不同泥浆体系下东海低渗储层测录井评价

罗健, 胡文亮, 何玉春, 刘春峰, 王猛

罗健, 胡文亮, 何玉春, 刘春峰, 王猛. 不同泥浆体系下东海低渗储层测录井评价[J]. 海洋地质与第四纪地质, 2019, 39(6): 216-227. DOI: 10.16562/j.cnki.0256-1492.2019070403
引用本文: 罗健, 胡文亮, 何玉春, 刘春峰, 王猛. 不同泥浆体系下东海低渗储层测录井评价[J]. 海洋地质与第四纪地质, 2019, 39(6): 216-227. DOI: 10.16562/j.cnki.0256-1492.2019070403
LUO Jian, HU Wengliang, HE Yuchun, LIU Chunfeng, WANG Meng. Logging evaluation for low permeability reservoirs under different mud systems in East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 216-227. DOI: 10.16562/j.cnki.0256-1492.2019070403
Citation: LUO Jian, HU Wengliang, HE Yuchun, LIU Chunfeng, WANG Meng. Logging evaluation for low permeability reservoirs under different mud systems in East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 216-227. DOI: 10.16562/j.cnki.0256-1492.2019070403

不同泥浆体系下东海低渗储层测录井评价

基金项目: “十三五”国家科技重大专项“东海深层低渗—致密天然气勘探开发技术”(2016ZX05027)
详细信息
    作者简介:

    罗健(1987—),男,工程师,从事测井研究工作,E-mail:luojian4@cnooc.com.cn

  • 中图分类号: P744.4

Logging evaluation for low permeability reservoirs under different mud systems in East China Sea

  • 摘要: 东海油气资源丰富,其中低孔低渗储层的油气资源占比约2/3,勘探前景广阔。在勘探期间,偶尔见储层物性相对较好,低产的现象。为了明确储层低产的原因,改善储层的产能问题,研究发现水基泥浆对油气层有着不可逆的污染现象,为此东海推行油基泥浆新体系。在新泥浆体系下,测井和录井等资料采集的环境发生改变,油基泥浆环境下,油气层与水层的侵入现象与水基泥浆完全相反,油气层无侵入,水层侵入明显;录井中气测组分以及荧光信息受油基泥浆影响较大,气测组分容易被油基泥浆吸收,并且荧光信息混杂有泥浆荧光,因此,对油气水层识别及定量评价不能忽略油基泥浆带来的影响。本文对比不同泥浆环境下测录井资料解释方法的差异,为东海建立快速有效的油气识别方法提供依据。
    Abstract: The East China Sea has rich oil and gas resources, in which the low porosity and low permeability reservoirs account for two-thirds of the total and hence are of great importance for exploration. It is occasionally found during exploration that some of the reservoirs have good physical properties, but low production. Efforts have been made to find out the reasons for such a phenomenon and the ways to improve the productivity. Our study found that water-based mud has irreversible pollution to the oil and gas reservoir, and thus oil-based mud is recommended. In the new mud system, the environment for well logging and mud logging are opposite. In the environment of oil-based mud, the invasion phenomenon is completely different for oil-gas reservoir and water reservoir. For oil and gas reservoirs, there is no mud invasion. For water reservoirs, however, mud invasion is common. Besides, the mud environment has great impact on the component of gas logging and fluorescence data. Some of the components may be absorbed by oil based mud and the fluorescence disturbed. In conclusion, the influence of oil based mud can not be ignored, when identification and quantitative evaluation are made for oil, gas and water reservoirs. By comparing some well logging and mud logging interpretation methods in different mud environment, we have established in this paper a fast and effective method for identification of oil and gas reservoirs in the East China Sea.
  • 图  1   NBxx-5-1s井H6与P2层测井解释成果图

    Figure  1.   Logging interpretation result of layers H6 and P2 in Well NBxx-5-1s

    图  2   NBxx-5-1s井随钻电阻率复测前后对比图

    Figure  2.   Comparison of resistivity repeatedly measured during drilling for Well NBxx-5-1s

    图  3   NBxx-5-2井电阻率随钻测量与复测值对比组合图

    Figure  3.   Comparison of resistivity repeatedly measured during drilling for Well NBxx-5-2

    图  4   NBxx-5-2井4 471.5 mMDT泵抽流体性质综合识别图

    Figure  4.   Integrated recognition of MDT pumping fluid properties at depth of 4471.5 m in Well NBxx-5-2

    图  5   研究区气测快速识别图版

    Figure  5.   Rapid identification chart for gas measurement in the research area

    图  6   NBxx-6-2井测井资料综合图

    Figure  6.   Log interpretation result of Well NBxx-6-2

    图  7   研究区4口井井筒环境对比

    Figure  7.   Comparison of four wellbore environments in the research area

    图  8   水基泥浆电阻率“低侵”与油基泥浆电阻率“高侵”对比

    Figure  8.   Comparison of resistivity intrusion features of water-based mud and oil-based mud

    图  9   油基泥浆中子含氢校正

    Figure  9.   Hydrogen index correction for neutron measuring in oil-based mud

    图  10   NBxx-5-1s井核磁测井综合图

    Figure  10.   Interpretation of nuclear magnetic logging of Well NBxx-5-1s

    图  11   NBxx-6-2井核磁测井综合图

    Figure  11.   Interpretation of nuclear magnetic logging of Well NBxx-6-2

    图  12   低孔低渗储层不同泥浆体系下流度与岩心渗透率交会图

    Figure  12.   Cross plot of core permeability vs mobility of different mud systems in low porosity and low permeability reservoirs

    表  1   NBxx-5-1s井DST2与DST3综合对比表

    Table  1   Comparison of DST2 and DST3 in NBxx-5-1s

    特征参数DST2DST3
    P2H6
    射孔深度段(m)4 198.0~4 220.0
    4 439.4~4 470.24 228.1~4 237.0
    4 239.8~4 248.1
    4 475.3~4 493.84 258.1~4 261.8
    4 265.2~4 277.0
    射开厚度(m)49.354.7
    钻井泥浆比重(sg)1.361.36
    机械转速(m/h)6~7.58~15
    气测全量(%)10~11.535~17.6
    电阻率(Ω•m)40~6134~40
    储层孔隙度(%)8~11.28~11.2
    测压流度(mD/cp)2.3~12.7/平均8.892.3~3.3/平均2.74
    核磁渗透率(mD)诱喷压差(Mpa)5~1015.51~325.5
    液垫海水柴油
    射孔弹类型692SD-127P-1SDP45PYX39-3
    射孔穿深(mm)9091 447
    工作制度二开二关二开二关
    下载: 导出CSV

    表  2   NBxx-5-1s、NBxx-6-2录井荧光显示表

    Table  2   Logging fluorescence of NBxx-5-1s and NBxx-6-2

    井名深度/m岩性荧光录井
    直照滴照
    颜色面积/%颜色反应
    NBxx-5-1s4 198.04 238.0灰白色/浅灰色细砂岩、泥质粉砂岩//
    4 240.04 248.0浅灰色细砂岩//
    4 250.04 252.0浅灰色细砂岩//
    4 258.04 264.0灰色泥质细砂岩//
    4264.54 284.5浅灰色粉砂岩、细砂岩//
    NBxx-6-23 712.03 721.0细砂岩暗黄色5乳白色
    3 729.03 735.0细砂岩暗黄色10乳白色
    3 736.03 750.0细砂岩暗黄色10乳白色
    3 761.03 766.0细砂岩暗黄色5乳白色
    3 775.03 797.0细砂岩暗黄色5乳白色
    下载: 导出CSV

    表  3   NBxx-6-2井3 743.5 m泵抽信息表

    Table  3   MDT pumping information, depth of 3 743.5 m, Well NBxx-6-2

    深度/m探针类型流度泵抽时间泵抽体积/L取样情况IFA流体识别结论GOR气油比/(m3/m3
    3 743.5椭圆形探针83.967328.62PVT油层319.2
    3 760椭圆形探针66.757111PVT气层13 523.9
    下载: 导出CSV

    表  4   研究区4口井钻井周期对比

    Table  4   Comparison of drilling cycles for the four wells from the research area

    井名完钻井深/m钻井天数备注
    NBxx-5-1s4 85059水基泥浆
    NBxx-7-14 48020油基泥浆
    NBxx-5-2d4 68015油基泥浆
    NBxx-5-34 50028油基泥浆
    下载: 导出CSV
  • [1] 张海山. 东海地区低孔低渗储层低自由水钻井液体系研究与应用[J]. 中国海上油气, 2013, 25(2):71-72. [ZHANG Haishan. The research and application of low free water drilling fluid system in the low porosity and low permeability reservoirs in the East China Sea [J]. China offshore Oil and Gas, 2013, 25(2): 71-72.
    [2] 朱胜. 油基钻井液体系在东海气田的试验应用[J]. 钻井液与完井液, 2017, 34(1):77-82. [ZHU Sheng. Application of oil base drilling fluids in Donghai gas field [J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 77-82. doi: 10.3969/j.issn.1001-5620.2017.01.014
    [3] 张兴来. 一种钻井液滤液侵入储层深度的评价方法[J]. 广东化工, 2018, 45(9):41-42, 52. [ZHANG Xinglai. The evaluation method for the invasion depth of the filtrate of drilling fluids [J]. Guangdong Chemical Industry, 2018, 45(9): 41-42, 52. doi: 10.3969/j.issn.1007-1865.2018.09.018
    [4] 鄢捷年. 钻井液工艺学[M]. 东营: 中国石油大学出版社, 2001: 5-6.

    YANG Jienian. Drilling Fluid Technology[M]. Dongying: China University of Petroleum Press, 2001: 5-6.

    [5] 张勇, 郑学磊, 裴小彬, 等. 油基钻井液组成介绍及维护要点[J]. 石化技术, 2018, 25(12):208. [ZHANG Yong, ZHENG Xuelei, PEI Xiaobin, et al. Oil-based drilling fluid composition introduction and maintenance points [J]. Petrochemical Industry Technology, 2018, 25(12): 208. doi: 10.3969/j.issn.1006-0235.2018.12.157
    [6] 李秀彬, 马树明, 罗刚, 等. 录井技术在霍101井油基钻井液条件下的运用[J]. 新疆石油科技, 2016(2):27-31. [LI Xiubin, MA Shuming, LUO Gang, et al. Application of logging technology in the oil-based drilling fluid of Huo 101 well [J]. Xinjiang Petroleum Science & Technology, 2016(2): 27-31.
    [7] 黄隆基. 放射性测井原理[M]. 北京: 石油工业出版社, 1985: 136-227.

    HUANG Longji. Radioactive Logging Principle[M]. Beijing: Petroleum Industry Press, 2001: 136-227.

    [8] 张泉滢, 张锋, 王玉伟, 等. 随钻中子伽马密度测井的双源距含氢指数校正方法[J]. 中国石油大学学报: 自然科学版, 2017, 41(4):78-84. [ZHANG Quanying, ZHANG Feng, WANC Yuwei, et al. Dual-spacing hydrogen index correction method for neutron gamma density measuring in LWD [J]. Journal of China University of Petroleum: Edition of Natural Science, 2017, 41(4): 78-84.
    [9] 于华伟, 杨锦州, 张锋. 随钻D-T中子孔隙度测井低灵敏度和岩性影响校正方法研究[J]. 中国石油大学学报: 自然科学版, 2014, 38(3):45-49. [YU Huawei, YANG Jinzhou, ZHANG Feng. Correction method of low sensitivity and lithology effect of D-T neutron porosity logging-while-drilling [J]. Journal of China University of Petroleum: Edition of Natural Science, 2014, 38(3): 45-49.
    [10] 王中良. 海上低孔渗储层电缆地层测试评价方法研究[D]. 东北石油大学硕士学位论文, 2011.

    WANG Zhongliang. Study on evaluation methods of Wireline formation test data in offshore low porosity and permeability reservoirs[D]. Master Dissertation of Northeast Petroleum University, 2011.

    [11] 周建立, 谢俊. 油基钻井液对气测值的影响与校正处理[J]. 录井工程, 2014, 25(2):22-26. [ZHOU Jianli, XIE Jun. Impacts of oil-based drilling fluids on gas logging data and its correction [J]. Mud Logging Engineering, 2014, 25(2): 22-26.
    [12] 李胜, 夏柏如, 韩秀贞, 等. 油水比对油基钻井液性能的影响研究[J]. 油田化学, 2017, 34(2):196-200. [LI Sheng, XIA Bairu, HAN Xiuzhen, et al. Effects of oil-water ratio on performance of oil-based drilling fluid [J]. Oilfield Chemistry, 2017, 34(2): 196-200.
    [13] 段晓东, 王文强, 张娟, 等. 油基钻井液的探讨与分析[J]. 西部探矿工程, 2015, 27(12):82-84. [DUAN Xiaodong, WANG Wenqiang, ZHANG Juan, et al. Discussion and analysis of oil-based drilling fluid [J]. West-China Exploration Engineering, 2015, 27(12): 82-84. doi: 10.3969/j.issn.1004-5716.2015.12.027
    [14] 陈俊男. 三维定量荧光录井技术应用探讨[J]. 录井工程, 2015, 16(2):5-10. [CHEN Junnan. The application of 3D quantitative fluorescence logging technology [J]. Mud Logging Engineering, 2015, 16(2): 5-10.
    [15] 刘新, 蔡军, 李娟, 等. 三维定量荧光MS指数在冀中勘探重点区带的应用[J]. 录井工程, 2019, 30(1):27-32. [LIU Xin, CAI Jun, LI Juan, et al. Application of three-dimensional quantitative fluorescence MS index to Jizhong key exploration zones [J]. Mud Logging Engineering, 2019, 30(1): 27-32. doi: 10.3969/j.issn.1672-9803.2019.01.006
    [16] 倪朋勃. 三维定量荧光技术在渤中坳陷油层识别中的应用研究[D]. 东北石油大学硕士学位论文, 2017: 2.

    NI Pengbo. QFA Application research the reservoir Identification in Bozhong Depression[D]. Master Dissertation of Northeast Petroleum University, 2017: 2.

    [17] 刘堂晏, 吕洪志, 王绍民, 等. 用MDT压降流度计算地层渗透率的新方法[J]. 中国海上油气(地质), 2003, 17(3):211-214. [LIU Tangyan, LÜ Hongzhi, WANG Shaomin, et al. New calculating methods of formation permeability from MDT mobility [J]. China Offshore Oil and Gas (Geology), 2003, 17(3): 211-214.
    [18] 袁云福, 高楚桥. 利用MDT和NMR资料确定储层产能预测参数[J]. 江汉石油学院学报, 2004, 26(S1):68-69. [YUAN Yunfu, GAO Chuqiao. Determining productivity prediction parameters with MDT and NMR date [J]. Journal of Jianghan Petroleum Institute, 2004, 26(S1): 68-69.
    [19] 鄢捷年, 赵雄虎. 高温高压下油基钻井液的流变特性[J]. 石油学报, 2003, 24(3):104-109. [YAN Jienian, ZHAO Xionghu. Rheological properties of oil-based drilling fluids at high temperature and high pressure [J]. Acta Petrolei Sinica, 2003, 24(3): 104-109. doi: 10.3321/j.issn:0253-2697.2003.03.023
    [20] 伍友佳, 蔡正旗. 油藏地质学[M]. 北京: 石油工业出版社, 2007: 5-25.

    WU Youjia, CAI Zhengqi. Reservoir Geology[M]. Beijing: Petroleum Industry Press, 2007: 5-25.

  • 期刊类型引用(1)

    1. 刘磊,许兰芳,管红香,孙治雷,王利波,茅晟懿,刘丽华,吴能友. 冲绳海槽中部8.2ka以来GDGTs组成及温度重建. 热带海洋学报. 2020(06): 77-92 . 百度学术

    其他类型引用(0)

图(12)  /  表(4)
计量
  • 文章访问数:  3134
  • HTML全文浏览量:  543
  • PDF下载量:  23
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-07-03
  • 修回日期:  2019-09-23
  • 网络出版日期:  2019-12-23
  • 刊出日期:  2019-11-30

目录

    /

    返回文章
    返回