过渡族金属元素同位素在海底热液活动研究中的应用

李怀明, 翟世奎, 于增慧

李怀明, 翟世奎, 于增慧. 过渡族金属元素同位素在海底热液活动研究中的应用[J]. 海洋地质与第四纪地质, 2007, 27(4): 55-60.
引用本文: 李怀明, 翟世奎, 于增慧. 过渡族金属元素同位素在海底热液活动研究中的应用[J]. 海洋地质与第四纪地质, 2007, 27(4): 55-60.
Huai-ming, ZHAI Shi-kui, YU Zeng-hui. APPLICATION OF TRANSITION METAL ISOTOPES TO THE STUDY OF SEAFLOOR HYDROTHERMAL ACTIVITY[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 55-60.
Citation: Huai-ming, ZHAI Shi-kui, YU Zeng-hui. APPLICATION OF TRANSITION METAL ISOTOPES TO THE STUDY OF SEAFLOOR HYDROTHERMAL ACTIVITY[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 55-60.

过渡族金属元素同位素在海底热液活动研究中的应用

基金项目: 

国家重大基础研究发展规划项目(G2000078503)

国家自然科学基金项目(40306009)

详细信息
    作者简介:

    李怀明(1977-),男,博士生,从事海洋地质学研究,E-mail:huaiming_lee@hotmail.com

  • 中图分类号: P736.4

APPLICATION OF TRANSITION METAL ISOTOPES TO THE STUDY OF SEAFLOOR HYDROTHERMAL ACTIVITY

  • 摘要: 过渡族金属元素(Fe、Cu、Zn等)同位素的地球化学特征研究是近年来新兴起的研究方向,在沉积地球化学、宇宙化学、成矿过程、岩浆作用和生物科学等多个领域都取得了重要进展。主要介绍了过渡族金属元素同位素在现代海底热液活动研究中的应用以及取得的重要成果,指出利用过渡族金属元素同位素研究现代海底热液活动具有广阔的发展前景。在分析总结已有研究工作的基础上,探讨了该领域的研究发展方向,包括:(1)丰富过渡族金属元素同位素组成的分析数据;(2)加强模拟实验工作;(3)探讨海底热液活动对过渡族金属元素在大洋内循环和平衡的作用。
    Abstract: The study of the transition metal isotopic geochemistry is one of the latest developing directions in recent years, which has been used in many fields such as sedimentary geochemistry, cosmochemistry, ore-forming process, magmatism and biology. The implications and the results of the transition metal isotopes in the study of seafloor hydrothermal activity have been introduced. The authors pointed out that the use of transition metal isotopes in hydrothermal activity is very important in future study. Finally, the authors discussed the developing directions in this field, including:(1) maintaining the ample data of the transition metal isotopes, (2) strengthening the study of experimental simulation, (3) further studying the effect of the seafloor hydrothermal activity on the circle and equilibrium of the transition metal isotopes in the ocean.
  • [1]

    Valley G E, Anderson H H. A comparison of the abundance ratios of the isotopes of terrestrial and of meteoritic iron[J]. American Chemical Society, 1947, 69:1871-1875.

    [2]

    Walker E C, Cuttitta F, Senftle F E. Some nature variations in the relative abundance of copper isotopes[J]. Geochimica et Cosmochimica Acta, 1958, 15:183-194.

    [3]

    Larson P B. Mather K, Ramos F C, et al. Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology, 2003, 201:337-350.

    [4]

    Johnson C L, Beard B L. Fe isotopes:An emerging technique for understanding modern and ancient biogeochemical cycles[J]. GSA Today, 2006, 16:11.

    [5] 宋柳霆,刘丛强,王中良,等. 铁同位素方法在环境地球化学研究中的应用与进展[J].地球与环境,2006,34:1-80.[SONG Liu-ting, LIU Cong-qiang, WANG Zhong-liang, et al.Application of Fe isotopic method to environmental geochemistry and development[J].Earth and Environment,2006

    ,34:1-80.]

    [6] 蒋少涌,陆建军,顾连兴,等.多接收耦合等离子体质谱(MC-ICPMS)测量铜、锌、铁的同位素组成及其地质意义[J].矿物岩石地球化学通报,2001,20:431-433.[JIANG Shao-yong,LU Jian-jun,GU Lian-xing,et al.Determination of Cu,Zn,Fe isotopic compositions by MC-ICPMS and their geological application[J].Bulletin of Mineralogy,Petrology and Geocheistry,2001

    ,20:431-433.]

    [7]

    Maréchal C N, Télouk P, Albaréde F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999,56:251-273.

    [8]

    Weyer S, Schwieters J B. High precision Fe isotope measurements with high mass resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2003, 226:355-368.

    [9]

    Yang K, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J]. Nature, 1996, 383:420-423.

    [10]

    Lowenstern J B, Mathood G A, Rivers M L, et al. Evidence for extreme partitioning of copper into a magmatic vapor phase[J]. Science, 1991, 252:1405-1409.

    [11]

    Kamenetsky V S, Binns R A, Gemmell J B,et al. Parental basaltic melts and fluids in eastern Manus backarc basin:implications for hydrothermal mineralization[J]. Earth and Planetary Science Letters, 2001, 184:685-702.

    [12]

    Kamenetsky V S, Dacidson P, Mernagh T P, et al. Fluid bubbles in melt inclusions and pillow-rim glasses:high-temperature precursors to hydrothermal fluids?[J]. Chemical Geology, 2002, 183:349-364.

    [13]

    Marechal C N, Nicolas E, Douchet C, et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochimica et Cosmochimica Acta, 2000, 1:Paper No 1999GC000029.

    [14] 蒋少涌. 过渡族金属元素同位素分析方法及其地质应用[J].地学前缘,2003,10:269-278.[JIANG Shao-yong.Transition metal isotpopes:analytical methods and geological applications[J].Earth Science Frontiers,2003

    ,10(2):269-278.]

    [15]

    Zhu X K, Guo Y, Williams R J, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200:47-62.

    [16]

    Beard B L, Johnson C M. Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle[J]. Geochimica et Cosmochimica Acta, 2004,58:4727-4743.

    [17]

    Roskosz M, Luais B, Watson H C, et al. Experimental quantification of the fractionation of Fe isotopes during metal segregation from a silicate melt[J]. Earth and Planetary Science Letters, 2006, 248:851-867.

    [18]

    Sharma M, Polizzotto M, Anbar A D. Iron isotopes in hot springs along the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 2001, 194:39-51.

    [19]

    Rouxel O, Dobbek N, Ludden J, et al. Iron isotope fractionation during oceanic crust alternation[J]. Chemical Geology, 2003, 202:155-182.

    [20]

    Severmann S, Johnson C M, Beard B L, et al. The effect of plume processes on the Fe isotope composition of hydrothermal derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14'N[J]. Earth and Planetary Science Letters, 2004,225:63-76.

    [21]

    Welch S A, Beard B L, Johnson C M, et al. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(Ⅱ) and Fe(Ⅲ)[J]. Geochimica et Cosmochimica Acta, 2003, 22:4231-4250.

    [22]

    Erlich S, Buttler I B, Halicz L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(Ⅱ) and covellite, CuS[J]. Chemical Geology, 2004, 209:259-269.

    [23]

    Bulter I B, Archer C, Vance D, et al. Fe isotope fractionation on FeS formation in ambient aqueous solution[J]. Earth and Planetary Science Letters, 2005, 236:430-442.

    [24]

    Markl G, Blanckenburg F V, Wagner T. Iron isotope fractionation during hydrothermal ore alternation and alternation[J]. Geochimica et Cosmochimica Acta, 2006, 70:3011-3030.

    [25]

    Zhu X K, O'Nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implications for use as geochemical tracers[J]. Chemical Geology, 2000, 16:139-149.

    [26]

    Mason T F, Weiss D J, Chapman J B, et al. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia[J]. Chemical Geology, 2005, 221:170-187.

    [27]

    Chu N C, Johnson C M, Berad B L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time[J]. Earth and Planetary Science Letters, 2006, 245:202-217.

    [28]

    Zhu X K, O'Nions R K, Guo Y,et al. Secular variation of iron isotopes in North Atlantic Deep Water[J]. Science, 2000, 287:2000-2002.

    [29]

    Levasseur S, Frank M, Hein J R, et al. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits:implications for seawater chemistry?[J]. Earth and Planetary Science Letters, 2004, 224:91-105.

计量
  • 文章访问数:  1486
  • HTML全文浏览量:  145
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-04-08
  • 修回日期:  2007-05-29

目录

    /

    返回文章
    返回