九州台古土壤S1记录的末次间冰期东亚夏季风变化

饶志国, 陈发虎, 汪海斌, 张家武, 朱照宇

饶志国, 陈发虎, 汪海斌, 张家武, 朱照宇. 九州台古土壤S1记录的末次间冰期东亚夏季风变化[J]. 海洋地质与第四纪地质, 2006, 26(2): 103-111.
引用本文: 饶志国, 陈发虎, 汪海斌, 张家武, 朱照宇. 九州台古土壤S1记录的末次间冰期东亚夏季风变化[J]. 海洋地质与第四纪地质, 2006, 26(2): 103-111.
RAO Zhi-guo, CHEN Fa-hu, WANG Hai-bin, ZHANG Jia-wu, ZHU Zhao-yu. EASTERN ASIAN SUMMER MONSOON VARIATION DURING MIS5e AS RECORDED BY PALEOSOL S1 AT JIUZHOUTAI LOESS SECTION[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 103-111.
Citation: RAO Zhi-guo, CHEN Fa-hu, WANG Hai-bin, ZHANG Jia-wu, ZHU Zhao-yu. EASTERN ASIAN SUMMER MONSOON VARIATION DURING MIS5e AS RECORDED BY PALEOSOL S1 AT JIUZHOUTAI LOESS SECTION[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 103-111.

九州台古土壤S1记录的末次间冰期东亚夏季风变化

基金项目: 

国家自然科学杰出青年基金项目(40125001)

教育部博士点基金(20020730010)

科技部重点国际合作项目(2002CB714004)

详细信息
    作者简介:

    饶志国(1978-),男,博士生,从事地球化学和古气候变化研究,E-mail:zgrao@gig.ac.cn

  • 中图分类号: P532

EASTERN ASIAN SUMMER MONSOON VARIATION DURING MIS5e AS RECORDED BY PALEOSOL S1 AT JIUZHOUTAI LOESS SECTION

  • 摘要: 对沉积速率较高的黄土高原西部地区九州台剖面S1古土壤的夏季风代用指标——磁化率、碳酸钙含量、色度进行了测量。综合分析结果表明,MIS5e开始前,夏季风有一次衰退事件,末次盛间冰期早期夏季风强于晚期,而中期夏季风强度相对较弱,然而这种变化是较为和缓的,并没有表现出类似GRIP冰心氧同位素的大幅度、快速变化,表明MIS5e期间东亚夏季风是相对稳定的。来自海洋的研究表明,西太平洋洋面温度(SST)和洋面高度在MIS5e早期和晚期相对较高,中期相对较低,证实了西太平洋环境变化和东亚夏季风强度之间存在成因上的联系。与先前有关全新世东亚夏季风研究结果的对比表明,MIS5e和全新世东亚夏季风演化具有一定的相似性,可能反映了低纬海洋和高纬大陆之间能量和物质交换对太阳辐射响应的某种内在机制。
    Abstract: Proxies of the Eastern Asian Summer Monsoon (EASM)-magnetic susceptibility depending on frequency,carbonate content and soil color of paleosol S1 of Jiuzhoutai loess-paleosol profile whose accumulative rate is high and which is located in western Chinese Loess Plateau have been measured. Synthesis analysis of the obtained data deduced a decline event of EASM at the beginning of MIS5e, and then the intensity of EASM increased quickly until the last interglacial. Early MIS5e EASM is stronger than the late MIS5e one, and the middle MIS5e is the weakest. The gentle change of MIS5e EASM has no characters of the abrupt change of GRIP oxygen isotope, suggesting the EASM is relative stable during MIS5e. The surface sea temperature and sea level in the west part of the Pacific is relatively high during early and late MIS5e and relatively low during middle MIS5e, consistent with the change of EASM, meaning that environmental change of the west part of the Pacific partly controlled the change of the EASM. Previous studies on Holocene EASM suggested that early Holocene EASM is stronger than late Holocene one, and middle Holocene is relatively dry. The same character of EASM change of MIS5e and Holocene may reveal the inherence mechanism of EASM change.
  • 苏北盆地是我国东部陆相中、新生代大型盆地之一,盆地内已发现多个富含油气的凹陷以及多套烃源岩层系,其中古近系阜宁组阜四段(E1f4)和阜二段(E1f2)以暗色泥岩为主的烃源岩是本区主要生油岩,油气显示丰富,在非常规油气勘探方面(页岩油)也逐渐显示出较大潜力[1]。相关文献指出,苏北探区全区有200多口钻井在阜二段和阜四段泥页岩层系中见油气显示,其中多口井试获原油,如盐城凹陷的YC1井在阜二段试获日产油36.83 m3,海安凹陷的H20井阜四段累计试获原油11.65 t,说明这两套泥页岩层系也是我国页岩油气勘探的重点层系[2]

    前人虽然从烃源评价角度对阜二段、阜四段泥页岩的基本有机地球化学参数(有机碳、生烃潜量、氯仿沥青“A”含量、有机质类型与成熟度Ro)进行过统计[3-9],但样品来源、数量、纵向变化特征等信息均没有阐述,且往往只是针对某一重点凹陷进行含油性、储集性评价,而对盆地内各凹陷之间烃源岩的生烃条件差异性、横向对比性研究不够深入;同时,对苏北盆地阜二段、阜四段页岩油的富集机理、成藏地质条件及勘探前景等虽零星有论述[10-11],但均缺乏系统性剖析,一定程度上制约了对阜二段、阜四段富有机质泥页岩有机地球化学特征的系统认识以及对各凹陷已知油气藏贡献大小的判识。本文在对前人资料整理的基础上,采集典型样品,较为系统地对苏北盆地阜宁组烃源岩的地球化学特征和储集性能进行分析,对阜宁组阜二段、阜四段烃源岩在各凹陷之间的展布规律进行了精细的评价,以便为该层段常规与非常规油气勘探评价、已知油气藏烃源岩贡献判识提供基础资料。

    苏北盆地探区属于苏北-南黄海盆地的陆上部分,东临黄海,西接鲁苏隆起,南侧为苏南隆起,北部以滨海隆起为界,总面积约33200 km2图1[12]。盆地自形成后经历了多期构造运动的改造,以建湖隆起为界,向北为盐阜坳陷,南侧称为东台坳陷,高邮、金湖、海安、盐城、溱潼等凹陷分布其中[13]。苏北盆地基底为海相中、古生代沉积实体;盖层为陆相中、新生代断拗沉积体[14],包括泰州组、阜宁组、戴南组、三垛组、盐城组等多套地层,地层沉积厚度超过了11000 m,其中阜宁组E1f2、E1f4暗色泥页岩最为发育,属较稳定的较深湖沉积,是页岩油评价与勘探的主要目的层[15]

    图  1  苏北盆地构造单元划分略图及重点井位图[12]
    Figure  1.  Tectonic map of Subei Basin and locations of the key wells

    阜二段(E1f2)沉积期属盆地拗陷演化阶段,湖盆比较平缓,周围高差不大,基本还保持西高东低的格局。E1f2在纵向上可分3个阶段:海侵开始阶段、海侵影响阶段与海侵退却阶段。地层厚度200~300 m,最大厚度约370 m,整体以灰黑色泥岩为主,与下伏阜一段整合接触。E1f2除金湖凹陷西斜坡下部为砂岩外,以富含有机质的暗色泥页岩为主,在高邮、金湖、海安、溱潼、盐城凹陷均有分布,向西凸起,厚度逐渐减薄,直至尖灭;具厚度大、分布广的特征。

    阜四段(E1f4)沉积期属盆地拗陷演化阶段,主体为半深湖-深湖环境。该段地层主要由灰黑色泥岩夹薄层泥灰岩组成,总厚度300~400 m,最厚达500 m,受吴堡事件剥蚀现象严重,导致凹陷和低凸起及隆起部位泥页岩厚度差异较大[13]。E1f4上亚段富有机质泥页岩主要分布于高邮凹陷和金湖凹陷,金湖凹陷的汊涧和龙岗次凹厚度约为300余米,厚度向凹陷边缘减薄;高邮凹陷深凹带厚度可达400余米,同样向凹陷边缘减薄。海安、盐城、阜宁凹陷仅在深凹带局部残存,厚度多小于100 m[14]。E1f4下亚段泥页岩在全区分布较为普遍,特别是在深凹带和斜坡带,残存厚度均较大,多大于100 m。

    本次研究主要采集了苏北盆地70口井的395块典型样品(部分重点井已在图1标出),涉及高邮凹陷、海安凹陷、金湖凹陷、溱潼凹陷、盐城凹陷、泰州凸起阜宁组阜二段和阜四段两套烃源岩,另外采集油样7个。根据研究需要,对采集样品开展了有效烃源岩评价、泥页岩储层评价以及含油性分析在内的20余项分析测试项目。本次测试中涉及到的所有测试项目均在中石化无锡石油地质研究所实验测试研究中心完成。

    众所周知,在评价烃源岩生油潜力的参数中有机质丰度是关键指标之一,含量高低直接影响着对油气资源前景的评价。其中由于影响有机碳含量的因素较少,是有机质丰度评价中最直接也是最为重要的参数,有机质丰度越高,代表生烃能力越强[16]

    通过对苏北盆地290个阜二、阜四段泥页岩样品的热解分析结果统计,阜宁组二套陆相泥页岩层段有机质丰度基本集中于0.5%~2.0%,局部地区达到2.5%以上,纵向上富有机质泥页岩非均质性较强,横向上各凹陷之间也存在一定的差异。阜二段TOC为0.152%~6.992%,平均为2.011%,其中盐城凹陷阜二段泥页岩TOC整体较高,普遍大于2.5%,其他各凹陷泥页岩TOC含量略有差异(表1)。氯仿沥青“A”为 0. 010%~0.447%,平均为 0.132%,生烃潜量(S1 + S2)最大为 50.824 mg/g,最小为0.032 mg/g,平均为10.241 mg/g。各凹陷含量略有不同,表明各凹陷所含页岩油资源略有差异。阜四段TOC为0.184%~4.322%,平均为1.263%,氯仿沥青“A”平均为 0.025%,生烃潜量(S1 + S2)最大为 42.5 mg/g,最小为0.02 mg/g,平均为4.871 mg/g(见表2)。阜二段总体有机质丰度高于阜四段。

    表  1  苏北盆地探区阜宁组阜二段富有机质泥页岩丰度统计
    Table  1.  Statistical table of organic matter abundance for source rocks of the F2 Member of Funing Formation in the Subei Basin
    探区TOC(%)/样品数氯仿沥青“A”(%)/样品数HI(%)/样品数S1+S2(mg/g)/样品数
    高邮凹陷1.583/380.034/5362.301/386.823/38
    金湖凹陷1.724/420.208/5328.432/427.854/42
    海安凹陷2.094/450.099/8439.815/4513.123/45
    盐城凹陷2.833/380.159/14481.000/3815.630/38
    溱潼凹陷1.691/19393.762/197.351/19
    泰州凸起1.154/2290.000/23.000/2
    平均值2.011/1840.132/32400.511/18410.241/184
    下载: 导出CSV 
    | 显示表格
    表  2  苏北盆地探区阜宁组阜四段富有机质泥页岩丰度统计
    Table  2.  Statistical table of organic matter abundance for source rocks of the F4 Member of Funing Formation in the Subei Basin
    探区TOC(%)/样品数氯仿沥青“仿沥(%)/样品数HI(%)/样品数S1+S2(mg/g)/样品数
    高邮凹陷1.102/39246.032/334.080/33
    金湖凹陷1.281/290.025/3257.670/183.963/18
    海安凹陷0.572/1144.000/10.834/1
    盐城凹陷1.163/17348.000/27.891/2
    溱潼凹陷1.663/20237.811/206.892/20
    平均值1.263/1060.025/4248.012/744.871/74
    下载: 导出CSV 
    | 显示表格

    为了研究苏北盆地阜宁组两套陆相泥页岩层段有机质丰度在纵向上的差异性,选取了阜二段、阜四段重点层位阜2-2亚段、阜4-1亚段的TOC平面分布进行论述(图2),同时选取金湖凹陷河参1井、崔2井,海安凹陷安1井三组典型钻井取芯段进行评价(图3)。

    图  2  苏北盆地重点凹陷阜2-2亚段、阜4-1亚段有机碳平面分布图
    Figure  2.  The plane distribution of total organic carbon of the Sub-members F2-1 and F4-1 in the key depressions of Subei Basin
    图  3  苏北盆地重点凹陷典型井阜二段、阜四段各亚段有机碳分布特征
    Figure  3.  The characteristics of total organic carbon in the typical wells of the F2 and F4 Members of Funing Formation in the key depressions of the Subei Basin

    依据纵向上E1f2含油泥页岩的TOC含量变化特征,将E1f2进一步划分为3个亚段。阜2-1亚段TOC总体0.5%~2.0%,各凹陷均有分布;阜2-2亚段平均TOC均值大于2%,整体为1%~3%,广泛分布于金湖、高邮、溱潼、海安及盐城凹陷,高邮凹陷深凹带厚度接近100 m,向金湖西斜坡带逐渐减薄(图2);阜2-3亚段TOC为0.5%~1.5%,分布广泛。从两口重点井TOC的纵向分布规律看,阜2-1、阜2-2的TOC含量都高于阜2-3亚段。因此,阜二段纵向上虽然TOC差异较大,但变化规律一致,以阜2-1、阜2-2两个页岩段的TOC含量稍高,表明这两个页岩层段具有更高的生烃潜力。

    依据纵向上E1f4泥页岩的TOC含量变化特征,将E1f4进一步划分为两个亚段(图2图3)。阜4-1亚段TOC为1%~1.5%,主要分布在金湖、高邮、溱潼凹陷,海安和盐城凹陷分布局限,厚度薄。阜4-2亚段TOC为0.5%~1%,主要分布在金湖、高邮凹陷,厚度最大140 m,溱潼凹陷次之,海安和盐城凹陷也有残存。从重点井金湖凹陷崔2井阜四段烃源岩TOC变化也可以看出,阜4-1亚段TOC含量为0.5%~2.4%,略高于阜4-2亚段,纵向非均质性明显。

    苏北盆地阜二段、阜四段两套泥页岩虽然纵向非均质性明显,横向非均质性在同一沉积相带内各凹陷略有差异,同一凹陷不同地区和构造单元的泥页岩地球化学特征差异不明显,虽有个别异常点,但总体并无变化规律可循。苏北盆地阜宁组两套泥页岩地球化学特征在纵向、横向的分布特点主要与沉积特征有关。晚白垩世—古新世大型内陆坳陷沉积特征决定了区内E1f2和E1f4沉积相带规模巨大,跨构造单元,跨海陆区域,且具单一沉积中心的特征[10]。该时期,断层(包括凹陷的边界断层)虽然控制地层厚度,但并不控制沉积相,导致苏北盆地各凹陷均属同一沉积相带或沉积相变化不大,如高邮、金湖、海安、盐城、阜宁凹陷E1f2期均为半深湖—深湖相(金湖凹陷和高邮凹陷西部地区在E1f2沉积早期为浅湖相);同一凹陷内部斜坡带和深凹带沉积相带变化也不大,正是这一沉积特征决定了苏北盆地E1f2和E1f4满盆深湖,腐泥型泥页岩遍及全盆,且横向上非均质性不明显,各凹陷可对比。纵向上,苏北盆地晚白垩世—古新世在大型内陆坳陷背景下,发育3个次级断拗演化旋回,其中E1f2、E1f4均形成于拗陷演化阶段[17]。频繁的断拗转换,导致纵向上沉积相变较快,泥页岩非均质性强。

    有机质类型是衡量烃源岩质量的指标,不同类型有机质反映生烃母质的质量,不同的生烃母质其生油能力也不同,生油门限值和生烃过程也有一定差别[18]。本次有机质类型根据大量热解数据并结合有机岩石学分析结果进行评价。

    大量热解氢指数HI—Tmax 分析资料显示,苏北盆地阜宁组阜二段和阜四段有机质类型复杂,I型到III型均有发育。阜二段主要是Ⅰ型(腐泥型)、II1型(以腐泥为主的混合型)干酪根,后者主要为Ⅱ2—Ⅲ型(腐殖型)、少数Ⅱ1型(以腐殖为主的混合型)。

    根据干酪根统计数据可以看出(表3),E1f2泥页岩Ⅰ—Ⅱ1型干酪根所占比例最大,达52%~84%,明显好于E1f4段;E1f4段泥页岩Ⅰ—Ⅱ1型干酪根占35%~51%;横向上,E1f2泥页岩自西向东,Ⅰ—Ⅱ1型干酪根比例增大(表3),东部海安和盐城凹陷泥页岩有机质类型好于西部高邮和金湖凹陷,这与有机质丰度变化相似;而E1f4泥页岩有机质类型分布特征则相反,Ⅰ—Ⅱ1型干酪根主要分布在高邮凹陷深凹带,并且西部金湖和高邮凹陷明显好于东部盐城和海安凹陷(表3),这主要与沉积相发生变化有关[19]

    表  3  苏北盆地各凹陷泥页岩有机质类型百分含量统计表(%)
    Table  3.  Statistical table of percentage content of organic matter types in each depression of the Subei Basin
    层位分析项目金湖凹陷高邮凹陷海安凹陷盐城凹陷溱潼凹陷
    IⅡ1Ⅱ2IⅡ1Ⅱ2IⅡ1Ⅱ2IⅡ1Ⅱ2IⅡ1Ⅱ2
    阜二段热解2834231521313315245321276810635302411
    阜四段热解5017337442920637322543539228274124
    下载: 导出CSV 
    | 显示表格

    全岩有机显微组分数据显示,苏北盆地阜宁组显微组分以腐泥组为主,镜质组和壳质组含量较高,惰性组含量较低。其中腐泥组的来源主要是藻类体及其降解产物,标志藻类微生物的生源输入,而镜质组、壳质组和惰性组则代表陆生高等植物的生源输入[9]

    对苏北盆地样品的全岩有机岩石学统计分析表明,苏北盆地阜二段泥页岩有机显微组分相对含量中,平均含腐泥组47.3%,壳质组9.1%,镜质组35.2%,惰性组8.6%。主要显微组分为腐泥组和镜质组,含少量壳质组(主要是孢粉体)、惰性组。苏北盆地阜四段泥页岩有机显微组分相对含量中,平均含腐泥组42.2%,壳质组8.5%,镜质组41.8%,惰性组7.5%。与阜二段泥页岩比较,阜四段泥页岩相对贫腐泥组、壳质组,相对富惰性组和镜质组,有机质类型相对差些,与热解结果相符合。显微组分的这种分布和组成模式反映了有机质水生和陆生的双重来源[20]

    由于苏北盆地各凹陷均属同一沉积相带,如高邮、金湖、海安、盐城、阜宁凹陷E1f2期均为半深湖—深湖相(金湖凹陷和高邮凹陷西部地区在E1f2沉积早期为浅湖相),因此导致腐泥组是主要的生烃有机质,其富集程度和分布范围对页岩油富集规模影响较大。本研究区腐泥组中层状藻类体和沥青质体含量占绝对优势,主要来源于降解的藻类体(图4ch)。层状藻类体极为发育,呈细长条状顺层分布,形态保存完整,呈黄色荧光(图4abf);部分样品中见密集分布的线形藻类薄层(图4d),呈橙黄色荧光[21-22];沥青质体或藻纹层中可见发黄绿色强荧光的结构藻类体,主要为葡萄球藻,其次为个体较小的甲藻(图4egh)。这些结构藻类体降解后在纹层中均有残迹存在,是最重要的生烃母质。

    图  4  阜宁组阜二段、阜四段烃源岩有机显微组分照片
    a. 高邮凹陷单1井阜二段2 101.8 m灰黑色泥岩层状藻类体显微照片;b. 海安凹陷安24井阜二段3 034.9 m灰黑色泥岩层状藻类体显微照片;c. 金湖凹陷崔19井阜二段1 491.1 m沥青质体显微照片;d. 金湖凹陷河参1井阜二段3 151 m灰黑色泥岩层状藻类体显微照片;e. 盐城凹陷新朱1井阜二段2 729.8 m灰黑色泥岩沥青质体、结构藻类体显微照片;f. 金湖凹陷戴1阜二段1 636 m灰黑色泥岩层状藻类体显微照片;g. 金湖凹陷河X4井阜四段1 894.2 m深灰色灰质泥岩沥青质体、结构藻类体显微照片;h. 盐城凹陷站1井阜四段2 088.1 m深灰色泥岩矿物沥青基质显微照片;I.海安凹陷陈3井阜四段2 206.7 m孢粉体显微照片。
    Figure  4.  Photos of organic macerals of source rocks of the F2 and F4 Members of Funing Formation

    源于高等植物碎屑的镜质体反射率(Ro)随热演化程度的升高而稳定增大,并且有相对广泛、稳定的可比性。而镜质体测试的可靠性和有效性一直备受研究人员关注,目前镜质体反射率的测量还有一些不足之处,比如有机质类型与镜质体反射率的关系,某些有机质类型对镜质体反射率具有抑制作用。许多学者均指出, 壳质组、藻类体占优势的岩石中,镜质体反射率受到抑制[23]。目前,解决镜质体反射率抑制问题的有效方法为FAMM(fluorescence alteration of multiple macerals)技术[24]。为了更好地评价镜质体反射率测定结果的合理性,在开展镜质体反射率测定的同时,对个别样品开展了FAMM分析,使苏北盆地阜二、阜四段烃源岩成熟度评价更趋于合理。

    镜质体反射率测试结果表明,各凹陷阜二段—阜四段泥页岩镜质体反射率总体随深度的增高而增大,但同一深度段镜质体反射率差异明显,这可能因为各凹陷不同地区古地温存在一定的差异,同时不同地区泥页岩的有机质类型存在差异,从而会导致镜质体反射率抑制程度不同。另外,各凹陷在2500~4000 m深度段,其镜质体反射率值较上部深度段偏低的特点,这可能主要与该深度段样品主要处于深洼区,泥页岩有机质类型相对较好,镜质体反射率受抑制程度相对大相关,这为FAMM分析结果所证实。图5为溱潼凹陷鲁1井2965.62 m深度段灰黑色灰质泥岩样品(阜四段,有机质类型属Ⅱ1)FAMM分析等效镜质体反射图,可见该样品等效镜质体反射率值为0.76%,镜质体反射率抑制值为0.20%,这意味着镜质体反射率Ro值约为0.56%,该样品的实测镜质体反射率Ro值为0.55%,两者结果相吻合。而对于有机质类型为Ⅲ型的泥页岩样品,FAMM分析结果显示其镜质体反射率抑制程度很低或无抑制现象,镜质体反射率实测值可以代表其真实成熟度值。

    图  5  溱潼凹陷鲁1井2965.62 m灰黑色灰质泥岩FAMM分析等效镜质体反射图
    Figure  5.  FAMM analysis of equivalent vitrinite reflectogram of a gray black grey mudstone from well Lu1 in Qintong Sag, 2965.62 m

    研究表明(图6),阜二段烃源岩成熟度总体大于0.8%,除了高邮、溱潼凹陷深凹带为高成熟生烃阶段(Ro>1.2%),其他地区,包括高邮斜坡带、金湖、溱潼、盐城、海安斜坡带泥页岩成熟度均小于1.0%,处于成熟阶段,主要以生油为主。阜四段 Ro总体上大于0.5%,为0.5%~0.7%,处于低熟—成熟生烃阶段,除高邮凹陷深凹带、金湖三河次凹和龙港次凹、溱潼凹陷深凹带泥页岩成熟度相对较高,大于0.7%,Ro 最大为 1.2%,总体上成熟度低于阜四段。

    图  6  苏北盆地各重点凹陷成熟度平面分布图
    Figure  6.  The plane distribution of maturity of major depressions in the Subei Basin

    苏北盆地阜宁组生油岩的演化严格受断陷制约[25],断陷深凹有机质演化最高,是成熟油中心形成的中心区;而广阔的斜坡和低凸起演化程度相对较低。盆地东部各凹陷生油岩直到新近纪深埋才进入大量生烃的晚期成油凹陷,而中部金湖、高邮及溱潼凹陷则是一类古近系沉积时期就已进入生烃门限的早期成油凹陷,从而决定不同地区原油的成熟度不同。

    为了获取泥页岩矿物组成特征,对苏北盆地重点凹陷阜二、阜四段泥页岩开展全岩和黏土X射线衍射分析。横向上,阜二段和阜四段不同凹陷矿物组成类似,含量有差异。阜二段各凹陷,以碳酸盐矿物和黏土矿物为主,石英和方沸石含量次之,少量黄铁矿、长石,微量石膏(表4)。溱潼凹陷阜二段未检测出铁白云石,白云石含量较高,而盐城凹陷则与之相反,铁白云石含量相对较高,白云石微量。阜四段矿物组成以黏土矿物为主,次为石英和碳酸盐矿物,少量长石、黄铁矿和石膏,未见方沸石。阜四段泥页岩各凹陷的黏土矿物含量分布于38.7%~53%,高于阜二段28.2%~32.2%。黏土主要以伊/蒙混层矿物为主,同时含有一定量的伊利石,另含少量高岭石和绿泥石。前人研究表明,蒙脱石遇水膨胀能力是四种黏土矿物中最强的,依次为伊蒙混层、伊利石和高岭石[2]。苏北盆地黏土矿物中蒙脱石含量相对较高,页岩遇水易膨胀,对后期的压裂有一定影响。苏北盆地主要脆性矿物包括石英、长石、方解石和白云石,脆性矿物含量不仅对地层中原始裂缝发育有控制作用,而且影响后期压裂改造裂缝的条件。数据显示,苏北盆地阜二段各凹陷脆性矿物分布于49.3%~64.5%,各凹陷均值高达53.1%;阜四段脆性矿物分布于40%~52.8%,各凹陷脆性矿物含量值均在40%以上,说明阜宁组各页岩段脆性矿物含量均较高。整体上,阜二段高邮凹陷、金湖凹陷和溱潼凹陷各页岩段脆性矿物含量平均大于50%,黏土矿物含量约30%,对压裂造缝有利。这些特征与中国东部泌阳凹陷核三上(E1h3)页岩及美国 Barnett 页岩、Bakken页岩脆性相似[26],有利于天然缝的形成及后期压裂。高邮凹陷E1f4各页岩段脆性矿物含量大于50%,黏土矿物含量约为38%,有利于岩石的压裂改造。而其他凹陷阜四段脆性矿物含量相对较低,整体约40%。

    表  4  苏北盆地重点凹陷阜二段、阜四段全岩矿物组分
    Table  4.  The whole rock mineral components of the F2 and F4 Members of Funing Formation in the key depressions of Subei Basin
    层段重点凹陷石英钾长石斜长石方解石白云石铁白云石菱铁矿黄铁矿石膏方沸石黏土矿物脆性矿物
    高邮凹陷20.5101.8037.05011.10013.11020.9301.3022.9082.4007.61232.21050.810
    金湖凹陷20.3015.3237.62112.6048.51314.1091.0324.1011.62112.70129.61649.088
    阜二段海安凹陷21.2051.5145.08011.20317.60911.3140.8191.7950.919.91030.71256.013
    盐城凹陷22.7042.5232.42613.2053.01118.4121.1013.4922.19815.68130.20145.337
    溱潼凹陷32.8121.3329.0146.51015.011.0143.2212.1109.0128.2964.212
    高邮凹陷30.1931.7027.81312.3012.6154.2170.7982.1131.70138.70652.811
    金湖凹陷25.6022.8215.5188.2095.21819.3011.5132.8311.00741.21243.091
    阜四段海安凹陷22.0981.0784.09511.0442.0485.0112.05253.03340.045
    盐城凹陷20.0321.51612.0347.0152.0331.0174.0322.51449.02640.547
    溱潼凹陷18.0322.8186.3128.0657.61.0203.30244.20741.811
    下载: 导出CSV 
    | 显示表格

    纵向上,以金湖凹陷河参1井阜2-2和阜2-3亚段(分界深度3138 m)为例(图7),除了个别泥质灰岩外,金湖凹陷河参1井阜2-2和阜2-3泥页岩主要组成矿物为黏土、石英、碳酸盐、方沸石和长石。其中阜2-2亚段黏土矿物含量一般为20%~30%,以伊/蒙混层矿物占主体(相对百分含量55%左右),方沸石含量一般为7%~22%,并且由浅至深含量呈增高的趋势;而阜2-3段黏土矿物含量可达35%左右,同样以伊/蒙混层矿物占主体(相对百分含量55%左右)。可见,阜2-2亚段相对贫黏土矿物,并且由阜2-2顶部至阜2-3下部,黏土矿物含量总体上呈现增高的趋势;方沸石含量由阜2-2顶部至底部则具有增高的特征,总体与碳酸盐矿物含量呈反消长关系;而在阜2-3亚段,个别样品黏土矿物含量低,石英和长石矿物含量高,且不含方沸石矿物。

    图  7  金湖凹陷河参1井阜二段全岩矿物组成图
    Figure  7.  Mineral composition of the 2nd Member of Funing Formation, Jinhu Sag, Hecan 1 well

    对采集的阜宁组阜二段、阜四段泥页岩进行了孔隙度分析,部分样品开展了渗透率测定,由于泥页岩本身的易碎性,获取的物性数据相对较少,但是测试结果仍然能反映该段物性相对较好,结果见表5

    表  5  苏北盆地重点凹陷阜二、阜四段泥页岩孔隙度和渗透率统计表
    Table  5.  Statistical table of shale porosity and permeability in the 2nd and 4th Members of Funing Formation of the key sags in the Subei Basin
    层段重点凹陷孔隙度范围/%孔隙度平均值/%渗透率范围/10−3 μm2渗透率平均值/10−3 μm2
    高邮凹陷1.613~32.83413.22525.23325.233
    金湖凹陷3.761~17.9128.5610.0940.094
    阜二段海安凹陷1.441~12.8627.1320.0080.008
    盐城凹陷2~27.77111.962
    溱潼凹陷1.774~19.9159.6500.004~0.1150.005
    高邮凹陷4.293~27.37117.400
    金湖凹陷11.53011.530
    阜四段海安凹陷
    盐城凹陷16.171~20.31117.712
    溱潼凹陷12.641~26.26419.4450.0230.023
    下载: 导出CSV 
    | 显示表格

    各凹陷阜二、阜四段泥页岩孔隙度存在差异,其中,E1f2实测孔隙度平均10.1%,渗透率相差较大,最大为25.2×10−3 μm2(偏高可能与裂缝有关),最小0.004 ×10−3 μm2,平均6.32×10−3 μm2;E1f4实测孔隙度平均值16.52%,渗透率测点少,结果为0.023×10−3 μm2。通过与泌阳凹陷核三段上部页岩基质孔隙度4%~6%、渗透率(0.0001~0.0009)×10−3 μm2对比可知,苏北盆地阜宁组阜二段、阜四段页岩物性总体相对较好,具有一定的储集条件。另外,各凹陷阜二段、阜四段泥页岩孔隙值总体随埋藏深度的增加呈降低趋势,显示压实成岩作用是泥页岩孔隙度大小的重要制约因素。

    泥页岩储集空间类型、大小和排布不仅影响页岩的物性,而且还影响页岩油气的原地赋存与聚集[27]。在大量岩心观察及扫描电镜分析的基础上,结合压汞、低温液氮吸附测试结果以及前人研究成果,研究了阜二和阜四泥页岩储集空间孔缝类型与孔隙结构(图8)。苏北盆地阜宁组阜二段和阜四段泥页岩储集空间类型以裂缝和微孔隙为主,是页岩油的主要赋存空间[28]

    图  8  苏北盆地阜二段、阜四段泥页岩裂缝和孔隙类型图
    a.高邮凹陷临1井阜二段2 723.0 m灰色灰质泥岩微裂缝照片;b.高邮凹陷富深X1阜四段3 328.4 m灰黑色泥岩层理缝照片;c.高邮凹陷临1井阜二段2 723.0 m灰色灰质泥岩黄铁矿粒内孔隙照片;d.金湖凹陷河参1井阜二段3 183.5 m灰色泥岩有机质孔照片;e.盐城凹陷新洋1-5L井阜二段1 686.9 m白云石黏土矿物间孔隙照片;f.高邮凹陷联5-8L井阜四段2 104.2 m黑色泥岩有机质收缩缝照片。
    Figure  8.  Types of cracks and pores of shales in the F2 and F4 Members of Funing Formation

    在宏观尺度上,苏北盆地发育4类裂缝,分别为平移式剪裂缝、正向剪裂缝、顺层缝、正向剪裂缝,裂缝内多被方解石充填,裂缝发育处可见油气显示。泥页岩中微裂缝及层理缝较为常见,通常尺寸在纳米级-微米级,主要为沉积形成的层理缝及后期构造活动引起的微裂缝,期间通常有沥青充填,为主要的储集空间类型。另外,阜宁组阜二段、阜四段泥页岩样品氩离子抛光+扫描电镜分析发现,泥页岩样品中有机质颗粒与无机矿物颗粒之间均发育有20~100 nm不等宽度缝隙-有机质收缩缝,其成因与有机质在热演化过程中由于生烃作用,干酪根体积发生收缩有关。

    苏北盆地阜二段、阜四段泥页岩发育粒(晶)间孔隙、粒(晶)内孔隙和有机质孔隙等微孔隙。粒(晶)间孔隙在研究区页岩中广泛发育,是主要的微孔隙,孔径通常为数百纳米-微米级,孔隙数量与相应矿物含量紧密相关,主要有以下几类:黏土矿物晶(粒)间孔,呈房室状、长条形或三角形等,发育于伊利石等黏土矿物之间,连通性好;碳酸盐矿物晶(粒)间孔,呈多边形或环形,发育于白云石、方解石等碳酸盐矿物间,多孤立分布;长英质等其他颗粒晶(粒)间孔,多边形或近椭圆形,发育于颗粒周边,多孤立分布[29]。粒(晶)内孔隙可进一步细分为粒(晶)内孔隙、粒(晶)溶孔和基质溶孔,溶孔形态取决于被溶颗粒和溶蚀程度,随着溶蚀程度的增强,其连通性增加。苏北盆地各凹陷阜二段、阜四段泥页岩总体处于生油窗内,故有机质孔隙不发育,但在个别泥页岩样品中也见到少量的有机孔隙,其应为有机质原生孔隙。原生有机质孔的尺度较大,孔径为微米级,其规则的几何形态继承了原始有机质的主要结构特征,原生有机质孔中通常充填同沉积的无机矿物。

    根据压汞和氮吸附联合测定技术对苏北盆地阜二、阜四段泥页岩样品的孔隙结构特征进行了分析,经过简单转化后分别得到微孔孔隙度、介孔孔隙和宏孔孔隙度。高邮凹陷富深X1井阜二段灰黑色泥岩其孔隙的孔径相对较大,以孔径大于50 nm的宏孔为主,宏孔孔隙体积占总孔隙体积75%左右,另含少量孔隙孔径为2~50 nm的介孔,介孔孔隙体积占总孔隙体积25%左右。而溱潼凹陷鲁1井阜二段灰黑色泥岩其孔隙的孔径均很小,以孔径2~20 nm的介孔为主,介孔孔隙体积占总孔隙体积90%以上,微孔孔隙体积占总孔隙体积不足10%。溱潼凹陷帅4井阜四段灰黑色含灰泥岩其孔隙的孔径分布范围相对较宽,含少量孔径大于50 nm的宏孔,宏孔孔隙体积占总孔隙体积6%左右;孔隙孔径为2~50 nm的介孔,占总孔隙体积90%以上;另含极少量孔隙孔径小于2 nm的微孔。当样品不发育裂缝时,该方法得到的孔隙度相对准确,特别是微孔孔隙度和介孔孔隙度之和可以较好地反映泥页岩基质的储集能力[30]

    北美页岩油勘探实践表明[31],获得页岩油勘探突破的层段(无论是泥页岩层还是砂岩层),其油饱和指数(热解S1×100/TOC)大于100。对苏北盆地290个阜二、阜四段泥页岩样品的热解分析结果统计显示,虽然只有12个样品的油饱和指数大于或接近100,但结果表明在泥页岩层系存在具有页岩油勘探潜力的层段。本文以典型页岩油藏高邮凹陷的许X38井和盐城凹陷盐城1井为例,进行解剖,分析该页岩油藏的成藏条件。

    许X38井阜二段泥页岩地质特征统计表显示(表6),两层段岩性分别为块状灰质泥岩和纹层状钙质页岩,有机碳含量较高,分别为2.95%和1.53%;矿物组分均以碳酸盐、长英质为主,次为黏土矿物;孔隙度则块状灰质泥岩较低,为4.13%,纹层状钙质页岩较高,为10.85%;同时地层压力系数为1.233,显示为超压的特征。页岩油地表密度为0.858 g/cm3,粘度为10.54 mPa.s,总体显示正常原油特征。盐城凹陷盐城1井阜二段页岩油富集层段的特征与许X38井有很多共性,该层段岩性以富有机质的块状灰质泥岩和纹层状钙质页岩为主,脆性矿物含量相对较高,层理缝与裂缝发育,成熟度处于生油高峰期,同时地层具有异常高压。

    表  6  许X38井、盐城1井试油层地质特征统计
    Table  6.  Statistical table of geological characteristics of Xu X38 well and Yancheng 1 well
    井号页岩层岩石相TOC/%Ro/%脆性矿物/%黏土/%孔隙度/%页岩油密度/(g/cm3页岩油粘度/mPa·s压力系数
    盐城1井E1f2块状灰质泥岩2.1620.77147.12375.3210.88721701.600
    E1f2纹层状钙质页岩1.88440.43157.4013.711
    许X38井E1f2块状灰质泥岩2.9510.92270.10127.5424.1310.85810.5441.233
    E1f2纹层状钙质页岩1.53265.2126.04010.852
    下载: 导出CSV 
    | 显示表格

    页岩油富集层段的典型解剖结果表明,TOC大于2%、Ro大于0.8%是苏北盆地阜宁组页岩油富集的物质基础,高脆性矿物(大于45%)的有利岩相-岩性组合利于层理缝与微裂缝的发育,裂缝发育程度控制页岩油的富集程度与可动用性,异常高压是高产的关键[32-33]。根据上述标准和页岩油气显示特征,结合各钻井取心段岩心烃源岩品质评价结果,对苏北盆地阜二段、阜四段泥页岩层系的有利区进行了预测。平面上,阜二段优质烃源岩主要分布在高邮凹陷及其以东的海安、盐城等凹陷,厚度达到200~300 m,是页岩油勘探的有利区带;阜四段有利勘探层主要分布在高邮深凹、溱潼、金湖凹陷中,厚度120~260 m。其中,高邮和金湖凹陷的有机质丰度较高,成熟度大于0.7%,以I型干酪根为主,是阜四段优质“生油岩”,属于勘探页岩油气的有利区带。纵向上,阜2-1,阜2-2两个页岩段最有利,阜2-3次之。

    (1)苏北盆地阜宁组两套泥页岩有机质丰度较高,类型较好,阜宁组阜二段烃源岩的有机质丰度高于阜四段,烃源岩类型优于阜四段。成熟度方面,阜二段整体处于成熟阶段,阜四段处于低熟阶段,均进入生烃门限。苏北盆地阜宁组两套泥页岩均具备形成页岩油的物质基础。

    (2)苏北盆地阜宁组两套泥页岩矿物成分主要为黏土、碳酸盐矿物、石英等;阜二段各凹陷脆性矿物含量均值大于50%,黏土含量低于35%,有利于页岩油的开采,对于天然缝的形成及后期压裂造缝均具备良好的条件。苏北盆地阜宁组两套泥页岩储集空间包括微孔隙和裂缝,具备较好的储集物性条件。

    (3)页岩油富集层段的典型解剖结果表明,TOC大于2%、Ro大于0.8%是苏北盆地阜宁组页岩油富集的物质基础,高脆性矿物(大于45%)的有利岩相-岩性组合利于层理缝与微裂缝的发育,裂缝发育程度控制页岩油的富集程度与可动用性,异常高压是高产的关键。

    (4)通过对苏北盆地阜宁组阜二段、阜四段的基本石油地质条件分析,指出苏北盆地高邮凹陷、海安凹陷及盐城凹陷深凹带地区是阜二段页岩油勘探的有利区带,阜2-1、阜2-2两个页岩段最有利,阜2-3次之;阜四段有利勘探层主要分布在高邮深凹、溱潼、金湖凹陷中,其中,高邮和金湖凹陷的有机质丰度较高,成熟度大于0.7%,以I型干酪根为主,是阜四段优质“生油岩”,属于勘探页岩油气的有利区带。

  • [1]

    Lockwood J G. Abrupt and sudden climatic transitions and fluctuations:a review[J]. International Journal of Climatology, 2001, 21:1153-1179.

    [2]

    Shackleton N J, Maria Fernanda Sánchez-Goňi, Delphine Pailler, et al. Marine isotope substage 5e and the Eemian interglacial[J]. Global and Planetary Change, 2003, 36:151-155.

    [3]

    Kolfschoten T V, Gibbard P L, Knudsen K L. The Eemian Interglacial:a Global Perspective, Introduction[J]. Global and Planetary Change, 2003, 36:147-149.

    [4]

    Broecker W S. The end of the present interglacial:How and When?[J].Quaternary Science Reviews, 1998, 17:689-694.

    [5]

    Dansgaard W, Johnson S J, Clausen H B, et al. Evidence for general instability of past climate from a 250 ka ice-core record[J]. Nature, 1993, 364:218-220.

    [6]

    Greenland Ice-cord Project(GRIP) Members. Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature, 1993, 364:203-207.

    [7]

    Johnsen S J, Clausen H B, Dansgaard W, et al. The Eem stable isotope record along the GRIP ice core and its interpretation[J]. Quaternary Research, 1995, 43:117-124.

    [8]

    Thorsteinn Thorsteinsson, Josef Kipfsuhl, Hajo Eicken, et al. Crystal size variations in Eemian-age ice from the GRIP ice core, Central Greenland[J]. Earth and Planetary Science Letters, 1995, 131:381-394.

    [9]

    Taylor K C, Hammer C U, Alley R B, et al. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993,366:549-552.

    [10]

    Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366:552-554.

    [11]

    Kukla G J, Thouveny N, Stockhauen H. Tentative correlation of pollen records of the last interglacial at Grande Pile and Ribains with marine isotope stages[J]. Quaternary Research, 2002, 58:32-35.

    [12]

    Kukla G J, Bender M L, Bond G, et al. Last interglacial climates[J]. Quaternary Research, 2002, 58:2-13.

    [13]

    Turner C. Problems of the duration of the Eemian interglacial in Europe North of the Alps[J]. Quaternary Research, 2002, 58:45-48.

    [14]

    Gibbard P L. Definition of the Middle-Upper Pleistocene boundary[J]. Global and Planetary Change, 2003, 36:201-208.

    [15]

    Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian Monsoon[J]. Science, 2004, 304:575-578.

    [16]

    Solveig M S, Knudsen K L. Eemian climatic and Hydrographical instability on a marine shelf in Northern Denmark[J]. Quaternary Research, 1997, 47:218-234.

    [17]

    Heusser L, Oppo D. Millennial-and orbital-scale climate variability in Southeastern United States and in the subtropical Atlantic during Marine Isotope Stage 5:evidence from pollen and isotope from ODP site 1059[J]. Earth and Planetary Science Letters, 2003, 214:483-490.

    [18]

    Rousseau D D, Puisségur J J. Climatic interpretation of terrestrial malacofaunas of the last interglacial in southeastern France[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 151:321-336.

    [19]

    Capers G, Merkt J, Müller H. The Eemian interglaciation in Northwestern Germany[J]. Quaternary Research, 2002, 58:49-52.

    [20]

    Cheddadi R, Mamakowa K, Guiot J, et al. Was the climate of Eemian stable? A quantitative climate reconstruction from seven European pollen records[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 143:73-85.

    [21]

    Tzedakis P C, Frogley M R, Heaton T H E. Last interglacial conditions in southern Europe:evidence from Ioannina, northwest Greece[J]. Global and Planetary Change, 2003, 36:157-170.

    [22]

    Klotz S, Guiot J, Mosbrugger V. Continental European Eemian and early Würmian climate evolution:comparing signals using different quantitative reconstruction approaches based on pollen[J]. Global and Planetary Change, 2003, 36:277-294.

    [23]

    McManus J F, Bond G C, Broecker W S, et al. High-resolution climate records from the North Atlantic during the last interglacial[J]. Nature, 1994, 371:326-329.

    [24]

    Kergwin L D, Curry W B, Lehman S J, et al. The role of the deep ocean in North Atlantic climate change between 70 and 130 ka ago[J]. Nature, 1994, 371:323-325.

    [25]

    An Z S, Porter S C. Millennial-scale climatic oscillations during the last interglaciation in central China[J]. Geology, 1997, 25(7):603-606.

    [26] 李力, 孙有斌, 鹿化煜,等. 末次间冰期黄土高原粉尘事件及其与北大西洋寒冷事件的对比[J]. 科学通报,1998,43(1):90-93.

    [LI Li, SUN You-bin, LU Hua-yu, et al. Dust events of Chinese Loess Plateau during last interglacial and its comparison with the cold events of North Atlantic[J]. Chinese Science Bulletin, 1998, 43(1):90-93.]

    [27]

    Liu X M, Hesse P, Liu T S, et al. High resolution climate record from the Beijing area during the last glacial-interglacial cycle[J]. Geophysical Research Letters, 1998, 25(3):349-352.

    [28]

    Guo Z T, Peng S Z, Wei L Y, et al. Weathering signals of millennial-scale oscillations of the eastern Asian summer monsoon over the last 220 ka[J]. Chinese Science Bulletin, 1999, 44(Supp.1):20-25.

    [29]

    Lu H Y, Huissteden K V, An Z S, et al. East Asia winter monsoon variations on a millennial time-scale before the last glacial-interglacial cycle[J]. Journal of Quaternary Science, 1999, 14(2):101-110.

    [30] 任剑璋, 丁仲礼, 刘东生, 等. 从会宁末次间冰期土壤看北大西洋气候不稳定性[J]. 地球物理学报, 1998, 41(2):162-167.

    [REN Jian-zhang, DING Zhong-li, LIU Tung-sheng, et al. A window to view climatic instability occurring at North Atlantic Ocean from the last interglacial palaeosol in Huining during MIS 5e[J]. Acta Geophysica Sinica, 1998, 41(2):162-167.]

    [31]

    Ding Z L, Ren J Z, Yang S L, et al. Climate instability during the penultimate glaciation:evidence from two high-resolution loess records, China[J]. Journal of Geophysical Research, 1999, 104(B9):20123-20132.

    [32]

    Chen F H, Bloemendal J, Feng Z D, et al. East Asian monsoon variations during the last interglacial:evidence from the northwestern margin of the Chinese Loess Plateau[J]. Quaternary Science Review, 1999, 18(8-9):1127-1135.

    [33]

    Chen F H, Feng Z D, Zhang J W. Loess particle size data indicative of stable winter monsoons during the last interglacial in the western part of the Chinese Loess Plateau[J]. Catena, 2000, 39:233-244.

    [34]

    Chen F H, Qiang M R, Feng Z D, et al. Stable East Asian monsoon climate during the Last Interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau[J]. Global and Planetary Changes, 2003, 36:171-179.

    [35]

    Bauch H A, Erlenkeuser H, Fahl K, et al. Evidence for a steeper Eemian than Holocene sea surface temperature gradient between Arctic and sub-Arctic regions[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 145:95-117.

    [36]

    Eynaud F, Turon J L, Duprat J. Comparison of the Holocene and Eemian palaeoenvironments in the South Icelandic Basin:dinoflagellate cysts as proxies for the North Atlantic surface circulation[J]. Review of Palaeobotany and Palynology, 2004, 128:55-79.

    [37]

    Rohling E J, Cane T R, Cooke S, et al. African monsoon variability during the previous interglacial maximum[J]. Earth and Planetary Science Letters, 2002, 202:61-75.

    [38] 陈发虎, 张维信. 甘青地区的黄土地层学与第四纪冰川问题[M]. 北京:科学出版社,1993:11-12.[CHEN Fa-hu, ZHANG Wei-xin. Loess stratigraphy and Quaternary glaciation research in Gansu and Qinghai region[M].Beijing:Science Press, 1993:11

    -12.]

    [39]

    Walden F, Oldfield F, Smith J. Environmental magnetism:a practical guide[C]//Walden J, Oldfield F, Smith J P,eds.Technical Guide series, No.6. London:Quaternary Research Association, 1999:35-62.

    [40] 鸟居雅之, 福间浩司, 苏黎, 等. 黄土-古土壤磁化率述评[J]. 海洋地质与第四纪地质,1999,19(3):83-96.

    [Torii M, Fukuma K, SU Li, et al. Initial magnetic susceptibility of the Chinese loess-paleosols:A review[J]. Marine Geology and Quaternary Geology, 1999, 19(3):83-96.]

    [41]

    Kukla G L, An Z S. Loess stratigraphy in Central China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 72:203-225.

    [42]

    Derbyshire E, Meng X M, Kemp R A. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record[J]. Journal of Arid Environments, 1998, 39:497-516.

    [43]

    Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese Loess[J]. Nature, 1990, 346:737-739.

    [44] 刘秀铭, 刘东生, Heller F, 等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究,1990,10(1):42-50.

    [LIU Xiu-ming, LIU Tung-sheng, Heller F, et al. Magnetic susceptibility depend on frequency of Chinese loess and paleoclimatic changes[J]. Quaternary Sciences, 19990, 10(1):42-50.]

    [45] 刘秀铭, 刘东生, Heller F, 等. 中国黄土磁颗粒分析及其古气候意义[J]. 中国科学B辑,1991,6:639-644.[LIU Xiu-ming, LIU Tung-sheng, Heller F, et al. Magnetic grain analysis of Chinese loess and its implication for paleoclimatic research[J]. Science in China (Series B), 1991

    , 6:639-644.]

    [46] 刘秀铭, 刘东生, Heller F,等. 中国黄土磁化率与第四纪古气候研究[J]. 地质科学,1992(增刊):279-284.[LIU Xiu-ming, LIU Tung-sheng, Heller F, et al. Magnetic susceptibility of Chinese loess and Quaternary paleoclimatic research[J]. Chinese Journal of Geology, 1992

    (Supplement):279-284.]

    [47]

    Fang X M, Fukusawa, Pan B T, et al. Asian summer monsoon instability during the last 60000 a:magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 1999, 168:219-232.

    [48] 邬光剑, 潘保田, 管清玉, 等. 祁连山东段北麓近10 ka来的气候变化的初步研究[J]. 中国沙漠,1998,18(3):193-200.

    [WU Guang-jian, PAN Bao-tian, GUAN Qing-yu, et al. Climatic changes in the north piedmont of eastern Qilian mountains since 10 kaBP[J]. Journal of Desert Research, 1998, 18(3):193-200.]

    [49] 邬光剑, 潘保田, 管清玉, 等. 祁连山东段全新世与现代水热组合特征研究[J]. 地理科学,2000,20(2):160-165.

    [WU Guang-jian, PAN Bao-tian, GUAN Qing-yu, et al. Study on hydrothermal characteristic of eastern Qilian mountains in Holocene and present[J]. Scientia Geographica Sinica, 2000, 20(2):160-165.]

    [50] 刘志刚, 潘保田, 邬光剑, 等. 末次间冰期以来中国西北部沙漠边缘区夏季风变化初步研究[J]. 中国沙漠,2000,20(4):375-377.

    [LIU Zhi-gang, PAN Bao-tian, WU Guang-jian, et al. Initial research of summer monsoon change at desert marginal zone in the Northwest of China since the last interglacial[J]. Journal of Desert Research, 2000, 20(4):375-377.]

    [51] 夏应菲, 汪永进, 陈峻. 李家岗下蜀黄土剖面的反射光谱研究[J]. 土壤学报,2000,37(4):443-448.

    [XIA Ying-fei, WANG Yong-jin, CHEN Jun. Systematic study on reflectance spectrum of Xiashu loess in Lijiagang, Nanjing[J]. Acta Pedologica Sinica, 2000, 37(4):443-448.]

    [52] 杨石岭, 丁仲礼, 秦小光, 等. 黄土沉积中红光/反射光亮度值变化及古气候意义[J].第四纪研究,1999,19(4):125.[YANG Shi-ling, DING Zhong-li, QIN Xiao-guang, et al. Luminosity ratio of red light to reflected light of loess deposit and its implication of paleoclimatic research[J]. Quaternary Sciences, 1999

    , 4:125.]

    [53]

    Fang X M, Li J J. Millennial-scale mosoonal climatic change from poleosol sequences on the Chinese Western Loess Plateau and Tibetan Plateau:a brief summary and review[J]. Chinese Science Bulletin,1999,44(supplement):38-52.

    [54] 杨胜利, 方小敏, 李吉均, 等. 表土颜色和气候定性至半定性关系研究[J]. 中国科学D辑,2001,31:175-181.[YANG Sheng-li, FANG Xiao-min, LI Ji-jun, et al. Transformation functions of soil color and climate[J]. Science in China(Series D), 2001

    , 31:175-181.]

    [55]

    Yang S L, Chen S Y, Yan M D, et al. Soil color:a new sensitive indicator from climate change[J]. Chinese Science Bulletin,1999,44(supplement):282-285.

    [56]

    Jouzel J, Lorius C, Petit J R, et al. Vostok ice core:a continuous isotope temperature record over the last climatic cycle (160000 years)[J]. Nature, 1987, 329:402-408.

    [57]

    Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of past 420000 years from the Vostok ice core, Antarctic[J]. Nature, 1999, 399:429-436.

    [58]

    Katharina Pahnke, Rainer Zahn, Elderfield Henry, et al. 340000-year Centennial-scale marine record of southern hemisphere climatic oscillation[J]. Science, 2003, 301:948-952.

    [59]

    Linsley B K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150000 years[J]. Nature, 1996, 380:234-267.

    [60]

    Tudhope A W, Chilcott C P, McCulloch M T, et al. Variability in the El Niňo-Southern Oscillation Through a Glacial-Interglacial Cycle[J]. Science, 2001, 291:1511-1517.

    [61]

    Shankleton N J. The 100000-year ice-age cycle identified and found to lag temperature,carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289:1897-1902.

    [62] 涂霞, 郑范, 王吉良, 等. 南海北部末次间冰期早期的突然降温事件[J]. 中国科学D辑,2001,31(10):823-827.

    [TU Xia, ZHENG Fan, WANG Ji-liang, et al. An abrupt cooling event early in the last glacial in the northern South China Sea[J]. Science in China(Series D), 2001, 44(10):865-870.]

    [63]

    Tamburini F, Adatte T, Bernasconi S M, et al. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0~140000 years):mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 20:147-168.

    [64]

    Rasmussen T L, Thomsen E, Kuijpers Antoon, et al. Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial)[J]. Quaternary Science Reviews, 2003, 22:809-821.

    [65] 金祖辉, 陈隽. 西太平洋暖池区海表水温暖异常对东亚夏季风影响的研究[J]. 大气科学,2002,26(1):57-68.

    [JIN Zu-hui, CHEN Jun. A composite study of the influence of SST warm anomalies over the Western Pacific Warm Pool on Asian Summer Monsoon[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(1):57-68.]

    [66] 张存杰, 谢金南, 李栋梁, 等. 东亚季风对西北地区干旱气候的影响[J]. 高原气象,2002,21(2):193-198.

    [ZHANG Cun-jie, XIE Jin-nan, LI Dong-liang, et al. Effect of East-Asian monsoon on drought climate of Northwest China[J]. Plateau Meteorology, 2002, 21(2):193-198.]

    [67]

    Prokopenko A A, Karabanov E B, Williams D F, et al. The stability and abrupt ending of the Last Interglaciation in Southeastern Siberia[J]. Quaternary Research, 2002, 58:56-59.

    [68]

    Huang C C, Zhou J, Pang J L. A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin, China[J]. Holocence, 2000, 10(1):135-143.

    [69] 陈宝群, 黄春长, 李平华. 陕西扶风黄土台塬全新世成壤环境变化研究[J]. 中国沙漠,2004,24(2):149-152.

    [CHEN Bao-qun, HUANG Chun-chang, LI Ping-hua. Holocene pedogenesis and environmental change on the loess tableland in Fufeng country, Shaanxi Province[J]. Journal of Desert Research, 2004, 24(2):149-152.]

    [70] 黄萍, 庞奖励, 黄春长. 渭北黄土台塬全新世地层高分辨率研究[J]. 地层学杂志,2001,25(2):107-110.

    [HUANG Ping, PANG Jiang-li, HUANG Chun-chang. High resolution studies of the Holocene loess strata of the loess tableland in the Weihe river basin[J]. Journal of Stratigraphy, 2001, 25(2):107-110.]

    [71] 黄春长, 庞奖励, 陈宝群, 等. 扶风黄土台塬全新世多周期土壤研究[J]. 西北大学学报自然科学版,2001,31(6):509-513.

    [HUANG Chun-chang, PANG Jiang-li, CHEN Bao-qun, et al. Polycyclic soil on the Zhouyuan loess tableland in Fufeng country in Shaanxi Province[J]. Journal of Northwest University (Natural Science Edition), 2001, 31(6):509-513.]

    [72]

    Huang C C, Pang J L, Huang P. An early Holocene erosion phase on the loess tablelands in the southern Loess Plateau of China[J]. Geomorphology, 2002, 43:209-218.

    [73]

    Huang C C, Pang J L, Huang P, et al. High-resolution studies of the oldest cultivated soils in the southern Loess Plateau of China[J]. Catena, 2002, 47:29-42.

    [74] 庞奖励, 黄春长. 陕西五里铺黄土剖面中微量元素地球化学特征[J]. 长春科技大学学报,2001,31(2):180-184.

    [PANG Jiang-li, HUANG Chun-chang. Geochemical characters of trace elements in the Wulipu loess-paleosol section, Shaanxi Province[J]. Journal of Changchun University of Science and Technology, 2001, 31(2):180-184.]

    [75] 张战平, 庞奖励, 黄春长, 等. 陕西歧山全新世黄土高分辨率气候记录[J]. 中国沙漠,2000,20(4):415-417.

    [ZHANG Zhan-ping, PANG Jiang-li, HUANG Chun-chang, et al. Climatic record with high resolution in the Holocene loess in Qishan, Shaanxi[J]. Journal of Desert Research, 2000, 20(4):415-417.]

    [76] 庞奖励, 黄春长, 张战平. 陕西歧山黄土剖面Rb、Sr组成与高分辨率气候变化[J]. 沉积学报,2001,19(4):637-641.

    [PANG Jiang-li, HUANG Chun-chang, ZHANG Zhan-ping. Rb,Si elements and high resolution climatic records in the loess-paleosol profile at Qishan, Shaanxi[J]. Acta Sedimentologica Sinica, 2001, 19(4):637-641.]

    [77] 黄春长, 庞奖励, 黄萍, 等. 关中盆地西部黄土台塬全新世气候事件研究[J]. 干旱区地理,2002,25(1):10-15.

    [HUANG Chun-chang, PANG Jiang-li, HUANG Ping, et al. Holocene climatic events on the loess tableland in the western Guanzhong basin, China[J]. Arid Land Geography, 2002, 25(1):10-15.]

    [78] 庞奖励, 黄春长, 张战平. 陕西五里铺黄土微量元素组成与全新世气候不稳定性研究[J]. 中国沙漠,2001,21(2):151-156.

    [PANG Jiang-li, HUANG Chun-chang, ZHANG Zhan-ping. Pb, Cu, Zn, Cd, Mn elements and climatic change in the loess-paleosol profile at Qishan, Shaanxi Province[J]. Journal of Desert Research, 2001, 21(2):151-156.]

    [79] 庞奖励, 黄春长. 一万年以来西安地区古土壤特征与气候波动变化研究[J]. 高原气象,2003,22(1):79-83.

    [PANG Jiang-li, HUANG Chun-chang. Study on paleosol features in Xi'an area and climatic change during the last 10000 years[J]. Plateau Meteorology, 2003, 22(1):79-83.]

    [80] 贾耀锋, 庞奖励. 关中盆地东部全新世剖面粒度组成与气候变化研究[J]. 中国沙漠,2004,24(2):153-155.

    [JIA Yao-feng, PANG Jiang-li. Composition characteristics of grain size and suggesting paleoclimate at Liwan section in eastern Guanzhong basin[J]. Journal of Desert Research, 2004, 24(2):153-155.]

    [81] 黄春长, 延军平, 马进福,等. 渭河阶地全新世成壤过程及人类因素研究[J]. 陕西师范大学学报自然科学版,1997,25(2):72-76.

    [HUANG Chun-chang, YAN Jun-ping, MA Jin-fu, et al. Pedological processes and human dimensions on Weihe river plain in Holocene[J]. Journal of Shaanxi Normal University (Natural Science Edition), 1997, 25(2):72-76.]

    [82] 庞奖励, 黄春长. 黄土-古土壤序列的典型微结构与1万年来的环境演化——以关中地区的全新世黄土剖面为例[J]. 吉林大学学报地球科学版,2002,32(3):268-272.

    [PANG Jiang-li, HUANG Chun-chang. Typical micromorphological features of the loess-palaeosol sequence and environmental change during last 10000 years[J]. Journal of Jilin University(Earth Science Edition), 2002, 32(3):268-272.]

    [83] 李小强, 周卫建, 安芷生, 等. 沙漠-黄土过渡带13 kaBP以来季风演化的古植被记录[J]. 植物学报,2000,42(8):868-872.

    [LI Xiao-qiang, ZHOU Wei-jian, AN Zhi-sheng, et al. The palaeovegetation record of monsoon evolution in the desert-loess transition zone for the last 13 kaBP[J]. Acta Botanica Sinica, 2000, 42(8):868-872.]

    [84]

    Chen F H, Wu W, Holmes J A, et al. A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China[J]. Chinese Science Bulletin, 2003, 48(14):1401-1410.

计量
  • 文章访问数:  1541
  • HTML全文浏览量:  153
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-09-13
  • 修回日期:  2005-11-22

目录

/

返回文章
返回