南海北部神狐海域现代沉积物中硫酸盐还原菌和硫氧化菌的检出:脂肪酸生物标志物的指示

茅晟懿, 朱小畏, 孙永革, 管红香, 邬黛黛, 吴能友

茅晟懿, 朱小畏, 孙永革, 管红香, 邬黛黛, 吴能友. 南海北部神狐海域现代沉积物中硫酸盐还原菌和硫氧化菌的检出:脂肪酸生物标志物的指示[J]. 海洋地质与第四纪地质, 2015, 35(2): 139-148. DOI: 10.3724/SP.J.1140.2015.02139
引用本文: 茅晟懿, 朱小畏, 孙永革, 管红香, 邬黛黛, 吴能友. 南海北部神狐海域现代沉积物中硫酸盐还原菌和硫氧化菌的检出:脂肪酸生物标志物的指示[J]. 海洋地质与第四纪地质, 2015, 35(2): 139-148. DOI: 10.3724/SP.J.1140.2015.02139
MAO Shengyi, ZHU Xiaowei, SUN Yongge, GUAN Hongxiang, WU Daidai, WU Nengyou. IDENTIFICATION OF SULFATE REDUCING BACTERIA AND SULFUR-OXIDIZING BACTERIA IN MARINE SEDIMENTS FROM SHENHU AREA, NORTHERN SOUTH CHINA SEA: IMPLICATION FROM FATTY ACIDS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 139-148. DOI: 10.3724/SP.J.1140.2015.02139
Citation: MAO Shengyi, ZHU Xiaowei, SUN Yongge, GUAN Hongxiang, WU Daidai, WU Nengyou. IDENTIFICATION OF SULFATE REDUCING BACTERIA AND SULFUR-OXIDIZING BACTERIA IN MARINE SEDIMENTS FROM SHENHU AREA, NORTHERN SOUTH CHINA SEA: IMPLICATION FROM FATTY ACIDS[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 139-148. DOI: 10.3724/SP.J.1140.2015.02139

南海北部神狐海域现代沉积物中硫酸盐还原菌和硫氧化菌的检出:脂肪酸生物标志物的指示

基金项目: 

有机地球化学国家重点实验室开放基金项目(OGL-201209)

中国科学院广州能源研究所所长基金项目(y107r71001)

国家自然科学基金项目(41303067,41103043)

详细信息
    作者简介:

    茅晟懿(1983-),女,副研究员,主要从事有机地球化学研究,E-mail:maoshengyi@gmail.com

  • 中图分类号: P744.4

IDENTIFICATION OF SULFATE REDUCING BACTERIA AND SULFUR-OXIDIZING BACTERIA IN MARINE SEDIMENTS FROM SHENHU AREA, NORTHERN SOUTH CHINA SEA: IMPLICATION FROM FATTY ACIDS

  • 摘要: 对南海北部神狐海域Site 4B站位现代沉积物中脂肪酸组分进行了分离,主要讨论了支链脂肪酸和单不饱和脂肪酸的来源,认为i/a-C15:0i/a-C17:0、16:1ω5和18:1ω9来自硫酸盐还原菌(SRB),而16:1ω7t/c和18:1ω7来自硫氧化菌(SOB)。沉积物中SRB和SOB分布形式可能和硫酸盐还原作用生成硫化物、硫化物又被氧化生成硫酸盐和元素硫、元素硫歧化作用生成硫化物和硫酸盐有关,并在整个硫循环系统中SRB起到主导作用;而在95~97 cm层位剧增的SRB和SOB生物量与站位附近底辟构造活跃带来深部大量的营养流体有关。
    Abstract: The lipid biomarkers of fatty acids in Site4B sediments from Shenhu Area, Northern South China Sea are studied in this paper and the sources of branched fatty acids and monounsaturated fatty acids are discussed. The results reveal that i/a-C15:0, i/a-C17:0, 16:1ω5 and 18:1ω9 are derived from sulfate reducing bacteria (SRB), while 16:1ω7t/c and 18:1ω7 are originated from sulfur-oxidizing bacteria (SOB). The distribution of SRB and SOB may be related with the process that sulfate was reduced to sulfide, and then sulfide oxidized to sulfate and element of sulfur, and at last elemental sulfur was disproportionated to sulfide and sulfate. In this process, SRB dominated the sulfur cycle system in the sediments. The increasing biomass of SRB and SOB at depths of 95~97 cm is related with diapire structure around Site4B, which carries a great amount of nutrient fluid.
  • [1]

    Widdel F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria[C]//In:Zehnder A J B (ed). Biology of anaerobic microorganisms. New York:John Wiley and Sons, 1988:469-585.

    [2]

    Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate-reduction[J]. Nature, 1982, 296:643-645.

    [3]

    Taylor J, Parkes R J. Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers[J]. Journal of General Microbiology, 1985, 131(3):631-642.

    [4]

    Londry K L, Jahnke L L, Des Marais D J. Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria[J]. Applied and Environment Microbiology, 2004, 70(2):745-751.

    [5]

    Sørensen J, Christensen D, Jørgensen B B. Volatile fatty acids and hydrogen as substrates for sulfate reducing bacteria in anaerobic marine sediment[J]. Applied and Environmental Microbiology, 1981, 42(1):5-11.

    [6]

    Jannasch H W, Nelson D C, Wirsen C O. Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site[J]. Nature, 1989, 342(6251):834-836.

    [7]

    Jannasch H W, Wirsen C O, Nelson D C, et al. Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent[J]. International Journal of Systematic Bacteriology, 1985, 35(4):422-424.

    [8]

    Nelson D C, Wirsen C O, Jannasch H W. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin[J]. Applied and Environmental Microbiology, 1989, 55(11):2909-2917.

    [9]

    Strohl W R, Cannon G C, Shively J M, et al. Heterotrophic carbon metabolism by Beggiatoa alba[J]. Journal of Bacteriology, 1981, 148(2):572-583.

    [10]

    Hagen K D, Nelson D C. Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures[J]. Applied and Environmental Microbiology, 1996, 62(3):947-953.

    [11]

    Nelson D C, Jannasch H W. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures[J]. Archives of Microbiology, 1983, 136(4):262-269.

    [12]

    Ravenschlag K, Sahm K, Amann R. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard)[J]. Applied and Environmental Microbiology, 2001, 67(1):387-395.

    [13]

    Laanbroek J H, Pfennig N. Oxidation of short chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediments[J]. Archives of Microbiology, 1981, 128:330-335.

    [14]

    Shaw N. Lipid composition as a guide to the classification of bacteria[J]. Advances in Applied Microbiology, 1974, 17:63-108.

    [15]

    Lechevalier M P. Lipids in bacterial taxonomy-a taxonomist's view[J]. Critical Reviews in Microbiology, 1977, 5:109-210.

    [16]

    Parkes R J, Taylor J. The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments[J]. Estuarine, Coastal and Shelf Science, 1983, 16:173-189.

    [17]

    Perry G J, Volkman J M, Johns R B, et al. Fatty acids of bacterial origin in contemporary marine sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43:1715-1725.

    [18]

    Van Vleet E S, Quinn T G. Early diagenesis of fatty acids and isoprenoid alcohols in estuarine and coastal sediments[J]. Geochimica et Cosmochimica Acta, 1979, 43:289-303.

    [19]

    Boon J J, de Leeuw J W, Hoek G J, et al. Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branded beta-hydroxy acids in Desulfovibrio desulfuricans[J]. Journal of Bacteriology, 1977, 129:1183-1191.

    [20]

    Vainshtein M, Hippe H, Kroppenstedt R M. Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria[J]. Systematic and Applied Microbiology, 1992, 15:554-566.

    [21]

    Zhang C L, Huang Z Y, Cantu J, et al. Lipid Biomarkers and Carbon Isotope Signatures of a Microbial (Beggiatoa) Mat Associated with Gas Hydrates in the Gulf of Mexico[J]. Applied and Environment Microbiology, 2005, 71:2106-2112.

    [22]

    Cypionka H, Widdel F, Pfennig N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients[J]. FEMS Microbiology Letters, 1985, 31(1):39-45.

    [23]

    Fukui M, Takii S. Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake[J]. FEMS Microbiology Letters, 1990, 73(4):317-322.

    [24]

    Dannenberg S, Kroder M, Dilling W, et al. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria[J]. Archives of Microbiology, 1992, 158(2):93-99.

    [25]

    Jørgensen B B, Bak F. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegatt, Denmark)[J]. Applied and Environmental Microbiology, 1991, 57(3):847-856.

    [26]

    Fruend C, Cohen Y. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats[J]. Applied and Environmental Microbiology, 1992, 58(1):70-77.

    [27]

    Visscher P T, Prins R A, van Gemerden H. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat[J]. FEMS Microbiology Letters, 1992, 86(4):283-294.

    [28]

    Ramsing N B, Kuehl M, Jorgensen B B. Distribution of sulfate-reducing bacteria, O2and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes[J]. Applied and Environmental Microbiology, 1993, 59(11):3840-3849.

    [29]

    Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mari ager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrop horesis of PCR-amplified ribosomal DNA fragments[J]. Applied and Environmental Microbiology, 1996, 62(4):1405-1415.

    [30]

    Henrik S, Heribert C, Hans-Dietrich B. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin[J]. FEMS Microbiology Ecology, 1997, 22:245-255.

    [31] 于晓果, 韩喜球, 李宏亮, 等. 南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成[J]. 海洋学报, 2008, 30(3):77-84.

    [YU Xiaoguo, HAN Xiqiu, LI Hongliang, et al. Biomarkers and C-isotope composition in sediments and carbonates of the Dongsha region, South China Sea:Evidence for anaerobic oxidation of methane[J]. Acta Oceanologica Sinica, 2008, 30(3):77-84.]

    [32]

    Ge L, Jiang S Y, Yang T, et al. Glycerol ether biomarkers and their carbon isotopic compositionsin a cold seep carbonate chimney from the Shenhu area, northern South China Sea[J]. Chinese Sci. Bull, 2011, 56:1700-1707.

    [33] 吴能友, 杨胜雄, 王宏斌, 等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6):1641-1650.

    [WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6):1641-1650.]

    [34] 谢蕾,王家生,林杞. 南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨[J]. 岩石矿物学杂志, 2012, 31(3):382-392.

    [XIE Lei, WANG Jiasheng, LIN Qi. The characteristics and formation mechanism of authigenic minerals in shallow sediments of Shenhu area, northern South China Sea[J]. Acta Petrologica et Mineralogica, 2012, 31(3):382-392.]

    [35]

    Taylor J, Parkes R J. The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibvio desulfuvicans[J]. Journal of General Microbiology, 1983, 129:3303-3309.

    [36]

    Zelles L, Palojarvi A, Kandeler E, et al. Changes in soil microbial properties and phospholipid fatty acid fractions after chloroform fumigation[J]. Soil Biology and Biochemistry, 1997, 29:1325-1336.

    [37]

    Xiao S H, Schiffbauer J D, McFadden K A, et al. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules:Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation[J]. Earth and Planetary Science Letters, 2010, 297(3):481-495.

    [38]

    Berner R A. Sedimentary pyrite formation:An update[J]. Geochim Cosmochim Acta, 1984, 48:605-615.

    [39]

    Habicht K S, Canfield D E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments[J]. Geology, 2001, 29:555-558.

    [40]

    Zhang C L, Y Li, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J]. Geology, 2002, 30:239-242.

    [41]

    Guezennec J, Fiala-Medioni A. Bacterial abundance and diversity in the Barbados Trench determined by phospholipids analysis[J]. FEMS Microbiology Ecology, 1996, 19(2):83-93.

    [42]

    Elvert M, Boetius A, Knittel K, et al. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane[J]. Geomicrobiology Journal, 2003, 20:403-419.

    [43]

    Dowling N J E, Widdle F, White D C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria[J]. Journal of General Microbiology, 1986, 132:1815-1825.

    [44]

    Rutters H, Sass H, Cypionka H, et al. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhadus amnigenus[J]. Archives of Microbiology, 2001, 176(6):435-442.

    [45]

    Kohring L L, Ringelberg D B, Devereux R, et al. Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among disimilatory sulfate-reducing bacteria[J]. FEMS Microbiology Letters, 1994, 119(3):303-308.

    [46]

    Vestal J R, White D C. Lipid analysis in microbial ecology:quantitative approaches to the study of microbial communities[J]. Bioscience, 1989, 39:535-541.

    [47]

    Fang J, Hasiotis S T, Gupta S D, et al. Microbial biomass and community structure of a stromatolite from an acid mine drainage system as determined by lipid analysis[J]. Chemical Geology, 2007, 243:191-204.

    [48]

    Sicre M A, Paillasseur J L, Marty J C, et al. Characterization of seawater samples using chemometric methods applied to biomarker fatty acids[J]. Organic Geochemistry, 1988, 12:281-288.

    [49]

    Wilkinson S G. Gram-negative bacteria[C]//In:Ratledge C, Wilkinson S G (eds). Microbial lipids, London:Academic Press, 1988:299-488.

    [50]

    Guezennec J, Ortega-Morales O, Raguenes G, et al. Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents[J]. FEMS Microbiology Ecology, 1998, 26(2):89-99.

    [51]

    Jacq E, Prieur D, Nichols P, et al. Microscopic examination and fatty acid characterization of filamentous bacteria colonizing substrate around subtidal hydrothermal vents[J]. Archives of Microbiology, 1989, 152(1):64-71.

    [52]

    McCaffrey M A, Farrington J W, Repeta D J. Geochemical implications of the lipid composition of Thioploca spp. from the Peru upwelling regions-15°S[J]. Organic Geochemistry, 1989, 14(1):61-68.

    [53]

    Li Y L, Peacock A D, White D C, et al. Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico[J]. Chemical Geology, 2007, 238(3):168-179.

    [54]

    Volkman J K, Jeffrey S W, Nichols P D, et al. Fatty acid and lipid composition of 10 species of microalgae used in mariculture[J]. Journal of Experimental Marine Biology and Ecology, 1989, 128(3):219-240.

    [55]

    Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean[J]. Organic Geochemistry, 2004, 35(5):573-582.

    [56]

    Fuseler K, Krekeler D, Sydow U, et al. A common pathway of sulfide oxidation by sulfate-reducing bacteria[J]. FEMS Microbiology Letters, 1996, 144(2-3):129-134.

    [57]

    Jørgensen B B. A thiosulfate shunt in the sulfur cycle of marine sediments[J]. Science, 1990, 249:152-154.

    [58]

    Fuseler K, Cypionka H. Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus[J]. Archives of Microbiology, 1995, 164(2):104-109.

    [59]

    Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mud rocks[J]. American Journal of Science, 1998, 298(7):537-552.

  • 期刊类型引用(2)

    1. 刘华欣,李美俊,赖洪飞,匡增桂,付莹,方允鑫. 琼东南海域天然气水合物赋存区沉积物地球化学特征及气源指示意义. 天然气地球科学. 2024(06): 1044-1060 . 百度学术
    2. 欧日媚,邱金莉,黄浩,王磊. 东太平洋多金属结核勘探合同区表层沉积物脂肪酸分布及其物源指示意义. 应用海洋学学报. 2024(03): 495-504 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  2260
  • HTML全文浏览量:  339
  • PDF下载量:  56
  • 被引次数: 4
出版历程
  • 收稿日期:  2014-07-10
  • 修回日期:  2014-10-08

目录

    /

    返回文章
    返回