THE DEVELOPING PATTERN FOR CRYPTIC INTERTIDAL MICROBIALITES IN BEACHROCK OF SHUIWEI RIDGE OF LUHUITOU PENINSULA
-
摘要: 在海南岛的海滩岩中首次发现了微生物岩,这是一种发育在珊瑚(碎屑和砾块)骨骼孔穴中,少量在珊瑚碎块表面的微生物碳酸盐沉积,这些微生物碳酸盐沉积呈叠层或包壳状生长,可黏结细小的生物碎屑,具有独特的发育模式。微生物碳酸盐沉积在南海的发现支持海滩岩的胶结物部分是源于微生物成因的假设,进而肯定了微生物在碳酸盐沉积中所起的重要作用。结合海滩岩组分中微钻孔的发育特征和微生物岩发育模式的描述,在一定程度上填补了我国南方海滩岩中发育微生物碳酸盐沉积物的研究空白。Abstract: Microbialites with microcolumnar growth morphology occuring on the surfaces of crypts of coral reef were first found in beachrock on Shuiwei ridge, Luhuitou Peninsula.This kind of microbialites is a special one and different from microbialites found in beachrock on Heron Island by Webb et al(1999).The growth pattern of microbialites was discussed and divided into 5 growth phases. The discovery of the microbialites in the beachrock suggests a clear microbial origin for certain carbonate cements. Three types of the endolithic microbial borings were preserved in the coral reefs and seashells of the beachrock. Seashells collected from Shuiwei ridge beachrock containing microborings appear to have preserved most of their original fibrous and prismatic shell texture. Microborings in beachrock can be interpreted as microbial tracks and indicate that microbial play an important role during the forming of the beachrock.
-
Keywords:
- beachrock /
- microbialites /
- microborings /
- Shuiwei ridge /
- Luhuitou Peninsula
-
-
[1] Darwin C. On a remarkable bar of sandstone off Pernambuco on the coast of Brazil[J]. London Edinburgh Dublin Phil.Mag.J.Sci.,1841,19:257-261.
[2] Ginsburg R N. Beachrock in South Florida[J].Sediment.Petrol.,1953,23:85-92.
[3] Hanor J S. Precipitation of beachrock cement:mixing of marine and meteoric waters vs.CO2-degassing[J]. Sedimentary Geology,1978,48:489-501.
[4] Gischler E,Lomando A J.Holocene cemented beach deposits in Belize[J].Sediment.Geol.,1997,110:277-297.
[5] Maxwell W G H.Lithification of carbonate sediments in the Heron Island Reef,Great Barrier Reef[J]. Geol. Soc. Aust.,1962,8:217-238.
[6] Bernier P, Dalongeville R. Mediterranean coastal changes recorded in beachrock cementation[J]. Z. Gemorphol.N F,Suppl.Bd.,1996,102:185-198.
[7] Webb G E, Jell J S, Baker J C. Cryptic intertidal microbialites in beachrock, Heron Island,Great Barrier Reef:implications for the origin of microcrystalline beachrock cement[J]. Sediment. Geo.,1999, 126:317-334.
[8] 赵希涛.海南岛鹿回头珊瑚礁的形成年代及其对海岸线变迁的反映[J].科学通报,1979,24(21):95-98. [ZHAO Xi-tao.Formation ages of coral reefs and response to coastal line in Luhuitou of Hainan[J].Chinese Science Bulletin,1979,24(21):95-98.]
[9] Govert J A B,Robert H G, Stephen T H, et al. Preservation of microborings as fluid inclusions[J].The Canadian Mineralogist,2004,42:1563-1581.
[10] Purser B H. Syn-sedimentary marine lithification of Middle Jurassic limestones in the Paris Basin[J]. Sedimenology,1969,12:205-230.
[11] Müller G. Gravitational' cement:An indicator for the vadose zone of the subaerial diagenetic environment[C]//Carbonate Cements. Johns Hopkins Press,Baltimore,1971:301-302.
[12] Kendall C G St C,Sadd J L,Alsharhan A.Holocene marine cement coatings on beach-rocks of the Abu Dhabicoastline (UAE):analogs for cement fabrics in ancient limestones[J].Carb.Evap., 1994,9:119-131.
[13] Golubic S, Perkins R D,Lukas K J. Boring Microorganisms and Microborings in Carbonate Substrates[M].Springer-Verlag, New York, 1975:229-259.
[14] Budd D A, Perkins R D. Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments[J]. Sediment. Petrol.,1980, 50:881-904.
[15] Vogel K, Gektidis M, Golubic S, et al. Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia:implications for paleoecological reconstructions[J]. Lethaia.,2000,33:190-204.
[16] Perry C T, Macdonald I A. Impacts of light penetration on the bathymetry of reef microboring communities:implications for the development of microendolithic trace assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002,186:101-113.
[17] Davis K J, Patch F E, Conrad P G, et al. Microbial recognition of magnesite and dolomite surfaces:implications for carbonate dissolution rates[Z]. Geol. Soc. Am., Abstr. Programs, 2002,34(6):19.
[18] Patch F E, Davis K J, Conrad P G, et al. Calcite surface recognition by Shewanella Oneidensis MR-1:insight into carbonate dissolution rates in biological environments[Z]. Geol. Soc. Am., Abstr. Programs, 2002, 34(6):19.
计量
- 文章访问数: 1515
- HTML全文浏览量: 232
- PDF下载量: 5