粪生真菌孢子在古生态学研究中的指示意义

郝秀东, 翁成郁

郝秀东, 翁成郁. 粪生真菌孢子在古生态学研究中的指示意义[J]. 海洋地质与第四纪地质, 2015, 35(1): 175-184. DOI: 10.3724/SP.J.1140.2015.01175
引用本文: 郝秀东, 翁成郁. 粪生真菌孢子在古生态学研究中的指示意义[J]. 海洋地质与第四纪地质, 2015, 35(1): 175-184. DOI: 10.3724/SP.J.1140.2015.01175
HAO Xiudong, WENG Chengyu. THE INDICATIVE SIGNIFICANCE OF SPORES OF COPROPHILOUS FUNGI IN PALAEOECOLOGICAL RESEARCH[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 175-184. DOI: 10.3724/SP.J.1140.2015.01175
Citation: HAO Xiudong, WENG Chengyu. THE INDICATIVE SIGNIFICANCE OF SPORES OF COPROPHILOUS FUNGI IN PALAEOECOLOGICAL RESEARCH[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 175-184. DOI: 10.3724/SP.J.1140.2015.01175

粪生真菌孢子在古生态学研究中的指示意义

基金项目: 

国家自然科学基金项目(91128111,40771072,91028010,41023004)

详细信息
    作者简介:

    郝秀东(1980-),男,博士研究生,研究方向为孢粉学与海洋地质学,E-mail:xiudonghao@126.com

  • 中图分类号: P736

THE INDICATIVE SIGNIFICANCE OF SPORES OF COPROPHILOUS FUNGI IN PALAEOECOLOGICAL RESEARCH

  • 摘要: 粪生真菌孢子是重建大型食草动物种群密度及其所处历史时期的生态状况的一个重要的潜在指标;其含量的变化可以很好地指示大型食草动物种群的出现、规模的下降、种群的灭绝以及过去的环境变迁。其中,Podospora,SordariaSporormiella 3种类型的孢子指示性最好。Sporormiella与巨型食草动物的灭绝息息相关,例如,运用Sporormiella含量的变化很好地指示了北美晚更新世巨型食草动物的灭绝。粪生真菌孢子除了指示过去大型食草动物的活动,还能对一些古环境变化具有很好的指示意义,如:Neurospora指示本地火灾;Glomus在土表以下生长,因此,其在湖相沉积中的出现可以用来指示该流域的土壤侵蚀;Type 18和type-18b指示湿度;Type 200-type、Type 12-type和Type 306-type指示干旱;湖相沉积中突然大量出现的Kretzschmaria deusta,可以指示暴雨对森林土壤的侵蚀等。一些真菌孢子可以反映宿主-寄生关系,如Amphisphaerella dispersella可以很好地指示杨属植物的存在。当然,其他孢子的指示性还需要进一步的研究。简单地介绍了粪生孢子的研究方法、原理和最新进展,并对一些生境指示性比较好的粪生孢子进行了图示和描述。并指出,粪生孢子作为一个有价值的新指标,可以结合孢粉分析等技术手段,应用到今后国内古生态学的研究中去。
    Abstract: Spores of fungi growing on feces have been highlighted as an important potential proxy to reconstruct large herbivore densities in past landscapes. In more recent studies of sediments, changes in the abundance of spores of these fungi have been used as a proxy to define megafaunal population presence, decline, and extinction. Podospora-, Sordaria-and Sporormiella-type are the most reliable indicators of large herbivore population densities. Records of Sporormiella spores are directly linked to the extinction of megaherbivores, for example, a few recent studies have used Sporormiella as a proxy to test hypotheses and to draw conclusions regarding the causes of the end-Pleistocene megafaunal extinction in North America. In addition to the information based on coprophilous fungal taxa, some other fungal spore types, are valuable paleo-environmental indicators, the ascospores of Neurospora indicate local fires. The chlamydospores of Glomus grow below the soil surface and therefore the presence of chlamydospores in lake deposits indicates soil erosion in the lake catchment. Some other fungal taxa show a host-parasite relationship, like Amphisphaerelladispersella that is linked to the occurrence of Populus. Type 18 and type-18b indicate humidity and Type 200-type, Type 12-type and Type 306-type droughts. Sudden maxima appeared in the presence of ascospores of the tree-parasite Kretzschmariadeusta in lake deposits indicate the erosion of forest soils during rainstorms, and so on. Further research is needed, however, to improve identifications for other less common types to ensure that they become robust and reliable indicators. Some fungal spore types which are good indicators for local environmental conditions have been illustrated and interpreted. In China palynological studies including the analysis of fungal spores have not yet been carried out so far. In this paper, a brief introduction to research methods and principles is given, and recent advances of records of fossil dung fungal spores are given, as these fungi are valuable new indicators for domestic paleoenvironments and therefore the analysis of fungi, in combination with pollen analysis, should be applied in future palaeoecological studies.
  • [1]

    Ingold C T. Fungal Spores:Their Liberation and Dispersal[M]. Oxford:Clarendon Press, 1971.

    [2]

    Yafetto L, Carroll L, Cui Y, et al. The fastest flights in nature:high-speed spore discharge mechanisms among fungi[J]. PLoS ONE, 2008, 3(9):e3237.

    [3]

    Krug J C, Benny G L, Keller H W. Coprophilous fungi. In:Mueller, G.M., Bills, G.F., Foster, M.S. (Eds.), Biodiversity of Fungi[M]. Amsterdam:Elsevier, 2004:468-499.

    [4]

    van Geel, R Dale Guthrie, Jens G Altmann, et al.Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth[J]. Quaternary Science Reviews, 2011, 30:2289-2303.

    [5]

    Zimov S A, Chuprynin V I, Oreshko A P, et al.Steppe-tundra transition:a herbivoredrivenbiome shift at the end of the Pleistocene[J]. The AmericanNaturalist, 1995, 146:765-794.

    [6]

    Guthrie R D. Origin and causes of the mammoth steppe:a storyof cloud cover, woolly mammoth tooth pits, buckles, and inside-outBeringia[J]. Quaternary Science Reviews, 2001, 20:549-574.

    [7]

    André Aptroot, Bas van Geel. Fungi of the colon of the Yukagir Mammoth and fromstratigraphically related permafrost samples[J]. Review of Palaeobotany and Palynology,2006,141:225-230.

    [8]

    Jeffers E S, Bonsall M, Watson J, et al. Climate change impacts on ecosystem functioning:evidence from an Empetrum heathland[J]. New Phytologist,2012, 150-164.

    [9]

    Graf M T, Chmura G L. Development of modern analogues for natural,mowed and grazed grasslands using pollen assemblages and coprophilous fungi[J]. Review of Palaeobotany and Palynology, 2006, 141:139-149.

    [10]

    Hu Dianming, Lei Cai, KevinD Hyde, et al.The genera Podospora and Schizothecium from Mainland China[J]. Cryptogamie, Mycologie, 2006,27(2):1-22.

    [11]

    Hu Dianming, DaiXiaohua, Guo Daoyi, et al.The diversity of coprophilous fungi from Dahuadian and Zhongdian grasslands, Yunnan, China[J]. Cryptogamie, Mycologie, 2008, 29(4):1-22.

    [12] 赵雪琴,李宜垠,杨柳.食草动物粪便中的真菌孢子-粪壳菌及其在第四纪环境研究中的意义[J].第四纪研究, 2013, 33(2):613-614.

    [ZHAO Xueqin, LI Yiyin, YANG Liu. Fungal spores in herbivores dung-coprophilous fungi and their implication in Quaternary environmental research[J]. Quaternary Sciences,2013, 33(2):613-614.]

    [13]

    Mike Richardson.Coprophilous fungi[J]. Field Mycology, 2003, 4(2):41-43.

    [14]

    van Geel B, Andersen S T. Fossil ascospores of the parasitic fungus Ustulina deusta in Eemian deposits in Denmark[J]. Review of Palaeobotany and Palynology, 1988,56:89-93.

    [15]

    van Geel B, Buurman J, Brinkkemper O, et al.Environmental reconstruction of a Roman Period settlement sitein Uitgeest (The Netherlands), with special reference to coprophilous fungi[J].Journal of Archaeological Science, 2003,30:873-883.

    [16]

    van Geel B, Aptroot A. Fossil ascomycetes in Quaternary deposits[J]. Nova Hedwigia, 2006, 82:313-329.

    [17]

    Cugny C, Mazier F, Galop D. Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France):the use of coprophilous fungi to reconstruct pastoral activity[J]. Vegetation History and Archaeobotany, 2010, 19:391-408.

    [18]

    Blackford J J, Innes J B. Linking current environments and processes to fungal spore assemblages:Surface NPM data from woodland environments[J]. Review of palaeobotany and palynology, 2006, 141:179-187.

    [19]

    Wang Yeizeng. Notes on Coprophilous Discomycetes from Taiwan[J].Collection and Research,2007, 19:23-25.

    [20]

    Brian A Perry, Karen Hansen, Donald H Pfister. A phylogenetic overview of the family Pyronemataceae(Ascomycota, Pezizales)[J]. Mycological Research, 2007, 111:549-571.

    [21]

    Martha Macl'as, Alicia Gamboa, Miguel Ulloa, et al.Phytotoxic naphthopyranone derivatives from the coprophilousfungus Guanomyces polythrix[J].Phytochemistry, 2001, 58:751-758.

    [22]

    Kruys, Eriksson, Wedin. Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position[J]. Mycological Research, 2006,110:527-536.

    [23]

    Masunga, Andresen, Taylor, et al.Elephant dung decomposition and coprophilous fungi in two habitats of semi-arid Botswana[J]. Mycological Research,2006, 110:1214-1226.

    [24]

    Bell Ann. Dung Fungi[M]. Wellington:Victoria University Press, 1983.

    [25]

    Davis O K, Shafer D S. Sporormiella fungal spores, a palynological means of detecting herbivore density[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237:40-50.

    [26]

    Raper D, Bush M. A test of Sporormiella representation as a predictor ofmegaherbivore presence and abundance[J]. Quaternary Research, 2009, 71:490-496.

    [27]

    Christian Mulder, C Roel Janssen. Occurrence of pollen and spores in relation to present-day vegetation in a Dutch heathland area[J]. Journal of Vegetation Science,1999, 10(1):87-100.

    [28]

    van Geel B, Coope G R, van der Hammen T. Palaeoecologyand stratigraphy of the lateglacial type section at Usselo (TheNetherlands)[J]. Review of Palaeobotany and Palynology,1989,60:25-129.

    [29]

    E Montoya, V Rull, B van Geel. Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2010, 297:169-183.

    [30]

    Doveri F. Fungi Fimicoli Italici:a Guide to the Recognition of Basidiomycetes and Ascomycetes Living on Faecal Material[M]. Trento:Associazione Micologica Bresadola, 2007.

    [31]

    Bell Ann. An Illustrated Guide to the Coprophilous Ascomycetes of Australia[M]. St-Paul:APS Press, 2005.

    [32]

    Mumbi C T, Marchant R, Hooghiemstra H, et al. Late Quaternaryvegetation reconstruction from the eastern Arc mountains, Tanzania[J]. Quaternary Research, 2008, 69:326-341.

    [33]

    Gauthier E, Bichet V, Massa C, et al. Pollen andnon-pollen palynomorph evidence of medieval farming activities in southwesternGreenland[J]. Vegetation History and Archaeobotany, 2010,19:427-438.

    [34]

    Blackford J J, Innes J B, Hatton J, et al.Mid-Holocene environmental change at Black Ridge Brook, Dartmoor, SW England:A new appraisal based on fungal spore analysis[J]. Review of Palaeobotany and Palynology, 2006, 141:189-201.

    [35]

    Ponel P, Court-Picon M, Badura M, et al. Holocene history of Lacdes Lauzons (2180 m a.s.l.), reconstructed from multiproxy analyses of Coleoptera,plant macroremains and pollen (Hautes-Alpes, France)[J]. The Holocene, 2011, 21:565-582.

    [36]

    Ekblom, Gillson.Dung fungi as indicators of past herbivore abundance, Kruger and Limpopo National Park[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296:14-27.

    [37]

    Burney D A, Robinson G S, Burney L P. Sporormiella and the late Holocene extinctions in Madagascar[J]. Proceedings of the national academy of sciences of the United States of America, 2003, 100:10800-10805.

    [38]

    Robinson G S, Burney L P, Burney D A, 2005. Landscape paleoecology and megafaunal extinction in southeastern New York state[J]. Ecological Monographs, 75:295-315.

    [39]

    Owen K Davis, David S Shafer. Sporormiella fungal spores, a palynological means of detecting herbivore density[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237:40-50.

    [40]

    Gill J L, Williams J W, Jackson S T, et al. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America[J]. Science,2009, 326:1100-1103.

    [41]

    Wood J R, Wilmshurst J M. Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations[J]. Journal of Quaternary Science,2011, 27:254-259.

    [42]

    Wood J R, Wilmshurst J M, Worthy T H, et al.Sporormiella as a proxy for non-mammalian herbivores in island ecosystems[J]. Quaternary Science Reviews,2011, 30:915-920.

    [43]

    Rule S, Brook B W, Haberle S G, et al. The aftermath of megafaunal extinction:ecosystem transformation in Pleistocene Australia[J]. Science, 2012, 335:1483-1486.

    [44]

    Mazier F, Galop D, Gaillard M J, et al. Multidisciplinary approach to reconstructing local pastoral activities:an example from the Pyrenean Mountains (Pays Basque)[J]. The Holocene, 2009, 19:171-188.

    [45]

    Giacomo Biserni, Bas van Geel.Reconstruction of Holocene palaeoenvironment and sedimentationhistory of the Ombrone alluvial plain (South Tuscany, Italy)[J].Review of Palaeobotany and Palynology, 2005, 136:16-28.

    [46]

    Ambroise G Baker, Shonil A Bhagwat, Katherine J Willis. Do dung fungal spores make a good proxy for past distribution of large herbivores?[J]. Quaternary Science Reviews, 2013, 62:21-31.

    [47]

    vanGeel. Non-pollen palynomorphs. In:Smol J P, Birks H J B, Last W M. (Eds.). Terrestrial, algal and siliciceous indicators. Tracking environmental change using lake sediments[M]. Dordrecht:KluwerAcademic Publishers, 2001:99-119.

    [48]

    Davis O K. Pollen Analysis of Wildcat Lake, Whitman County, Washington:the Introduction of Grazing. M.S. thesis[D]. Washington State University, USA, 1975.

    [49]

    Davis O K, Kolva D A, Mehringer Jr P. Pollen analysis of Wildcat Lake, WhitmanCounty, Washington:the last 1000 years[J]. Northwest Science, 1977, 51:13-29.

    [50]

    van Geel B. A Palaeoecological Study of Holocene Peat Bog Sections, Based onthe Analysis of Pollen, Spores and Macro and Microscopic Remains of Fungi,Alga, Cormophytes and Animals[D]. PhD thesis, University of Amsterdam, TheNetherlands, 1976.

    [51]

    van Geel B. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro-and microscopic remains of fungi, algae, cormophytes and animals[J]. Review of Palaeobotany and Palynology, 1978, 25:1-120.

    [52]

    van Geel B, Bohncke S, Dee H. A palaeoecological study of an upper late glacial and Holocene sequence from "De Borchert", The Netherlands[J]. Review of Palaeobotany and Palynology, 1981, 31:367-448.

    [53]

    Bos J A A, van Geel B, Groenewoudt B J, et al.Early Holocene environmental change, the presence and disappearance of early Mesolithic habitation near Zutphen (The Netherlands)[J]. Vegetation History and Archaeobotany, 2005, 15:27-43.

    [54]

    van Geel B, Bos J, Pals J. Archaeological and palaeoecological aspects ofa medieval house terp in a reclaimed raised bog area in North Holland[M]. In:Berichten Van De Rijksdienst Voor Het Oudheidkundig Bodemonderzoek,Jaargang, 1983, 33:419-444.

    [55]

    Feeser I, O'Connell M. Fresh insights into long-term changes in flora,vegetation, land use and soil erosion in the karstic environment of the Burren,western Ireland[J]. Journal of Ecology, 2009, 97, 1083-1100.

    [56]

    van Smeerdijk D G. A palaeoecological and chemical study of a peat profile from the Assendelver Polder (The Netherlands)[J]. Review of Palaeobotany and Palynology, 1989, 58:231-288.

    [57]

    Jarzen D M, Elsik W C. Fungal palynomorphs recovered from recent riverdeposits, Luangwa Valley, Zambia[J]. Palynology, 1986, 10, 35-60.

    [58]

    Pals J, Geel B V, Delfos A. Paleoecological studies in the Klokkeweel bognear Hoogkarspel (prov. of Noord-Holland)[J]. Review of Palaeobotany and Palynology, 1980, 30:371-418.

    [59]

    Elena Marinova, Juliana Atanassova. Anthropogenic impact on vegetation and environment during the Bronze Age in the area of Lake Durankulak, NE Bulgaria:Pollen, microscopic charcoal, non-pollen palynomorphs and plant macrofossils[J]. Review of Palaeobotany and Palynology, 2006, 141:165-178.

    [60]

    Anderson R S, Homola R L, Davis R B, et al.Fossil remains of the mycorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine[J]. Canadian Journal of Boany, 1984, 62:2325-2328.

    [61]

    T M Mighall, A Martínez Cortizas, H Biester, et al.Proxy climate and vegetation changes during the last five millennia in NW Iberia:Pollen and non-pollen palynomorph data from two ombrotrophic peat bogs in the North Western Iberian Peninsula[J]. Review of Palaeobotany and Palynology, 2006, 141:203-223.

    [62]

    Dan Yeloff, Dan Charman, Bas van Geel, et al.Reconstruction of hydrology, vegetation and past climate change in bogs using fungal microfossils[J]. Review of Palaeobotany and Palynology, 2007, 146:102-145.

    [63]

    van Geel, Stefan Engels, Celia Martin-Puertas, et al.Ascospores of the parasitic fungus Kretzschmaria deustaas rainstorm indicators during a late Holocene beech-forestphase around lake Meerfelder Maar, Germany[J]. Journal of Paleolimnology, 2013,50:33-40.

    [64]

    Maria-Theresia Graf, Gail L Chmura. Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi[J]. Review of Palaeobotany and Palynology, 2006, 141:139-149.

    [65]

    Holt K, Allen G, Hodgson R, et al.Progress towards anautomated trainable pollen location and classifier system for use in the palynologylaboratory[J]. Review of Palaeobotany and Palynology, 2011, 167:175-183.

计量
  • 文章访问数:  1737
  • HTML全文浏览量:  230
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-10
  • 修回日期:  2014-11-24

目录

    /

    返回文章
    返回