Moridis等[18]提出了单井条件下,分阶段进行井筒加热和注热水开采Ⅱ类水合物藏的方法,但施工程序较为复杂,实际应用存在一定困难。Reagan等[19]对Moridis等提出的方法进行了敏感性分析,结果表明孔隙度、储层非均质性等对开采效果有明显影响。

    实验研究[20]和数值模拟研究[21]都表明,热水驱替法能够结合降压法和热激法的优点,是水合物藏开采的一种有效方法。对Ⅱ类水合物藏而言,将热水驱替和井组[22]结合具有明显优势。鉴于Ⅱ类水合物藏分布的广泛性,且相关开采模拟仍有待加强,本文结合实际水合物藏参数,使用数值模拟方法研究了热水驱替方式下Ⅱ类水合物藏的开采规律,并与降压法的开采效果进行了对比,以加强对水合物资源开发利用的认识。

    采用五点井网,热水驱替开采Ⅱ类水合物藏的示意图如图2所示。由于水合物层的渗透率很低、注入性较差,中心注入井在下伏水层的上部区域射孔,向储层注入热水;4口生产井定井底流压生产。在生产过程中,生产井近井地带的低压环境和注入井持续的热水注入使得储层中的水合物大量分解,分解得到的气体运移至生产井采出。

    图  2  热水驱替法开采Ⅱ类水合物藏示意图
    Figure  2.  Sketch of Class Ⅱ hydrate reservoir development

    由于水合物藏开采试验不多,数值模拟是目前研究水合物藏开采动态规律的主要手段。HydrateResSim(HRS)是专门用于水合物藏开采的开源学术代码[23],它考虑了水合物藏开采过程中的相变、传热、多相渗流等机理,能够对降压法、热激法等方式下的水合物藏开采进行有效模拟[24]。在HRS中,相变过程采用主变量变换法处理,数学模型的离散采用积分有限差分法,离散得到的非线性方程组使用Newton-Raphson方法迭代求解。

    本文在HRS基础上开展模拟研究,研究的水合物假设为单一的甲烷水合物,体系考虑4相3组分,相包括气相(G)、水相(A)、水合物相(H)和冰相(I),这4相均为储层孔隙中的一部分。其中冰相和水合物相为不可流动相,水相与气相为可流动相,其流动遵循达西定律。组分包括甲烷组分(m)、水组分(w)和水合物组分(由甲烷组分和水组分根据水合数表示,本文水合数取值为6)。其中,水相、气相和水合物相中都存在水组分和甲烷组分,冰相中只存在水组分。

    组分κ的质量守恒方程如式(1)所示:

    $$\frac{\partial }{{\partial t}}\left(\sum\limits_{\beta = A,G,H,I} {\varphi {S_\beta }{\rho _\beta }X_\beta ^\kappa } \right) + \nabla \cdot \left(\sum\limits_{\beta = A,G} {X_\beta ^\kappa {{\vec F}_\beta }}\right) = {q^\kappa }$$ (1)

    式中,φ为储层孔隙度;Sβ为相β(=G, A, I, H)的饱和度;ρβ为相β的密度,kg·m−3$X_\beta ^\kappa $为组分κ(=m, w)在相β中的质量分数;${\vec F_\beta }$为相β的质量流速,kg·m−2·s−1qκ为组分κ的源汇项,kg·m−3·s−1

    体系的能量守恒方程如式(2)所示:

    $$\begin{split}&\frac{\partial }{{\partial t}}\left( {(1 - \varphi ){\rho _R}{C_R}T + \sum\limits_{\beta = A,G,H,I} {\varphi {S_\beta }{\rho _\beta }{H_\beta }} + {H_d}} \right) + \nabla \cdot \\ & \left\{ { - \left( {(1 - \varphi ){K_R} + \sum\limits_{\beta = A,G,H,I} {\varphi {S_\beta }{K_\beta })} } \right)\nabla T + \sum\limits_{\beta = A,G} {{H_\beta }{{\vec F}_\beta }} } \right\} = {q^e}\end{split}$$ (2)

    式中,ρR为岩石的密度,kg·m−3CR为岩石的比热容,J·kg−1·K−1Hβ为相β的焓,J·kg−1Hd为水合物的形成/分解焓,J·m−3KR为岩石的导热系数,W·m−1·K−1Kβ为相β的导热系数,W·m−1·K−1qe为热量的源汇项,J·m−3·s−1

    模拟研究时,采用平衡模型描述水合物的分解与形成,采用的相对渗透率模型[23]和毛管力模型[23]分别如式(3)、式(4)所示:

    $${k_{rA}} = \min \left\{ {{{\left[ {\frac{{{S_A} - {S_{irA}}}}{{1 - {S_{irA}}}}} \right]}^{{n_A}}},1} \right\}$$
    $$\begin{aligned}{k_{rG}} = \min \left\{ {{{\left[ {\frac{{{S_G} - {S_{irG}}}}{{1 - {S_{irA}}}}} \right]}^{{n_G}}},1} \right\}\end{aligned}$$ (3)

    式中,krA为水相相对渗透率;SA为水相饱和度;SirA为束缚水饱和度;nA为水相相对渗透率递减指数,本文取3.572[25]krG为气相相对渗透率;SG为气相饱和度;SirG为束缚气饱和度;nG为气相相对渗透率递减指数,本文取3.572[25]

    $${p_c} = - {p_{c0}}{\left[ {{{\left( {\frac{{{S_A} - {S_{irA}}}}{{1 - {S_{irA}}}}} \right)}^{ - 1/\lambda }} - 1} \right]^{1 - \lambda }}$$ (4)

    式中,pc为气水间毛管力,Pa;pc0为模型参数,本文取2×103 Pa[25]λ为模型参数,本文取0.45[25]

    参考Mallik地区Ⅱ类水合物藏的参数[26]建立基础模型(如图3所示。模型大小为165 m×165 m×90 m,从上到下,依次由顶部非渗透层、水合物层、下伏水层和底部非渗透层组成。采用直角网格系统,xyz方向对应的网格数分别为33×33×22。模型参数如表1所示。采用五点井网热水驱替方式进行模拟研究,生产时间为3年。其中,注入井和生产井的井径均为0.1 m。各生产井的射孔范围为[−1 m,15 m],以3 MPa进行定井底流压生产;注入井的射孔范围为[−1 m,0 m],以200 t/d的速度注入50 ℃的热水。

    表  1  基础模型参数
    Table  1.  Basic model parameters of the Class Ⅱ hydrate reservoir
    参数水合物层下伏水层顶底非渗透层
    厚度/m151530
    绝对渗透率/10−3 μm21 0001 0000
    孔隙度0.350.350
    水合物饱和度0.70
    含水饱和度0.31
    底部初始压力/MPa10.67
    底部初始温度/℃13.3
    温度梯度/(℃/100 m)3.0
    束缚水饱和度0.20
    束缚气饱和度0.02
    下载: 导出CSV 
    | 显示表格
    图  3  基础模型示意图
    Figure  3.  Sketch of the basic model

    由于相变的存在,水合物在开采过程中会与周围环境进行大量的热交换,热效应显著。而水合物藏的顶底非渗透层虽然几乎没有渗透性,但通常赋存着大量热量,在开采过程中能够以热传导的方式为水合物的分解提供能量[27],因而对水合物藏的开采效果有直接影响。在本文的模型中,顶底非渗透层均为30 m,这个厚度足以刻画开采过程中的热效应[28]

    产气速率和累产气、分解气速率和累分解气曲线分别如图4图5所示。从图4可以看出,产气速率可大致分为两个阶段(阶段①和阶段②),呈现先快速上升,然后以较快速度下降至趋于相对稳定的变化规律。在阶段①,经50 d达到峰值产气速率约为7.0×104 m3/d。在阶段②,产气速率先以较快速度降低,然后逐渐趋于稳定,在生产末期,产气速率约为5×103 m3/d。分解气速率的变化与产气速率变化相同(图5)。对应产气速率和分解气速率的变化,累产气和累分解气前期快速上升,而后近似线性增加。截至生产结束,累产气1.31×107 m3,累分解气1.33×107 m3。除极少量溶于地层水中的气体外,Ⅱ类水合藏中的采出气全部来源于水合物的分解,因此,分解气几乎被全部采出(>99%),地层中的残余极少。

    图  4  产气速率和累产气
    Figure  4.  Gas production rate and cumulative produced gas
    图  5  分解气速率和累分解气
    Figure  5.  Gas dissociation rate and cumulative dissociated gas

    出现上述变化的原因主要是:在阶段①,由于定压生产以及水层中水的产出,储层压力下降较快,生产井近井地带的水合物快速分解。同时,热水的注入也导致储层水合物的大量分解,但产出的气体主要来自生产井近井地带水合物的分解。在阶段②,随生产时间的增加,在生产井的降压作用和注入井的热水作用(图6)下,水合物持续分解,但由于水合物饱和度持续下降,总体产气速率逐渐降低。

    图  6  温度场 (为展示储层温度的变化,示意图中只显示了部分网格)
    Figure  6.  Temperature field evolution

    储层温度场的变化如图6所示(剖面图)。可以看出,随生产时间的增加,水合物的分解导致温度降低,模型的温度整体呈逐渐下降趋势,但注入井近井地带由于热水的注入,高温区域不断扩大,能够持续为水合物的分解提供能量。

    模型水合物饱和度场的变化如图7所示(剖面图)。可以看出,随生产时间的增加,在生产井的降压作用和注入井的热水作用下,生产井周围、水合物层与下伏水层接触面、注入井周围的水合物饱和度逐渐降低;至生产末期,相当一部分水合物已经分解,剩余的水合物主要存在于井间地带。顶部非渗透层携带的热量也促进了水合物的分解,因而水合物层顶部(即顶部非渗透层与水合物层的交界处)的水合物分解明显。当生产结束时,水合物层的平均水合物饱和度降至0.176。

    图  7  水合物饱和度场
    注:为展示水合物层水合物饱和度的变化,示意图中只显示了部分网格。
    Figure  7.  Hydrate saturation field evolution

    鉴于降压法在水合物藏开采方法中具有重要地位,为对比热水驱替开采水合物藏的效果,建立了降压法开采的对比模型。在降压法开采模型中,将中心注入井关闭,生产井以定井底流压方式生产(3 MPa),其他储层参数及生产参数不变。

    在热水驱替和降压开采条件下,水合物藏的气体采出程度、水合物分解程度及累积气水比如图8所示。其中,气体采出程度为采出气量与气体总储量的比值,如式(5)所示:

    图  8  气体采出程度、水合物分解程度和累积气水比
    Figure  8.  Gas recovery percent, hydrate dissociation percent and gas-water ratio
    $$\eta = \frac{{{N_G}}}{{{R_G}}}$$ (5)

    式中,η为气体采出程度;NG为采出的甲烷量,m3RG为水合物藏中甲烷初始总储量(包括水相中的溶解气以及水合物中蕴藏的甲烷总量),m3

    水合物分解程度为分解的水合物量与水合物总储量的比值,如式(6)所示:

    $$\beta = \frac{{{D_H}}}{{{R_H}}}$$ (6)

    式中,β为水合物分解程度;DH为分解的水合物量,kg;RH为水合物藏中的水合物总储量,kg。

    累积气水比为累积产气量与累积产水量的比值,如式(7)所示:

    $$r = \frac{{{V_G}}}{{{m_A}}}$$ (7)

    式中,r为累积气水比;VG为累积产气量,m3mA为累积产水量,t。

    图8可以看出,截至生产结束,相对于降压法,热水驱替的气体采出程度和水合物分解程度更高(分别高出约40%和24%),且热水驱替条件下的气体采出程度和水合物分解程度均大于60%,处于较高水平。两种模型的差异来源于外源热水的注入。相对于降压模型,热水驱替模型中热水的注入扩大了水合物的分解范围,携带的热量提高了水合物的分解程度,相应地气体采出程度也较高;在降压和热水的综合作用下,开采指标优于降压模型。因此,热水驱替对Ⅱ类水合物藏的开采具有一定的适应性,开采指标较好。但热水驱替的产水量较高,其累积气水比仅为降压开采的1/3,这是由外源热水的注入导致的不可避免的结果,因而开采过程中的水处理是十分重要的问题。

    (1)热水驱替开采Ⅱ类水合物藏时,水合物藏的产气速率和分解气速率首先快速上升,然后以较快速度下降至趋于相对稳定;累产气和累分解气先快速上升,然后近似线性增加。气体采出程度和水合物分解程度处于较高水平(>60%)。

    (2)热水驱替对Ⅱ类水合物藏的开采具有一定的适应性。相对于降压开采,在热水驱替条件下,水合物藏的气体采出程度更高,水合物饱和度的降低更显著;但累积气水比较低,伴随较大的产水量。

  • [1] 何家雄,李明兴,陈伟煌,等.莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J].天然气地球科学,2000,11(6):29-43.

    [HE Jia-xiong,LI Ming-xing,CHEN Wei-huang,et al. Geotemperature field and upwelling action of heat flow body and its relationship with natural gas migration and accumulation in Yinggehai Basin[J]. Nature Gas Geoscience,2000,11(6):29-43.]

    [2] 何家雄,昝立声,陈龙操,等.莺歌海盆地泥底辟发育演化与油气运聚机制[J].沉积学报,1994,12(3):120-129.

    [HE Jia-xiong,ZAN Li-sheng,CHEN Long-cao, et al. The formation and evolution mud diapir and its relationship with hydrocarbon accumulation mechanism in Yinggehai Basin[J]. Acta Sedimentologica Sinica,1994,12(3):120-129.]

    [3] 卢焕章,译.流体包裹体[M].长沙:中南工业大学出版社,1985:115-128.[LU Huang-zhang. Fluid Inclusion[M].Changsha:Central South University Press,1985:115

    -128.]

    [4] 何家雄,陈红莲,陈刚,等.莺歌海盆地泥底辟带天然气成藏条件及勘探方向[J].中国海上油气,1995,19(3):157-163.

    [HE Jia-xiong,CHEN Hong-lian,CHEN Gang,et al.Gas reservoir and exploration targets of mud diapir belt,Yinggehai Basin[J]. China Offshore Oil and Gas (Geology),1995,19(3):157-163.]

    [5] 何家雄,张伟,陈刚,等.莺歌海盆地CO2成因及运聚特征的初步研究[J].石油勘探与开发,1995,22(6):8-15.

    ] [HE Jia-xiong,ZHANG Wei,CHEN Gang, et al. Study of CO2 origin,migration and accumulation in Yinggehai Basin[J]. Petroleum Exploration and Development, 1995,22(6):8-15.]

    [6] 何家雄,陈刚.莺歌海盆地CO2分布、富集特征及初步预测[J]. 天然气地球科学,1997,8(3):9-17.

    [HE Jia-xiong,CHEN Gang. The preliminary prediction and occurrence of CO2 migration in Yinggehai Basin[J]. Nature Gas Geoscience,1997,8(3):9-17.]

    [7] 何家雄,刘全稳.南海北部大陆架边缘盆地CO2成因和运聚规律的分析与预测[J]. 天然气地球科学,2004,15(1):12-19.

    [HE Jia-xiong,LIU Quan-wen. The analysis and discussion of the characters on generative cause,migration and distribution of CO2 in Yingqiong Basin in the North of the South China Sea[J]. Nature Gas Geoscience,2004,15(1):12-19.]

    [8] 何家雄.莺歌海盆地CO2天然气的初步研究[J]. 天然气地球科学,1995,6(1):1-12.

    [HE Jia-xiong. Study of CO2 in Yinggehai Basin[J]. Nature Gas Geoscience,1995,6(1):1-12.]

    [9] 何家雄,陈刚.莺歌海盆地CO2分布及预测方法研究[J].石油勘探与开发,1998,25(2):20-23.

    [HE Jia-xiong,CHEN Gang. Study of CO2 migration in Yinggehai Basin[J]. Petroleum Exploration and Development, 1998,25(2):20-23.]

    [10] 胡英.物理化学[M].北京:人民教育出版社,1979:56-78.[HU Ying. Physical Chemistry[M].Beijing:Peoples Educaton Press, 1979:56

    -78.]

    [11] 李明诚,李剑,万玉金,等.沉积盆地中的流体[J].石油学报,2001,22(4):14-17.

    [LI Ming-cheng,LI Jian,WAN Yu-jin,et al. Fluids in the sedimentary basin[J].Acta Petrollei Sinica,2001, 22(4):14-17.]

    [12] 王兆云,赵文智,何海清,等.超压于烃类生成相互作用关系及对油气运聚成藏的影响[J]. 石油勘探与开发,2002,29(4):12-15.

    [WANG Zhao-yun,ZHAO Wen-zhi,HE Hai-qing, et al. Study on the interaction of overpressure and hydrocarbon generation and influence of overpressure upon hydrocarbon accumulations[J]. Petroleum Exploration and Development,2002,29(4):12-15.]

    [13] 李明诚.地壳中热流体活动和油气运移[J].地学前缘,1995,12(3-4):155

    -156.[LI Ming-cheng.Hea fluid activity in crust and hydrocarbon migration[J]. Earth Science Frontiers,1995,12(3-4):155-156.]

    [14] 杜栩,郑洪印,焦秀琼,等.异常压力与油气分布[J].地学前缘,1995,2(3-4):137

    -138.[DU Xu,ZHENG Hong-yin,JIAO Xiu-qiong, et al. Abnormal pressure and hydrocarbon accumulation[J]. Earth Science Frontiers, 1995,2(3-4):137-138.]

    [15] 李明诚.油气运移研究的现状及主要进展[J].世界石油工业,2000,7(1):24-25.

    [LI Ming-cheng.Present situation and main progress in the research of hydrocarbon migration[J]. World Petroleum Industry, 2000,7(1):24-25.]

    [16] 张启明,董伟良.中国含油气盆地中的超压体系[J].石油学报,2000,21(6):1-11.

    [ZHANG Qi-ming,DONG Wei-liang. et al, Overpressure system of hydrocarbon-bearing basins in China[J].Acta Petrolei Sinica, 2000,21(6):1-11.]

    [17] 何家雄,李明兴,黄保家,等.莺歌海盆地北部斜坡带油气苗分布与油气勘探前景分析[J]. 天然气地球科学,2000,11(2):1-9.

    [HE Jia-xiong,LI Ming-xing,HUANG Bao-jia, et al.The analysis of the oil and gas exploration and the distribution of outflow of oil and gas in the northern slope of the Yinggehai Basin[J]. Natural Gas Geoscience,2000,11(2):1-9.]

    [18] 何家雄,冼仲猷,杨希冰,等.莺歌海盆地莺东斜坡带油气地质条件及近期勘探领域探讨[J].中国海上油气,2001,15(4):237-242.

    [HE Jia-xiong,XIAN Zhong-you,YANG Xi-bing, et al.Petroleum geology and current exploration trend in Yingdong slope area,Yinggehai,South China Sea[J]. China Offshore Oil and Gas (Geology),2001,15(4):237-242.]

计量
  • 文章访问数:  1958
  • HTML全文浏览量:  159
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-12-19
  • 修回日期:  2006-03-26

目录

/

返回文章
返回