留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷泉渗漏区海底微生物作用及生物标志化合物

管红香 陈多福 宋之光

管红香, 陈多福, 宋之光. 冷泉渗漏区海底微生物作用及生物标志化合物[J]. 海洋地质与第四纪地质, 2007, 27(5): 75-83.
引用本文: 管红香, 陈多福, 宋之光. 冷泉渗漏区海底微生物作用及生物标志化合物[J]. 海洋地质与第四纪地质, 2007, 27(5): 75-83.
GUAN Hong-xiang, CHEN Duo-fu, SONG Zhi-guang. BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 75-83.
Citation: GUAN Hong-xiang, CHEN Duo-fu, SONG Zhi-guang. BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 75-83.

冷泉渗漏区海底微生物作用及生物标志化合物

详细信息
    作者简介:

    管红香(1981-),女,硕士生,主要从事冷泉沉积中的生物标志化合物研究,E-mail:guanhongxiang@gig.ac.cn

  • 基金项目:

    中国科学院知识创新工程重要方向项目(KZCX3-SW-224)

    国家自然科学基金项目(40472059)

    广东省自然科学基金项目(05200113)

    中国科学院知识创新工程前沿领域项目(GIGCX-04-03)

  • 中图分类号: P736.2

BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE

More Information
  • 摘要: 在有冷泉活动和水合物产出的海底环境中,甲烷氧化古细菌和硫酸盐还原细菌十分发育,它们主导着海底天然气(主要是甲烷)的缺氧氧化作用,并在海底碳循环和生物种群繁衍中发挥着重要作用。海底天然气渗漏活动区的甲烷氧化古细菌使渗漏CH4缺氧氧化为HCO3-,硫酸盐还原细菌使SO42-转化为HS-,从而使细菌微生物获得生命所需的能量,生物种群得以发育和繁衍。甲烷氧化古细菌有ANME-1、ANME-2、ANME-3三个种群,形成相应的醚类异戊二烯类和类异戊二烯烃类生物标志物。硫酸盐还原细菌有Desulfosarcina和Desulfococcus两个主要的细菌群落,形成二烃基甘油二醚和脂肪酸生物标志化合物。这种天然气渗漏区内微生物活动产生的生物标志化合物都具有特别负的碳同位素组成,δ13C值为-41.1‰~-95.6‰,说明微生物群落在生命代谢过程中摄取了来自甲烷的碳,同时也反映了天然气渗漏系统缺氧带存在的古细菌和硫酸盐还原细菌活动。
  • [1] Pancost R D, Chopmans E, Sinninghe J S. Archaeal lipids in Mediterranean Cold Seeps:Molecular proxies for anaerobic methane oxidation[J]. Geochimica et Cosmochimica Acta, 2001, 65:1611-1627.
    [2] 王家生, Suess E. 天然气水合物伴生的沉积物碳、氧同位素示踪[J].科学通报, 2002,47:1172-1176.[WANG Jia-sheng, Suess E. Indicators of δ13

    C and δ18O of gas hydrate-associated sediments[J]. Chinese Science Bulletin, 2002,47(19):1659-1663.]
    [3] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398:802-805.
    [4] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.
    [5] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):35-40.

    [CHEN Duo-fu, CHEN Xian-pei, CHEN Guang-qian. Geology and geochemistry of cold seepage and venting related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1):35-40.]
    [6] Zhang C L, Li Y, Wall J D, et al. Lipid and carbon isotopic evidence of methane oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J]. Geology, 2002, 30:239-242.
    [7] Zhang C L, Pancost R D, Sassenc R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J]. Organic Geochemistry, 2003, 34:827-836.
    [8] Schouten S, Wakeham S G, Sinninghe Damst J S. Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea[J]. Organic Geochemistry,2001,32:1277-1281.
    [9] Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irre-gular isoprenoids[J]. Naturwissenschaften, 1999, 86:295-300.
    [10] Hinrichs K U, Sylva S P, Summons R E, et al. Molecular and isotopic analysis of anaerobic methane oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31:1685-1701.
    [11] Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205:443-467.
    [12] Barber C J, Grice K, Baston T P, et al. The identification of crocetane in Australian crude oils[J]. Organic Geochemistry, 2001, 32:943-947.
    [13] Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-I and ANME-Ⅱ communities[J]. Environmental Microbiology, 2005, 7(1):98-106.
    [14] Hallam S J, Putnam N, Preston C M, et al. Reverse methanogenesis:Testing the hypothesis with environmental genomics[J]. Science, 2004, 305:1457-1462.
    [15] Hallam S J, Girguis P R, Preston C M, et al. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methaneoxidizing Archaea[J]. Appl. Environ. Microbiol., 2003, 69:5483-5491.
    [16] 冯东, 陈多福,苏正,等. 海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学[J]. 海洋地质与第四纪地质, 2006, 26(3):125-131.

    [FENG Dong, CHEN Duo-fu, SU Zheng,el al. Anaerobic oxidization of methane and seep carbonate precipitation kinetics at seafloor[J]. Marine Geology and Quaternary Geology, 2006, 26(3):125-131.]
    [17] Orphan V J, House C H, Hinrichs K U,et al. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293:484-487.
    [18] Orcutt B, Boetius A, Elvert M, et al. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps[J]. Geochimica et Cosmochimica Acta, 2005, 69(17):4267-4281.
    [19] Knittel K, sekann T L, Boetius A, et al. Diversity and distribution of methanotrophic Archaea at cold seeps[J]. Applied and Environmental Microbiology, 2005:467-479.
    [20] Orphan V J, Hinrichs K U, Ussler Ⅲ W, et al. Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments[J].Appl. Environ. Microbiol., 2001, 67:1922-1934.
    [21] Girguis P R, Orphan V J, Hallam S J, et al. Growth and methane oxidation rates of anaerobic methanotrophic Archaea in a continuous-flow bioreactor[J]. Appl. Environ. Microbiol., 2003, 69:5472-5482.
    [22] Lanoil B D, Sassen R, La Duc M T, et al. Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates[J].Appl. Environ. Microbiol., 2001, 67:5143-5153.
    [23] Mills H J,Hodges C,Wilson K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico[J]. FEMS Microbiol. Ecol., 2003,46(1):39-52.
    [24] Boetius A, Ravenschlag K, Schubert C, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature, 2000, 407:623-626.
    [25] Elvert M, Greinert J, Seuss E, et al. Carbon isotopes of biomarkers derived from methane-oxidizing microbes at Hydrate Ridge, Cascadia Covergent Margin, in Natural Gas Hydrates:Occurance, Distribution, and Detection[C]//Geophysical Monograph Series. American Geophysical Union, 2001, 124:115-129.
    [26] Sahling H, Rickert D, Lee R W, et al. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific[J]. Mar. Ecol. Prog. Ser., 2002,231:121-138.
    [27] Colbert M D, Tryon K M, Brown, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR. I. Hydrological provinces[J]. Earth Planet. Sci. Lett., 2002, 201:525-540.
    [28] Tryon M D, Brown K M,Torres M E. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge[J]. Earth Planet. Sci. Lett., 2002, 201:541-557.
    [29] Baumgartner L K, Reid R P, Dupraz C, et al. Sulfate reducing bacteria in microbial mats:Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006,185:131-145.
    [30] Orphan V J, House C H, Hinrichs K U, et al.Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001,293:484-487.
    [31] Orphan V J, House C H, Hinrichs K U, et al. Multiple Archaeal groups mediate methane oxidation in anoxic cold seep sediments[C]//Proceedings of the National Academy of Sciences of the United States of America. 2002, 99:7663-7668.
    [32] Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia[J]. PNAS, 2004, 30:11111-11116.
    [33] Reitner J, Peckmann J, Blumenberg M, et al. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227:18-30.
    [34] Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chem. Geol., 2003, 205:219-238.
    [35] Kvenvolden K A. Gas hydrates geological perspectives and global change[J]. Geophys Rev., 1993, 31:173-187.
    [36] Thiel V, Peckmann J, Richnow H H, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine Chemistry, 2001, 73:97-112.
    [37] Pape T, Blumenberg M, Seifert R, et al. Lipid geochemistry of methane-seep-related Black Sea carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227:31-47.
    [38] Birgel D, Thiel V, Hinrichs K U, et al. Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California[J]. Organic Geochemistry, 2006,37(10):1289-1302.
    [39] Bouloubassi I, Aloisi G, Pancost R D, et al. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes[J]. Organic Geochemistry, 2006, 37:484-500.
    [40] Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14:585-589.
    [41] 冯东,陈多福,苏正,等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1):26-32.

    [FENG Dong, CHEN Duo-fu, SU Zheng, et al. Characteristics of cold seep carbonates and microbial processes in gas seep system[J]. Geoscience. 2005, 19(1):26-32.]
    [42] Bart E, Dongen V, Helen M T, et al. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania[J]. Organic Geochemistry, 2006,37(5):539-557.
    [43] Stuart G,Wakeham Ellen C, Hopmans, et al. Archaeal lipids and anaerobic oxidation of methane in euxinic water columns:a comparative study of the Black Sea and Cariaco Basin[J]. Chemical Geology, 2004, 205:427-442.
    [44] Pape T, Blumenberg M, Seifert R, et al. Lipid geochemistry of methane-seep-related Black Sea carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227:31-47.
    [45] Werne J P, Sinninghe Damste J S. Mixed sources contribute to the molecular isotopic signature of methane-rich mud breccia sediments of Kazan mudvolcano (eastern Mediterranean)[J].Organic Geochemistry, 2005, 36:13-27.
  • [1] 张云山, 贾永刚, 尉建功.  海底冷泉原位观测装置研究回顾与展望 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2021052002
    [2] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2020123101
    [3] 肖倩文, 冯秀丽, 苗晓明.  神狐海域SH37岩心浊流沉积及其物源分析 . 海洋地质与第四纪地质, 2021, 41(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2021011901
    [4] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(5): 1-9.
    [5] 刘佳辉, 曲扬, 李伟强, 魏广祎, 孙倩元, 凌洪飞, 陈天宇.  西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-9.
    [6] 赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛.  基于ERT技术的含水合物沉积物可视化探测模拟实验 . 海洋地质与第四纪地质, 2021, 41(): 1-7.
  • 加载中
计量
  • 文章访问数:  662
  • HTML全文浏览量:  63
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-03-09
  • 修回日期:  2007-08-20

冷泉渗漏区海底微生物作用及生物标志化合物

    作者简介:

    管红香(1981-),女,硕士生,主要从事冷泉沉积中的生物标志化合物研究,E-mail:guanhongxiang@gig.ac.cn

基金项目:

中国科学院知识创新工程重要方向项目(KZCX3-SW-224)

国家自然科学基金项目(40472059)

广东省自然科学基金项目(05200113)

中国科学院知识创新工程前沿领域项目(GIGCX-04-03)

  • 中图分类号: P736.2

摘要: 在有冷泉活动和水合物产出的海底环境中,甲烷氧化古细菌和硫酸盐还原细菌十分发育,它们主导着海底天然气(主要是甲烷)的缺氧氧化作用,并在海底碳循环和生物种群繁衍中发挥着重要作用。海底天然气渗漏活动区的甲烷氧化古细菌使渗漏CH4缺氧氧化为HCO3-,硫酸盐还原细菌使SO42-转化为HS-,从而使细菌微生物获得生命所需的能量,生物种群得以发育和繁衍。甲烷氧化古细菌有ANME-1、ANME-2、ANME-3三个种群,形成相应的醚类异戊二烯类和类异戊二烯烃类生物标志物。硫酸盐还原细菌有Desulfosarcina和Desulfococcus两个主要的细菌群落,形成二烃基甘油二醚和脂肪酸生物标志化合物。这种天然气渗漏区内微生物活动产生的生物标志化合物都具有特别负的碳同位素组成,δ13C值为-41.1‰~-95.6‰,说明微生物群落在生命代谢过程中摄取了来自甲烷的碳,同时也反映了天然气渗漏系统缺氧带存在的古细菌和硫酸盐还原细菌活动。

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回