EASTERN ASIAN SUMMER MONSOON VARIATION DURING MIS5e AS RECORDED BY PALEOSOL S1 AT JIUZHOUTAI LOESS SECTION
-
摘要: 对沉积速率较高的黄土高原西部地区九州台剖面S1古土壤的夏季风代用指标——磁化率、碳酸钙含量、色度进行了测量。综合分析结果表明,MIS5e开始前,夏季风有一次衰退事件,末次盛间冰期早期夏季风强于晚期,而中期夏季风强度相对较弱,然而这种变化是较为和缓的,并没有表现出类似GRIP冰心氧同位素的大幅度、快速变化,表明MIS5e期间东亚夏季风是相对稳定的。来自海洋的研究表明,西太平洋洋面温度(SST)和洋面高度在MIS5e早期和晚期相对较高,中期相对较低,证实了西太平洋环境变化和东亚夏季风强度之间存在成因上的联系。与先前有关全新世东亚夏季风研究结果的对比表明,MIS5e和全新世东亚夏季风演化具有一定的相似性,可能反映了低纬海洋和高纬大陆之间能量和物质交换对太阳辐射响应的某种内在机制。Abstract: Proxies of the Eastern Asian Summer Monsoon (EASM)-magnetic susceptibility depending on frequency,carbonate content and soil color of paleosol S1 of Jiuzhoutai loess-paleosol profile whose accumulative rate is high and which is located in western Chinese Loess Plateau have been measured. Synthesis analysis of the obtained data deduced a decline event of EASM at the beginning of MIS5e, and then the intensity of EASM increased quickly until the last interglacial. Early MIS5e EASM is stronger than the late MIS5e one, and the middle MIS5e is the weakest. The gentle change of MIS5e EASM has no characters of the abrupt change of GRIP oxygen isotope, suggesting the EASM is relative stable during MIS5e. The surface sea temperature and sea level in the west part of the Pacific is relatively high during early and late MIS5e and relatively low during middle MIS5e, consistent with the change of EASM, meaning that environmental change of the west part of the Pacific partly controlled the change of the EASM. Previous studies on Holocene EASM suggested that early Holocene EASM is stronger than late Holocene one, and middle Holocene is relatively dry. The same character of EASM change of MIS5e and Holocene may reveal the inherence mechanism of EASM change.
-
Keywords:
- Eastern Asian Summer Monsoon /
- Holocene /
- MIS5e /
- Jiuzhoutai Paleosol S1
-
天然气水合物(以下简称水合物)储量丰富,是最有可能代替化石燃料的清洁能源之一[1-3]。水合物沉积物层存在于低温、高压的自然环境中,陆地与海洋均有分布。中国海域水合物主要分布于南海地区[4],据估算其储量约为6.4×1013 m3,与中国常规天然气资源总量基本相当[5],具有巨大的开发潜力。随着中国对于海域水合物研究的不断深入,中国地质调查局分别在2017年和2020年进行了海域水合物的试采[6-7],实现短期稳定产气。
国内外学者针对含水合物沉积物的力学特性开展了丰富的力学试验研究[8-11]。Winters等[12-13]通过核磁共振和三轴压缩试验分别对原状样品和人工合成样品进行测量,得到了水合物沉积物的强度和压缩波速。Masui等[14]通过实验证实了原状样品和人工合成样品具有相似的力学强度,但是应力-应变关系随初始孔隙率和颗粒级配的变化而变化。Yun等[15]通过室内试验证明了四氢呋喃水合物(THF)和甲烷水合物具有相似的力学强度,建议使用THF进行力学性质研究。对于孔隙型水合物的研究较为广泛,Ren[16]等通过核磁共振发现水合物首先生长于小孔隙中,黏土会延缓整个生长过程。相较于均匀分布的含水合物沉积物样品,非均匀分布会对沉积物的物理和力学性质产生影响。Xie等[17-18]考虑了水合物沉积物的非均匀性,在人工样品中加入不同形状的水合物块体模拟不同的赋存形式,得到了不同形式下的水合物沉积物的强度和描述模型。含水合物沉积物的渗透率和破裂压力等均与水合物饱和度及分布形式有关[19-20]。然而大规模商业化开采水合物需要中长期稳定产气,因此还需要考虑储层的蠕变特性[21]。
目前,针对粉黏土蠕变特性的研究已经较为成熟[22-24]。余云燕等[25]针对非饱和盐渍土开展了一系列三轴固结不排水蠕变试验,在Singh-Mitchell模型的基础上进行修正,提出了适合非饱和盐渍土的经验模型。罗庆姿等[26]通过三轴不排水压缩试验对汕头的软土进行了分析。Lai等[27]针对三峡滑土带中的非饱和土进行三轴蠕变试验,引入了考虑基质吸力的相关参数,建立了适用于非饱和土的Singh-Mitchell蠕变模型。刘业科等[28]通过梯级载荷加载方法进行室内三轴固结不排水的蠕变试验,在此基础上对Singh-Mitchell模型进行修正使其能描述零应力零应变水平。关于常规粉黏土的蠕变特性试验已经开展了较多研究,积累了较多经验[29]。区别于常规软黏土的蠕变特性,含水合物粉质黏土在开采过程中存在水合物相变、渗流等过程,水合物分解前后沉积物的孔隙结构也相应发生改变,目前针对含水合物粉黏土的蠕变特性研究和相关模型的研究较少[30]。
本工作采用固结仪进行蠕变试验,研究了含水合物粉黏土的蠕变特性,并提出了描述模型。首先,通过试验获得了含水合物粉黏土的蠕变特性曲线,分析了含水合物粉黏土分解后的蠕变特性;在Singh-Mitchell模型中引入水合物饱和度参数,构建并验证修正后的Singh-Mitchell模型,得到了可以描述含水合物粉黏土的蠕变特性模型。
1. 区域概况
研究区域位于中国南海北部的西北大陆边缘,呈NE向延展,面积达4.5×104 km2,具备稳定的高压低温环境,可以形成天然气水合物,也是我国重要的常规石油富集区域[31-32](图1)。试验采用研究区海域水合物储层的粉黏土沉积物,水合物赋存于海底7~158 m范围内的第四系沉积物中,该区域平均水深约为1 000 m。
2 试验样品来源及方法
2.1 试验材料
土体的基本物理和力学性质如下:土体颗粒比重Gs=2.65,孔隙度n=0.509,平均粒径d50=0.0067,其中黏质组分(d≤4 μm)约占50%,砂质组分(4 μm<d≤63 μm)约占45%,颗粒级配曲线如图2所示。根据《土的工程分类标准》,试验用土粒径小于0.075 mm的颗粒质量分数大于50%,属于细粒土;不均匀系数Cu = 13.56,属于不均匀土,曲率系数Cc = 0.57,级配不连续。综上,试验土为级配不良的细粒土。
试验所用的四氢呋喃溶液采购于中国国药试剂网,浓度为99.9%,通过加入蒸馏水配置成不同浓度的四氢呋喃溶液。质量分数为19%的四氢呋喃溶液在低温常压条件下可以完全合成四氢呋喃水合物,考虑到四氢呋喃的挥发性,试验中使用四氢呋喃溶液的质量分数为21%。根据试验样品所需的水合物饱和度,计算并配置一定质量分数的四氢呋喃溶液。
2.2 试验样品制备与试验设置
试验介质为粉黏土,基于试验区域水合物储层实际工况和土工试验结果,粉黏土比重Gs = 2.65,制备水合物沉积物样品时选取干密度$ {\rho }_{\mathrm{d}}\text{=}\text{1.3}\;\text{}\text{g/}{\text{cm}}^{\text{3}} $,研究在恒定的上覆层荷载下水合物储层分解后对水合物储层的蠕变力学特性的影响。具体制备过程如下:
土骨架制备:将洗盐后的粉黏土沉积物置于烘箱中在105℃条件下烘干12 h后取出冷却,研磨土体至颗粒完全粉碎(土体颗粒粒径小于0.2 mm)。根据干密度称取一定质量的沉积物平均二等分,将每份土体加入适量水后填入环刀内砸实至所要求的高度,在每层样品制备完成后将试样拉毛,以降低其分层的影响,制备成面积为30 cm2、高2 cm样品,置于烘箱中在105℃条件下烘干12 h后取出冷却。
水合物合成:根据试验中水合物饱和度的设置配置不同浓度的四氢呋喃溶液,将制备好的土骨架置于密封罐内,密封罐与真空装置和储液装置相连,开启抽真空装置对样品抽取真空两小时,完成后通过储液装置自下而上浇注配置好的四氢呋喃溶液,保持密封状态一天至土样含液量稳定。最后取出浸泡完成的沉积物样品置于0~2 ℃的冷柜中1~2 d合成水合物,如图3所示。
在试验前取出含水合物沉积物样品置于密封罐内分解,从而得到不同水合物饱和度分解后的沉积物样品。采用分别加载的方式进行,在荷载的作用下,连续观测。加载应力分别为:①号0.5 MPa、②号2 MPa、③号3 MPa条件下进行试验;分解前水合物饱和度分别为 0%、20%、60%、80%。试验仪器使用固结仪如图4,通过采用单杠杆固结仪试验获得水合物沉积物的蠕变力学响应参数。
高压固结仪放置于20℃的恒温室中,在试验过程中保持样品处于饱和状态,当沉降值稳定后样品停止变形,即认为试样的变形不超过0.001 mm/d后达到稳定状态。
3. 结果和分析
3.1 试验结果
通过对原始数据的整理,得到了分别加载方式下,不同水合物饱和度(SH)粉质黏土样品分解后在轴向压力σ下试验时间t和应变ε的蠕变试验曲线(图5)。
由图5中可以看出,在分别加载的条件下,含水合物沉积物分解后样品在各级荷载下的应变-时间关系曲线的变化规律基本相同,只有初始蠕变阶段和稳定蠕变阶段,并未出现加速蠕变阶段。施加荷载的初期,均产生了较大的瞬间变形,曲线呈飞跃式增长。随着时间的推移,曲线的斜率逐渐减小,表示试样的变形速率逐渐减小。最终,试样的变形速率趋于稳定,曲线呈斜率较小的直线,试样的变形随时间不断增大,但该阶段变形值较小。
含水合物粉质黏土样品的蠕变特性曲线可以分为瞬时变形、固结变形和蠕变变形3个阶段[33]。水合物的赋存改变了粉黏土的初始孔隙结构,在施加荷载的瞬间会产生较大的变形进入瞬时变形阶段;当样品孔隙被压缩,孔隙水被排出,而由于黏土沉积物骨架的渗透率较低因此会产生超静孔隙水压力并需要较长时间消散,处于固结变形阶段;最后固结完成后,在恒定荷载的作用下,由于恒定轴向压力的作用,土体骨架持续变形,应变不断增加但总体应变率较小,最后趋于稳定,处于蠕变变形阶段(图6)。无水合物沉积物应变率和时间的曲线见图7。瞬时变形认为当轴向荷载加载完成后完成,取1 min对应的应变作为瞬时变形。将图7中的转折点作为固结变形和蠕变变形分界点,即将应变率1×10−5/min作为固结变形和蠕变变形分界点。
3.2 Singh-Mitchell蠕变模型
Singh和Mitchell等[34]在总结大量土体蠕变的基础上,使用指数函数及幂函数的形式描述黏土的应力-应变-时间关系,并在此基础上提出了Singh-Mitchell蠕变模型。Singh-Mitchell蠕变模型具有参数少、适用范围广等特点,因此本文先择此模型来描述粉黏土的蠕变特性。Singh-Mitchell蠕变模型可以表示为:
$$ \dot{{ \varepsilon }}={{A}{\rm e}}^{\text{α}{{D}}_{\text{r}}}{\left(\frac{{t}}{{{t}}_{{1}}}\right)}^{{m}} $$ (1) 式(1)中:$ \dot{{ \varepsilon }} $表示任意时刻t的应变速率;A、α、m为模型参数,m为$ \text{ln}\text{}{ \varepsilon }\text{}\text{-}\text{}\text{ln}{}{t} $关系图中的直线斜率的绝对值,一般m值为0.75~1.0,并且$ \text{m}\text{}\text{≠}\text{}\text{1} $,$ {{D}}_{\text{r}} $为偏应力水平;$ {{t}}_{\text{1}} $为单位参考时间;t为蠕变加载时间。式中需要确定A、α、m三个参数。将式(1)两边分别积分,可以得到式(2):
$$ { \varepsilon }{}={{ \varepsilon }}_{{0}}+{}\frac{{{A}{{t}}_{{1}}}^{{m}}}{{1-}{m}}\text{exp}{{(}\overline{\alpha}}{{D}}_{\text{r}})\left(\frac{t}{t_1}\right)^{{1-}{m}} $$ (2) 式(2)中$ { \varepsilon } $为轴向应变,$ {{ \varepsilon }}_{\text{0}} $为初始轴向应变;在不考虑初始的轴向应变时,$ {{ \varepsilon }}_{\text{0}}\text{}\text{=}\text{}\text{0} $,令$ \lambda = 1- m $,$ {B}\text{}\text{=}\text{}\dfrac{{{{At}}_{{1}}}^{{m}}}{{1-}{m}} $,$ \beta=\overline{\alpha} $,得到式(3):
$$ { \varepsilon }={B}\text{exp(}\beta{{D}}_{\text{r}})\left(\dfrac{{t}}{{{t}}_{{1}}}\right)^{{ \lambda }} $$ (3) 式(3)即蠕变方程,其中需要确定的参数有3个分别为$ {B}\text{、}\beta\text{、}{ \lambda } $。
当${t}={t}_{1} $时,有$ { \varepsilon }={ \varepsilon}_{1} $,可以得到方程(4),两边取对数得到方程(5):
$$ { \varepsilon }={B}\text{exp}\left(\beta{{D}}_{\text{r}}\right) $$ (4) $$ \text{ln}\text{}{ \varepsilon }=\beta{{D}}_{\text{r}}+\text{ln}{B} $$ (5) β和B的值可以直接通过单位参考时间$ {{t}}_{\text{1}} $的$ \text{ln}\text{}{ \varepsilon }\text{}\text{-}\text{}{{D}}_{\text{r}} $直线关系图得到。土体的非线性蠕变是一簇曲线,从上式中可以看出Singh-Mitchell蠕变模型也是一簇指数形式的曲线,形状与现有的粉黏土蠕变试验结果吻合,因此选择Singh-Mitchell蠕变模型来描述粉黏土的蠕变特性是合适的。
3.3 试验用粉黏土蠕变特性分析
将蠕变特性曲线绘制在双对数坐标轴中,可以得到$ \text{ln}\text{}{ \varepsilon }\text{}\text{-}\text{}\text{ln}\text{}{t} $关系图(图8),图中可以看出,在不同的剪切应力水平下样品的蠕变试验曲线为一组平行近似的直线,直线的斜率为模型中${ \lambda } $值。将$ {{t}}_{\text{1}}\text{=1}\text{}\text{min} $时的应变带入式(4)和式(5)中得到$ \text{ln}\text{}{{ \varepsilon }}_{{\rm r}}\text{}\text{-}\text{}{{D}}_{\text{r}} $关系曲线,拟合后具有良好的线性关系,通过式(5)可以计算出不含水合物沉积物的β和B值(图9)。
考虑含水合物沉积物的剪切应力,偏应力的计算公式为q$ \text{=}\text{}\left(\text{1-}{{K}}_{\text{0}}\right)\text{*}\text{σ} $,其中$ {{K}}_{\text{0}} $为静止土压力系数,σ为轴向应力。根据Simpson等[35]正常固结黏土$ {K}_{0} $经验公式:
$$ {{K}}_{\text{0}}\text{}\text=\text{}\frac{{1-}\dfrac{\text{1}}{\sqrt{\text{2}}}{\sin}\varphi'}{\text{1+}\dfrac{\text{1}}{\sqrt{\text{2}}}{\sin}\varphi'} $$ (6) 将三轴剪切试验内摩擦角$\varphi '=5^{\text °} $带入式(6)后得到K0=0.84,即q=0.16σ,同时注意到不同围压下qf=0.15~0.2 MPa[36],$ \dfrac{{1-}{{K}}_{{0}}}{{{q}}_{\text{f}}}\text{≈ 1} $,因此后续取值Dr=σ。
带入上述参数计算Singh-Mitchell蠕变模型中的相关参数值,结果如表1所示。
表 1 Singh-Mitchell蠕变模型中参数计算值Table 1. Parameter values of the Singh-Mitchell creeping model水合物饱和度 σ / MPa Dr B β λ Tr / min 0 0.5 0.5 13.3 0.206 0.0125 1 2.0 2.0 13.3 0.206 0.0101 1 3.0 3.0 13.3 0.206 0.0081 1 将表1中计算的模型参数带入式(4)中,以轴向压力σ为0.5 MPa为例得到Singh-Mitchell蠕变模型的表达式:
$$ { \varepsilon }\text{}\text=\text{}\text{13.3}{\text{e}}^{\text{0.103}}{{t}}^{\text{0.0}\text{125}} $$ (7) 将模型计算曲线和试验值进行对比(图10)。可以看出,Singh-Mitchell蠕变模型计算曲线和蠕变试验曲线的发展趋势具有较好的一致性,在加载瞬间应变快速增长,随着时间的增加轴向应变迅速衰减。在较高的剪切应力水平下Singh-Mitchell蠕变模型和试验曲线具有较好的一致性,在较低的剪切应力水平下模型计算值略大于试验值,有一定的误差,总体拟合关系较好。
3.4 含水合物试样蠕变特性分析
上一节中讨论了不含水合物沉积物样品的蠕变特性曲线,通过结果可以看出Singh-Mitchell蠕变模型可以描述其蠕变特性,为了使Singh-Mitchell蠕变模型可以描述含水合物沉积物样品,需要对模型进行修正。引入水合物饱和度SH来描述水合物含量,SH是指水合物与孔隙体积之比[37]:
$$ {{S}}_{\text{H}}\text{}\text=\text{}\frac{{{V}}_{{{S}}_{\text{H}}}}{{{V}}_{\text{v}}} $$ (8) 水合物在合成时会膨胀从而引起土体孔隙的变化,在经典模型中,模型参数A反映出土的组成、结构和应力历史等特性,因此考虑通过对参数A进行修正来表征水合物饱和度的影响,在Singh-Mitchell蠕变模型的基础上引入模型如式(9):
$$ { \varepsilon }\text={{ \varepsilon }}_{\mathrm{r}}{\text{(1+}{{S}}_{\text{H}}\text{)}}^{\textit{α}} $$ (9) 式中,α为模型参数,根据试验数据,本文中取0.37。
将修正后的参数A和不同水合物饱和度经典模型中的参数A进行对比(图11),可以看出其具有良好的对应关系。
由此建立了一种修正的Singh-Mitchell蠕变模型:
$$ \dot{{ \varepsilon }\text{}}\text=\text{}{{{A}}_{\text{0}}\text{*}{\left(\text{1+}{{S}}_{\text{H}}\right)}^{\textit{α}}{e}}^{\textit{β}{{D}}_{\text{r}}}{\left(\frac{{t}}{{{t}}_{\text{1}}}\right)}^{{ \lambda }} $$ (10) 当SH=0时,模型又退化成经典的Singh-Mitchell蠕变模型。
通过计算,得到不同工况下修正的Singh-Mitchell蠕变模型参数,得到参数(表2)。
表 2 修正的 Singh-Mitchell 蠕变模型参数值Table 2. Parameter values of modified Singh-Mitchell creeping model水合物饱和度/ % σ / MPa Dr A(1+SH)α β λ 20 0.5 0.5 14.23 0.200 0.0123 2.0 2.0 14.23 0.200 0.0160 3.0 3.0 14.23 0.200 0.0114 60 0.5 0.5 15.83 0.192 0.0061 2.0 2.0 15.83 0.192 0.0117 3.0 3.0 15.83 0.192 0.0074 80 0.5 0.5 16.53 0.226 0.0076 2.0 2.0 16.53 0.226 0.0092 3.0 3.0 16.53 0.226 0.0064 将表2中的参数带入公式(10)中,得到模型计算值,同时和试验数据对比如图12所示。
从图12可以看出,修正后的Singh-Mitchell蠕变模型在不同水合物饱和度和剪切应力下都能够较好地预测均匀分布的含水合物粉质黏土样品的蠕变特性,因此可以使用此修正的Singh-Mitchell蠕变模型来预测含水合物沉积物样品的蠕变特性曲线。修正的Singh-Mitchell蠕变模型参数计算简便、参数较少并且容易获取,使用较为方便,因此本文建立的修正Singh-Mitchell蠕变模型对描述含水合物沉积物样品的蠕变特性曲线更为合适,对我国南海水合物储层长期开采后的沉降预测具有一定的指导意义。
4. 讨论
4.1 蠕变试验结果分析
南海海域水合物主要赋存于海底以下到200 m范围内的粉黏土等未固结的沉积物内,具有含水高、孔隙度高的特点,水合物饱和度最高可达90%以上[38]。因此本文根据储层的实际赋存条件,以水合物储层的粉黏土为介质,在0.5、2和3 MPa的压缩加载条件下进行了0、20%、60%、80%水合物饱和度分解后的蠕变特性试验。试验表明:加载过程中,含水合物沉积物经历瞬时变形、固结变形和蠕变变形3个阶段;在加载的短时间内,瞬时变形阶段完成,引起的轴向变形约占总变形量的70%~80%,最大值为85.8%,在固结变形阶段,孔隙水在稳定的应力条件下从孔隙中排出,一般数小时内完成,引起的轴向应变占应变量的15%~25%,最后的蠕变变形阶段一般数天内完成,引起的轴向应变小于总应变量的5%。轴向压力和水合物饱和度均对轴向变形有影响。轴向压力越大,蠕变变形越大,轴向压力在较低水平时变化对轴向变形的影响大,随着轴向压力的增加,这种影响程度减小。水合物饱和度主要通过改变样品的微观孔隙结构进而影响蠕变特性,分解前的水合物饱和度越高,蠕变变形越大。水合物饱和度在低轴压条件下对变形影响小,在轴压为0.5 MPa时,从无水合物到水合物饱和度增加到80%时,轴向变形从17.25%增加到18.8%,而在轴压为3 MPa时,轴向变形从26.83%增加到了34.73%。
4.2 基于Singh-Mitchell的修正模型
数学模型是定量描述各个试验变量之间相互关系的常用方法。之前的海洋地质调查海域水合物储层粉质黏土进行蠕变特性的研究不足,本文利用蠕变试验结果,通过建立修正的Singh-Mitchell蠕变模型,对研究区域内水合物储层土的蠕变特性进行初步分析。从蠕变模型中可以看出,通过轴向压力和水合物饱和度两个物理指标能够建立出较好的蠕变模型,反映出这两个物理指标是蠕变特性的主要影响因素。模型中参数α和土体初始条件有关,主要根据试验获取,反映出土体的蠕变特性与土体孔隙微观结构、颗粒级配、应力历史等多种因素相关。
5. 结论
(1)含水合物沉积物样品蠕变特性曲线可以分为瞬时变形、固结变形和蠕变变形3个阶段。瞬时变形数分钟内完成,引起较大的变形,固结变形数小时内完成,引起较小的变形,蠕变变形数天内完成,引起极小的变形。
(2)蠕变变形随着加载应力水平、水合物饱和度的增大而增加,水合物饱和度主要通过改变沉积物样品的孔隙结构从而影响蠕变变形,水合物饱和度越高,孔隙结构受影响程度也越大,试样的物理和力学性质越差。在低应力水平时,水合物饱和度对蠕变变形的影响不明显。
(3)基于应力水平和水合物饱和度建立的修正Singh-Mitchell蠕变模型,可以有效地预测含水合物沉积物的蠕变特性,对水合物储层长期开采后的沉降变形预测具有指导意义,便于实际工程中推广。但由于试验组数少等原因本文未对水合物沉积物蠕变变形机理进行深入研究,针对非均匀分布的含水合物沉积物蠕变特性也需要进一步研究。
-
[1] Lockwood J G. Abrupt and sudden climatic transitions and fluctuations:a review[J]. International Journal of Climatology, 2001, 21:1153-1179.
[2] Shackleton N J, Maria Fernanda Sánchez-Goňi, Delphine Pailler, et al. Marine isotope substage 5e and the Eemian interglacial[J]. Global and Planetary Change, 2003, 36:151-155.
[3] Kolfschoten T V, Gibbard P L, Knudsen K L. The Eemian Interglacial:a Global Perspective, Introduction[J]. Global and Planetary Change, 2003, 36:147-149.
[4] Broecker W S. The end of the present interglacial:How and When?[J].Quaternary Science Reviews, 1998, 17:689-694.
[5] Dansgaard W, Johnson S J, Clausen H B, et al. Evidence for general instability of past climate from a 250 ka ice-core record[J]. Nature, 1993, 364:218-220.
[6] Greenland Ice-cord Project(GRIP) Members. Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature, 1993, 364:203-207.
[7] Johnsen S J, Clausen H B, Dansgaard W, et al. The Eem stable isotope record along the GRIP ice core and its interpretation[J]. Quaternary Research, 1995, 43:117-124.
[8] Thorsteinn Thorsteinsson, Josef Kipfsuhl, Hajo Eicken, et al. Crystal size variations in Eemian-age ice from the GRIP ice core, Central Greenland[J]. Earth and Planetary Science Letters, 1995, 131:381-394.
[9] Taylor K C, Hammer C U, Alley R B, et al. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993,366:549-552.
[10] Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366:552-554.
[11] Kukla G J, Thouveny N, Stockhauen H. Tentative correlation of pollen records of the last interglacial at Grande Pile and Ribains with marine isotope stages[J]. Quaternary Research, 2002, 58:32-35.
[12] Kukla G J, Bender M L, Bond G, et al. Last interglacial climates[J]. Quaternary Research, 2002, 58:2-13.
[13] Turner C. Problems of the duration of the Eemian interglacial in Europe North of the Alps[J]. Quaternary Research, 2002, 58:45-48.
[14] Gibbard P L. Definition of the Middle-Upper Pleistocene boundary[J]. Global and Planetary Change, 2003, 36:201-208.
[15] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian Monsoon[J]. Science, 2004, 304:575-578.
[16] Solveig M S, Knudsen K L. Eemian climatic and Hydrographical instability on a marine shelf in Northern Denmark[J]. Quaternary Research, 1997, 47:218-234.
[17] Heusser L, Oppo D. Millennial-and orbital-scale climate variability in Southeastern United States and in the subtropical Atlantic during Marine Isotope Stage 5:evidence from pollen and isotope from ODP site 1059[J]. Earth and Planetary Science Letters, 2003, 214:483-490.
[18] Rousseau D D, Puisségur J J. Climatic interpretation of terrestrial malacofaunas of the last interglacial in southeastern France[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 151:321-336.
[19] Capers G, Merkt J, Müller H. The Eemian interglaciation in Northwestern Germany[J]. Quaternary Research, 2002, 58:49-52.
[20] Cheddadi R, Mamakowa K, Guiot J, et al. Was the climate of Eemian stable? A quantitative climate reconstruction from seven European pollen records[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 143:73-85.
[21] Tzedakis P C, Frogley M R, Heaton T H E. Last interglacial conditions in southern Europe:evidence from Ioannina, northwest Greece[J]. Global and Planetary Change, 2003, 36:157-170.
[22] Klotz S, Guiot J, Mosbrugger V. Continental European Eemian and early Würmian climate evolution:comparing signals using different quantitative reconstruction approaches based on pollen[J]. Global and Planetary Change, 2003, 36:277-294.
[23] McManus J F, Bond G C, Broecker W S, et al. High-resolution climate records from the North Atlantic during the last interglacial[J]. Nature, 1994, 371:326-329.
[24] Kergwin L D, Curry W B, Lehman S J, et al. The role of the deep ocean in North Atlantic climate change between 70 and 130 ka ago[J]. Nature, 1994, 371:323-325.
[25] An Z S, Porter S C. Millennial-scale climatic oscillations during the last interglaciation in central China[J]. Geology, 1997, 25(7):603-606.
[26] 李力, 孙有斌, 鹿化煜,等. 末次间冰期黄土高原粉尘事件及其与北大西洋寒冷事件的对比[J]. 科学通报,1998,43(1):90-93. [LI Li, SUN You-bin, LU Hua-yu, et al. Dust events of Chinese Loess Plateau during last interglacial and its comparison with the cold events of North Atlantic[J]. Chinese Science Bulletin, 1998, 43(1):90-93.]
[27] Liu X M, Hesse P, Liu T S, et al. High resolution climate record from the Beijing area during the last glacial-interglacial cycle[J]. Geophysical Research Letters, 1998, 25(3):349-352.
[28] Guo Z T, Peng S Z, Wei L Y, et al. Weathering signals of millennial-scale oscillations of the eastern Asian summer monsoon over the last 220 ka[J]. Chinese Science Bulletin, 1999, 44(Supp.1):20-25.
[29] Lu H Y, Huissteden K V, An Z S, et al. East Asia winter monsoon variations on a millennial time-scale before the last glacial-interglacial cycle[J]. Journal of Quaternary Science, 1999, 14(2):101-110.
[30] 任剑璋, 丁仲礼, 刘东生, 等. 从会宁末次间冰期土壤看北大西洋气候不稳定性[J]. 地球物理学报, 1998, 41(2):162-167. [REN Jian-zhang, DING Zhong-li, LIU Tung-sheng, et al. A window to view climatic instability occurring at North Atlantic Ocean from the last interglacial palaeosol in Huining during MIS 5e[J]. Acta Geophysica Sinica, 1998, 41(2):162-167.]
[31] Ding Z L, Ren J Z, Yang S L, et al. Climate instability during the penultimate glaciation:evidence from two high-resolution loess records, China[J]. Journal of Geophysical Research, 1999, 104(B9):20123-20132.
[32] Chen F H, Bloemendal J, Feng Z D, et al. East Asian monsoon variations during the last interglacial:evidence from the northwestern margin of the Chinese Loess Plateau[J]. Quaternary Science Review, 1999, 18(8-9):1127-1135.
[33] Chen F H, Feng Z D, Zhang J W. Loess particle size data indicative of stable winter monsoons during the last interglacial in the western part of the Chinese Loess Plateau[J]. Catena, 2000, 39:233-244.
[34] Chen F H, Qiang M R, Feng Z D, et al. Stable East Asian monsoon climate during the Last Interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau[J]. Global and Planetary Changes, 2003, 36:171-179.
[35] Bauch H A, Erlenkeuser H, Fahl K, et al. Evidence for a steeper Eemian than Holocene sea surface temperature gradient between Arctic and sub-Arctic regions[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 145:95-117.
[36] Eynaud F, Turon J L, Duprat J. Comparison of the Holocene and Eemian palaeoenvironments in the South Icelandic Basin:dinoflagellate cysts as proxies for the North Atlantic surface circulation[J]. Review of Palaeobotany and Palynology, 2004, 128:55-79.
[37] Rohling E J, Cane T R, Cooke S, et al. African monsoon variability during the previous interglacial maximum[J]. Earth and Planetary Science Letters, 2002, 202:61-75.
[38] 陈发虎, 张维信. 甘青地区的黄土地层学与第四纪冰川问题[M]. 北京:科学出版社,1993:11-12.[CHEN Fa-hu, ZHANG Wei-xin. Loess stratigraphy and Quaternary glaciation research in Gansu and Qinghai region[M].Beijing:Science Press, 1993:11 -12.]
[39] Walden F, Oldfield F, Smith J. Environmental magnetism:a practical guide[C]//Walden J, Oldfield F, Smith J P,eds.Technical Guide series, No.6. London:Quaternary Research Association, 1999:35-62.
[40] 鸟居雅之, 福间浩司, 苏黎, 等. 黄土-古土壤磁化率述评[J]. 海洋地质与第四纪地质,1999,19(3):83-96. [Torii M, Fukuma K, SU Li, et al. Initial magnetic susceptibility of the Chinese loess-paleosols:A review[J]. Marine Geology and Quaternary Geology, 1999, 19(3):83-96.]
[41] Kukla G L, An Z S. Loess stratigraphy in Central China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 72:203-225.
[42] Derbyshire E, Meng X M, Kemp R A. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record[J]. Journal of Arid Environments, 1998, 39:497-516.
[43] Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese Loess[J]. Nature, 1990, 346:737-739.
[44] 刘秀铭, 刘东生, Heller F, 等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究,1990,10(1):42-50. [LIU Xiu-ming, LIU Tung-sheng, Heller F, et al. Magnetic susceptibility depend on frequency of Chinese loess and paleoclimatic changes[J]. Quaternary Sciences, 19990, 10(1):42-50.]
[45] 刘秀铭, 刘东生, Heller F, 等. 中国黄土磁颗粒分析及其古气候意义[J]. 中国科学B辑,1991,6:639-644.[LIU Xiu-ming, LIU Tung-sheng, Heller F, et al. Magnetic grain analysis of Chinese loess and its implication for paleoclimatic research[J]. Science in China (Series B), 1991 , 6:639-644.]
[46] 刘秀铭, 刘东生, Heller F,等. 中国黄土磁化率与第四纪古气候研究[J]. 地质科学,1992(增刊):279-284.[LIU Xiu-ming, LIU Tung-sheng, Heller F, et al. Magnetic susceptibility of Chinese loess and Quaternary paleoclimatic research[J]. Chinese Journal of Geology, 1992 (Supplement):279-284.]
[47] Fang X M, Fukusawa, Pan B T, et al. Asian summer monsoon instability during the last 60000 a:magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 1999, 168:219-232.
[48] 邬光剑, 潘保田, 管清玉, 等. 祁连山东段北麓近10 ka来的气候变化的初步研究[J]. 中国沙漠,1998,18(3):193-200. [WU Guang-jian, PAN Bao-tian, GUAN Qing-yu, et al. Climatic changes in the north piedmont of eastern Qilian mountains since 10 kaBP[J]. Journal of Desert Research, 1998, 18(3):193-200.]
[49] 邬光剑, 潘保田, 管清玉, 等. 祁连山东段全新世与现代水热组合特征研究[J]. 地理科学,2000,20(2):160-165. [WU Guang-jian, PAN Bao-tian, GUAN Qing-yu, et al. Study on hydrothermal characteristic of eastern Qilian mountains in Holocene and present[J]. Scientia Geographica Sinica, 2000, 20(2):160-165.]
[50] 刘志刚, 潘保田, 邬光剑, 等. 末次间冰期以来中国西北部沙漠边缘区夏季风变化初步研究[J]. 中国沙漠,2000,20(4):375-377. [LIU Zhi-gang, PAN Bao-tian, WU Guang-jian, et al. Initial research of summer monsoon change at desert marginal zone in the Northwest of China since the last interglacial[J]. Journal of Desert Research, 2000, 20(4):375-377.]
[51] 夏应菲, 汪永进, 陈峻. 李家岗下蜀黄土剖面的反射光谱研究[J]. 土壤学报,2000,37(4):443-448. [XIA Ying-fei, WANG Yong-jin, CHEN Jun. Systematic study on reflectance spectrum of Xiashu loess in Lijiagang, Nanjing[J]. Acta Pedologica Sinica, 2000, 37(4):443-448.]
[52] 杨石岭, 丁仲礼, 秦小光, 等. 黄土沉积中红光/反射光亮度值变化及古气候意义[J].第四纪研究,1999,19(4):125.[YANG Shi-ling, DING Zhong-li, QIN Xiao-guang, et al. Luminosity ratio of red light to reflected light of loess deposit and its implication of paleoclimatic research[J]. Quaternary Sciences, 1999 , 4:125.]
[53] Fang X M, Li J J. Millennial-scale mosoonal climatic change from poleosol sequences on the Chinese Western Loess Plateau and Tibetan Plateau:a brief summary and review[J]. Chinese Science Bulletin,1999,44(supplement):38-52.
[54] 杨胜利, 方小敏, 李吉均, 等. 表土颜色和气候定性至半定性关系研究[J]. 中国科学D辑,2001,31:175-181.[YANG Sheng-li, FANG Xiao-min, LI Ji-jun, et al. Transformation functions of soil color and climate[J]. Science in China(Series D), 2001 , 31:175-181.]
[55] Yang S L, Chen S Y, Yan M D, et al. Soil color:a new sensitive indicator from climate change[J]. Chinese Science Bulletin,1999,44(supplement):282-285.
[56] Jouzel J, Lorius C, Petit J R, et al. Vostok ice core:a continuous isotope temperature record over the last climatic cycle (160000 years)[J]. Nature, 1987, 329:402-408.
[57] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of past 420000 years from the Vostok ice core, Antarctic[J]. Nature, 1999, 399:429-436.
[58] Katharina Pahnke, Rainer Zahn, Elderfield Henry, et al. 340000-year Centennial-scale marine record of southern hemisphere climatic oscillation[J]. Science, 2003, 301:948-952.
[59] Linsley B K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150000 years[J]. Nature, 1996, 380:234-267.
[60] Tudhope A W, Chilcott C P, McCulloch M T, et al. Variability in the El Niňo-Southern Oscillation Through a Glacial-Interglacial Cycle[J]. Science, 2001, 291:1511-1517.
[61] Shankleton N J. The 100000-year ice-age cycle identified and found to lag temperature,carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289:1897-1902.
[62] 涂霞, 郑范, 王吉良, 等. 南海北部末次间冰期早期的突然降温事件[J]. 中国科学D辑,2001,31(10):823-827. [TU Xia, ZHENG Fan, WANG Ji-liang, et al. An abrupt cooling event early in the last glacial in the northern South China Sea[J]. Science in China(Series D), 2001, 44(10):865-870.]
[63] Tamburini F, Adatte T, Bernasconi S M, et al. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0~140000 years):mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 20:147-168.
[64] Rasmussen T L, Thomsen E, Kuijpers Antoon, et al. Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial)[J]. Quaternary Science Reviews, 2003, 22:809-821.
[65] 金祖辉, 陈隽. 西太平洋暖池区海表水温暖异常对东亚夏季风影响的研究[J]. 大气科学,2002,26(1):57-68. [JIN Zu-hui, CHEN Jun. A composite study of the influence of SST warm anomalies over the Western Pacific Warm Pool on Asian Summer Monsoon[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(1):57-68.]
[66] 张存杰, 谢金南, 李栋梁, 等. 东亚季风对西北地区干旱气候的影响[J]. 高原气象,2002,21(2):193-198. [ZHANG Cun-jie, XIE Jin-nan, LI Dong-liang, et al. Effect of East-Asian monsoon on drought climate of Northwest China[J]. Plateau Meteorology, 2002, 21(2):193-198.]
[67] Prokopenko A A, Karabanov E B, Williams D F, et al. The stability and abrupt ending of the Last Interglaciation in Southeastern Siberia[J]. Quaternary Research, 2002, 58:56-59.
[68] Huang C C, Zhou J, Pang J L. A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin, China[J]. Holocence, 2000, 10(1):135-143.
[69] 陈宝群, 黄春长, 李平华. 陕西扶风黄土台塬全新世成壤环境变化研究[J]. 中国沙漠,2004,24(2):149-152. [CHEN Bao-qun, HUANG Chun-chang, LI Ping-hua. Holocene pedogenesis and environmental change on the loess tableland in Fufeng country, Shaanxi Province[J]. Journal of Desert Research, 2004, 24(2):149-152.]
[70] 黄萍, 庞奖励, 黄春长. 渭北黄土台塬全新世地层高分辨率研究[J]. 地层学杂志,2001,25(2):107-110. [HUANG Ping, PANG Jiang-li, HUANG Chun-chang. High resolution studies of the Holocene loess strata of the loess tableland in the Weihe river basin[J]. Journal of Stratigraphy, 2001, 25(2):107-110.]
[71] 黄春长, 庞奖励, 陈宝群, 等. 扶风黄土台塬全新世多周期土壤研究[J]. 西北大学学报自然科学版,2001,31(6):509-513. [HUANG Chun-chang, PANG Jiang-li, CHEN Bao-qun, et al. Polycyclic soil on the Zhouyuan loess tableland in Fufeng country in Shaanxi Province[J]. Journal of Northwest University (Natural Science Edition), 2001, 31(6):509-513.]
[72] Huang C C, Pang J L, Huang P. An early Holocene erosion phase on the loess tablelands in the southern Loess Plateau of China[J]. Geomorphology, 2002, 43:209-218.
[73] Huang C C, Pang J L, Huang P, et al. High-resolution studies of the oldest cultivated soils in the southern Loess Plateau of China[J]. Catena, 2002, 47:29-42.
[74] 庞奖励, 黄春长. 陕西五里铺黄土剖面中微量元素地球化学特征[J]. 长春科技大学学报,2001,31(2):180-184. [PANG Jiang-li, HUANG Chun-chang. Geochemical characters of trace elements in the Wulipu loess-paleosol section, Shaanxi Province[J]. Journal of Changchun University of Science and Technology, 2001, 31(2):180-184.]
[75] 张战平, 庞奖励, 黄春长, 等. 陕西歧山全新世黄土高分辨率气候记录[J]. 中国沙漠,2000,20(4):415-417. [ZHANG Zhan-ping, PANG Jiang-li, HUANG Chun-chang, et al. Climatic record with high resolution in the Holocene loess in Qishan, Shaanxi[J]. Journal of Desert Research, 2000, 20(4):415-417.]
[76] 庞奖励, 黄春长, 张战平. 陕西歧山黄土剖面Rb、Sr组成与高分辨率气候变化[J]. 沉积学报,2001,19(4):637-641. [PANG Jiang-li, HUANG Chun-chang, ZHANG Zhan-ping. Rb,Si elements and high resolution climatic records in the loess-paleosol profile at Qishan, Shaanxi[J]. Acta Sedimentologica Sinica, 2001, 19(4):637-641.]
[77] 黄春长, 庞奖励, 黄萍, 等. 关中盆地西部黄土台塬全新世气候事件研究[J]. 干旱区地理,2002,25(1):10-15. [HUANG Chun-chang, PANG Jiang-li, HUANG Ping, et al. Holocene climatic events on the loess tableland in the western Guanzhong basin, China[J]. Arid Land Geography, 2002, 25(1):10-15.]
[78] 庞奖励, 黄春长, 张战平. 陕西五里铺黄土微量元素组成与全新世气候不稳定性研究[J]. 中国沙漠,2001,21(2):151-156. [PANG Jiang-li, HUANG Chun-chang, ZHANG Zhan-ping. Pb, Cu, Zn, Cd, Mn elements and climatic change in the loess-paleosol profile at Qishan, Shaanxi Province[J]. Journal of Desert Research, 2001, 21(2):151-156.]
[79] 庞奖励, 黄春长. 一万年以来西安地区古土壤特征与气候波动变化研究[J]. 高原气象,2003,22(1):79-83. [PANG Jiang-li, HUANG Chun-chang. Study on paleosol features in Xi'an area and climatic change during the last 10000 years[J]. Plateau Meteorology, 2003, 22(1):79-83.]
[80] 贾耀锋, 庞奖励. 关中盆地东部全新世剖面粒度组成与气候变化研究[J]. 中国沙漠,2004,24(2):153-155. [JIA Yao-feng, PANG Jiang-li. Composition characteristics of grain size and suggesting paleoclimate at Liwan section in eastern Guanzhong basin[J]. Journal of Desert Research, 2004, 24(2):153-155.]
[81] 黄春长, 延军平, 马进福,等. 渭河阶地全新世成壤过程及人类因素研究[J]. 陕西师范大学学报自然科学版,1997,25(2):72-76. [HUANG Chun-chang, YAN Jun-ping, MA Jin-fu, et al. Pedological processes and human dimensions on Weihe river plain in Holocene[J]. Journal of Shaanxi Normal University (Natural Science Edition), 1997, 25(2):72-76.]
[82] 庞奖励, 黄春长. 黄土-古土壤序列的典型微结构与1万年来的环境演化——以关中地区的全新世黄土剖面为例[J]. 吉林大学学报地球科学版,2002,32(3):268-272. [PANG Jiang-li, HUANG Chun-chang. Typical micromorphological features of the loess-palaeosol sequence and environmental change during last 10000 years[J]. Journal of Jilin University(Earth Science Edition), 2002, 32(3):268-272.]
[83] 李小强, 周卫建, 安芷生, 等. 沙漠-黄土过渡带13 kaBP以来季风演化的古植被记录[J]. 植物学报,2000,42(8):868-872. [LI Xiao-qiang, ZHOU Wei-jian, AN Zhi-sheng, et al. The palaeovegetation record of monsoon evolution in the desert-loess transition zone for the last 13 kaBP[J]. Acta Botanica Sinica, 2000, 42(8):868-872.]
[84] Chen F H, Wu W, Holmes J A, et al. A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China[J]. Chinese Science Bulletin, 2003, 48(14):1401-1410.
计量
- 文章访问数: 1529
- HTML全文浏览量: 153
- PDF下载量: 8