留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂霍次克海天然气水合物成藏条件分析

栾锡武 赵克斌 孙冬胜 岳保静

栾锡武, 赵克斌, 孙冬胜, 岳保静. 鄂霍次克海天然气水合物成藏条件分析[J]. 海洋地质与第四纪地质, 2006, 26(6): 91-100.
引用本文: 栾锡武, 赵克斌, 孙冬胜, 岳保静. 鄂霍次克海天然气水合物成藏条件分析[J]. 海洋地质与第四纪地质, 2006, 26(6): 91-100.
LUAN Xi-wu, ZHAO Ke-bin, SUN Dong-sheng, YUE Bao-jing. GEOLOGICAL FACTORS FOR THE DEVELOPMENT OF GAS HYDRATES IN OKHOTSK SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 91-100.
Citation: LUAN Xi-wu, ZHAO Ke-bin, SUN Dong-sheng, YUE Bao-jing. GEOLOGICAL FACTORS FOR THE DEVELOPMENT OF GAS HYDRATES IN OKHOTSK SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 91-100.

鄂霍次克海天然气水合物成藏条件分析

详细信息
    作者简介:

    栾锡武(1966-),男,博士,研究员,从事海洋地质地球物理研究,E-mail:xluan@ms.qdio.ac.cn

  • 基金项目:

    中国科学院海洋研究所知识创新领域前沿项目

    中石化项目(wx2006-1)

  • 中图分类号: P744.4

GEOLOGICAL FACTORS FOR THE DEVELOPMENT OF GAS HYDRATES IN OKHOTSK SEA

More Information
  • 摘要: 2006年5月由俄、韩、日、中四国共同组织的"海底冷泉与生命过程"联合调查航次,在鄂霍次克海域成功采获天然气水合物样品。从水合物发育的气源条件、温度压力条件、构造控制条件等方面,分析了该地区天然气水合物发育所具备的基本成藏条件。指出鄂霍次克海周边的高大山系为其提供了丰富的沉积物来源,并在鄂霍次克海中形成了宽广而深厚的陆架体系。陆架区沉积地层厚度一般超过10 km,且以新生代沉积为主。根据对重力柱状样品的观察和分析,并参照沉积物捕获器样品的测量结果,认为本区域沉积物总有机碳含量普遍较高。根据地震剖面解释和重力柱状样品的14C测年结果得出,本区沉积速率较高,并与目前已知水合物区的沉积速率相当。鄂霍次克海地处高纬度地区,冬季海面大部分被海冰覆盖。海面以下50~120 m之间常年存在一个低温盖层。这个低温盖层使得海底温度一直保持在2℃左右。在这样的温度条件下,鄂霍次克海350 m以深的区域都满足水合物赋存的压力条件。海底以下满足水合物温度、压力条件的沉积地层厚度为450~800 m。鄂霍次克板块位于四大板块之间,并受到四大板块的挤压。由于挤压作用,在萨哈林岛东侧陆坡地区形成一系列的海底泥火山构造,从而使该区域成为天然气水合物调查研究的主要目标区。鄂霍次克海域的沉积物源、沉积厚度、沉积速率、有机碳含量等构成该区域水合物发育良好的气源条件,而温度、压力和构造控制条件等也都非常有利于天然气水合物在该地区的发育。
  • [1] Tuezov I K. Structure and Composition of the Sedimentary Cover of the Northwestern Pacific[M]. Vladivostok, Russia:Far East Scientific Center, 1982:23-33.
    [2] Gnibidenko G S, Khvedchuk I I. Main features of the Okhotsk Sea tectonics[M]//Geological Structure of the Okhotsk Sea Region. Vladivostok, 1982:3-25.
    [3] Savostin L A, Zonenshain L P, Baranov B V. Geology and plate tectonics of the Sea of Okhotsk[C]//Hilde T W C, Uyeda S, eds. Geodynamics of the Western Pacific-Indonesian Region. Geodynamic series AGU, 1983:189-222.
    [4] Rozhdestvenskiy S S. Evolution of the Sakhalin folds system[J]. Tectonophysics, 1986, 127:331-339.
    [5] Zonenshayn L P, Murdmaa I O, Baranov V, et al. An underwater gas source in the Sea of Okhotsk[J]. Oceanology, 1987, 27(5):598-602.
    [6] Ginsburg G D, Soloviev V A, Cranston R E, et al. Gas hydrates from the continental slope, offshore Sakhalin Island, Okhotsk Sea[J]. Geo-Marine Letters, 1993, 13:41-48.
    [7] Soloviev V A, Ginsburg G D, Duglas V K, et al. Gas hydrates of the Okhotsk Sea[J]. Otechestvennaya Geologya, 1994, 2:10-16.
    [8] Obzhirov A I. Gas-geochemical manifestations of gas-hydrates in the Sea of Okhotsk[J]. Alaska Geology, 1992, 21(7):1-7.
    [9] Obzhirov A I. Gas geochemical fields and oil-gas forecast of the seas[J]. Vladivostok, POI FEB RAS, 1996:166.
    [10] Biebow N, Ludmann T, Karp B, et al. Cruise Reports:KOMEX V and VI GEOMAR Report[M]. GEOMAR Kiel, 2000:88.
    [11] Biebow N, Kulinich R, Baranov B, et al. Cruise Report:KOMEX (Kurile Okhotsk Sea Marine Experiment) RV Akademik M.A.Lavrentiev Cruise 29, Leg 1 and Leg 2, GEOMAR Report 110[M]. Kiel,2003.
    [12] Ludmann T, Wong H K. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk[J]. Marine Geology,2003,201:269-286.
    [13] Shoji H,Soloviev V,Matveeva T,et al. Hydrate-bearing structures in the Sea of Okhotsk[J]. Eos, 2005, 86:13-24.
    [14] 孟宪伟,刘保华,石学法,等.冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析[J].沉积学报, 2000, 18(4):629-633.

    [MENG Xian-wei,LIU Bao-hua,SHI Xue-fa,et al.The possibility existence of gas hydrate in the lower slope margin of middle Okinawa Trough[J]. Acta Sedimentologica Sinica,2000,18(4):629-633.]
    [15] 栾锡武,初凤友,赵一阳,等.我国东海及邻近海域气体水合物可能的分布范围[J].沉积学报,2001,19(2):315-321.

    [LUAN Xi-wu,CHU Feng-you,ZHAO Yi-yang,et al.The possible distribution of gas hydrate in the area of East China Sea and its vicinity[J].Acta Sedimentologica Sinica,2001,19(2):315-321.]
    [16] 方银霞,黎明碧,金翔龙,等.东海冲绳海槽天然气水合物的形成条件[J].科技通报,2003,19(1):1-5.

    [FANG Yin-xia, LI Ming-bi, JIN Xiang-long, et al. Formation condition of gas hydrate in Okinawa Trough of East China Sea[J]. Bulletin of Science and Technology, 2003, 19(1):1-5.]
    [17] 姚伯初.南海北部陆源天然气水合物初探[J]. 海洋地质与第四纪地质,1998,18(4):12-18.

    [YAO Bo-chu. Prelimiary exploration of gas hydrate in the Northern margin of the South China Sea[J]. Marine Geology and Quaternary Geology, 1998, 18(4):12-18.]
    [18] 张光学,黄永样,祝有海.南海天然气水合物的成矿远景[J].海洋地质与第四纪地质,2002,22(1):75-81.

    [ZHANG Guang-xue, HUANG Yong-yang, ZHU You-hai. Prospect of gas hydrate resources in the South China Sea[J]. Marine Geology and Quaternary Geology, 2002, 22(1):75-81.]
    [19] Kudelkin, V V, Savitskiy V O, Karpey T I, et al. Structure and evolution of the sediment cover of the near Sakhalin areas of the South-Okhotsk Basin[J]. Geol. Pac. Ocean, 1986, 4:3-13.
    [20] Bikkenina S K, Anosov I, Argentov V V, et al. Crustal Structure of the Southern Okhotsk Sea according to Seismic Refraction Data[J]. Science, Moscow, 1987.
    [21] Bogdanov N A, Khain V E. The Tectonic Map of the Sea of Okhotsk Region,Scale 1:2500000[M]. Moscow:Il RAN, 2000.
    [22] Davidson D W, El-Defrawy M K, Fuglem M O, et al. Natural gas hydrates in northern Canada, in National Research Council of Canada[J]. Proceedings 3rd International Conference on Permafrost 1, 1978:938-943.
    [23] Lu H. Preliminary experimental results of the stable P-T condition of methane hydrate in a nonfossil clay[J]. Geochemical, 2002, 36:21-30.
    [24] Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments[J]. Geochem., 1998, 32:143-157.
    [25] Dickens G R, Paull C K, Wallace P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir[J]. Nature, 1997, 385:426-428.
    [26] Seki O, Yoshikawa C, Nakatsuka T, et al. Fluxes, source and transport of organic matter in the western Sea of Okhotsk:Stable carbon isotopic ratios of n-alkanes and total organic carbon[J]. Deep-Sea Research I, 2006, 53:253-270.
    [27] Nakatsuka T, Toda M, Kawamura K, et al. Dissolved and particulate organic carbon in the Sea of Okhotsk:their transport from continental shelf to ocean interior[J]. Journal of Geophysical Research, 2004:109, C09S14.
    [28] Ogi M, Tachibana Y, Nishio F, et al. Does the fresh water supply from the Amur River flowing into the Sea of Okhotsk affect sea ice formation?[J]. Journal of Meteorological Society of Japan, 2001, 79:123-129.
    [29] Spitzy A, Leenheer J. Dissolved organic carbon in rivers[C]//Degens E T, Kempe S, Richey J E,eds. Biogeochemistry of Major World Rivers. SCOPE, New York, 1991:213-232.
    [30] Telang. Carbon and mineral transport in major North American, Russian Arctic, and Siberian rivers:the St Laurence, the Mackenzie, the Yukon, the Arctic Alaskan rivers, the Arctic basin rivers in the Soviet Union, and the Yenisei[C]//Degens E T, Kempe S, Richey J E,eds.Biogeochemistry of Major World Rivers. SCOPE, New York, 1991:75-104.
    [31] Ternois Y, Kawamura K, Keigwin L, et al. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65, (5):791-802.
    [32] 陈忠,颜文,陈木宏,等. 南海北部大陆坡冷泉碳酸盐结核的发现:海底天然气渗漏活动的新证据[J].科学通报,2006,51(9):1065-1072

    [CHEN Zhong,YAN Wen,CHEN Mu-hong,et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of South China Sea[J].Chinese Science Bulletin,2006,51(10):1228-1237.]
    [33] 陆红锋,陈芳,刘坚,等. 南海北部神狐海区的自生碳酸盐岩烟囱——海底富烃流体活动的记录[J].地质论评,2006,52(3):352-357.

    [LU Hong-feng,CHEN Fang,LIU Jian,et al. Characteristics of authigenic carbonate chimneys in Shenhu Area, northern South China Sea:recorders of hydrocarbon-enriched fluid activity[J]. Geological Review, 2006,52(3):352-357.]
    [34] Gorbarenko S A, Southon J R, Keigwin L D, et al. Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea:geochemical, lithological and paleontological evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209:281-301.
    [35] Mazurenko L, Soloview V, Matveeva T, et al. Methane venting on the continental margin off NE Sakhalin:nature of gas, authigenic carbonates and gas hydrates[J]. Geophysical Research Abstracts, 2005, 7:03841.
    [36] Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments, in natural gases in marine sediments[M]. Marine Science, Kaplan I R, Plenum Press, New York, 1974,3:99-140.
    [37] Kvenvolden K A, McMenamin M A. Hydrocarbon gases in sediment of the shelf, slope, and basin of the Bering Sea[J]. Geochim. Cosmochim. Acta, 1980, 44:1145-1150.
    [38] Paull C K, Buelow W J, Ussler W. Increased continental margin slumping frequency during sea level lowstands above gas hydrate-bearing sediments[J]. Geology, 1996, 24:143-146.
    [39] Karp B Y, Karnaukh V N, Baranov B V, et al. Seismic stratigraphy and sedimentary processes on the Kurile Basin northern slope (Okhotsk Sea)[J]. Marine Geology, 2006, 228:1-14.
    [40] Villaed M. Dissolution des liquids et des solids dans les gaz[J]. Campt Rend, 1888, 106:453.
    [41] 金春爽,汪集旸.南海天然气水合物稳定带初探[J].地质学报,2002,76(4):500-510.

    [JIN Chun-shuang, WANG Ji-yang. Gas hydrate stability zone of South China Sea[J]. Acta Geologica Sinica, 2002,76(4):500-510.]
    [42] 栾锡武,秦蕴珊,张训华,等. 东海陆坡及相邻槽底天然气水合物的稳定域分析[J]. 地球物理学报,2003,46(4):467-475.

    [LUAN Xi-wu, QIN Yun-shan, ZHANG Xun-hua, et al. The stability zone of gas hydrate on the slope of the East China Sea and adjacent trough area[J]. Chinese Journal of Geophysics, 2003, 46(4):675-685.]
    [43] Hyndman R D, Spence G D, Chapman R,et al. Geophysical studies of marine gas hydrate in Northern Cascadia[J]. Gas hydrate in Northern Cascadia, 2001:273-295.
    [44] Bogdanov N A, Chekhovich V D. On Collision between the West Kamchatka and Sea of Okhotsk Plate[J]. Geotektonika, 2002, 36:72-85.
    [45] Shakirov R, Obzhirov A, Suess E, et al. Mud volcanoes and gas vents in the Okhotsk Sea area[J]. Geo-Mar.Letter, 2004, 24:140-149.
  • [1] 欧芬兰, 于彦江, 寇贝贝, 陈靓.  水合物藏的类型、特点及开发方法探讨 . 海洋地质与第四纪地质, 2022, 42(1): 194-213. doi: 10.16562/j.cnki.0256-1492.2021010601
    [2] 叶圣彬, 王汝建, 肖文申, 孙烨忱, 武力.  亚北极鄂霍次克海晚第四纪冰海沉积作用与水团变化历史 . 海洋地质与第四纪地质, 2021, 41(3): 124-140. doi: 10.16562/j.cnki.0256-1492.2021031601
    [3] 刘杰, 刘丽华, 吴能友, 邬黛黛, 金光荣, 杨睿.  南海东沙海域深水区末次冰期以来天然气水合物稳定带演化 . 海洋地质与第四纪地质, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801
    [4] 杨楚鹏, 刘杰, 杨睿, 姚永坚, 李学杰, 苏明.  北极波弗特—马更些三角洲盆地天然气水合物成藏模式 . 海洋地质与第四纪地质, 2020, 40(6): 146-158. doi: 10.16562/j.cnki.0256-1492.2020052602
    [5] 沙志彬, 许振强, 付少英, 梁金强, 张伟, 苏丕波, 陆红锋, 陆敬安.  珠江口盆地东部海域天然气水合物成藏气源特征探讨 . 海洋地质与第四纪地质, 2019, 39(4): 116-125. doi: 10.16562/j.cnki.0256-1492.2019010902
    [6] 刘杰, 杨睿, 张金华, 魏伟, 邬黛黛.  琼东南盆地华光凹陷天然气水合物成藏条件及有利区带预测 . 海洋地质与第四纪地质, 2019, 39(1): 134-142. doi: 10.16562/j.cnki.0256-1492.2018072701
    [7] 龚建明, 廖晶, 尹维翰, 张莉, 何拥军, 孙治雷, 杨传胜, 王建强, 黄威, 孟明, 成海燕.  北印度洋马克兰增生楔天然气水合物的成藏模式 . 海洋地质与第四纪地质, 2018, 38(2): 148-155. doi: 10.16562/j.cnki.0256-1492.2018.02.015
    [8] 付超, 于兴河, 梁金强, 何玉林, 匡增桂, 金丽娜.  南海北部神狐海域不同类型水道及其天然气水合物成藏的差异 . 海洋地质与第四纪地质, 2017, 37(6): 168-177. doi: 10.16562/j.cnki.0256-1492.2017.06.018
    [9] 龚建明, 张莉, 张剑, 李永红, 陈晓慧, 王伟超, 杨志承.  青藏高原乌丽冻土区天然气水合物成藏条件 . 海洋地质与第四纪地质, 2015, 35(1): 145-151. doi: 10.3724/SP.J.1140.2015.01145
    [10] 李尚儒, 吴小力, 黄修保, 方平, 王颖莹, 刘博, 何攀.  南鄱阳坳陷致密油成藏特征及其勘探前景 . 海洋地质与第四纪地质, 2014, 34(5): 119-126. doi: 10.3724/SP.J.1140.2014.05119
    [11] 唐玲, 杨木壮, 沙志彬, 张光学.  南极近海南设得兰陆缘天然气水合物成矿条件与机理 . 海洋地质与第四纪地质, 2014, 34(3): 125-132. doi: 10.3724/SP.J.1140.2014.03125
    [12] 王真真, 王秀娟, 郭依群, 陈端新, 吴时国.  白云凹陷陆坡峡谷沉积与迁移特征及其对天然气水合物成藏的影响 . 海洋地质与第四纪地质, 2014, 34(3): 105-113. doi: 10.3724/SP.J.1140.2014.03105
    [13] 李艳菊, 史建南, 朱利东, 付修根, 杨文光, 杨若羿.  羌塘盆地双湖地区冷泉碳酸盐岩的发现及其天然气水合物成藏地质意义 . 海洋地质与第四纪地质, 2013, 33(2): 105-110. doi: 10.3724/SP.J.1140.2013.02105
    [14] 单玄龙, 任宇, 刘俊雄.  马来盆地前I群油气成藏条件及富集规律 . 海洋地质与第四纪地质, 2012, 32(2): 121-126. doi: 10.3724/SP.J.1140.2012.02121
    [15] 栾锡武, 李晓芸.  流体迁移和海底地形与天然气水合物的形成 . 海洋地质与第四纪地质, 2012, 32(2): 1-10. doi: 10.3724/SP.J.1140.2012.02001
    [16] 石学法, 邹建军, 王昆山.  鄂霍次克海晚第四纪以来古环境演化 . 海洋地质与第四纪地质, 2011, 31(6): 1-12. doi: 10.3724/SP.J.1140.2011.06001
    [17] 杨木壮, 潘安定, 沙志彬.  陆缘地区天然气水合物成藏地质模式 . 海洋地质与第四纪地质, 2010, 30(6): 85-90. doi: 10.3724/SP.J.1140.2010.06085
    [18] 沙志彬, 郭依群, 杨木壮, 梁金强, 王力峰.  南海北部陆坡区沉积与天然气水合物成藏关系 . 海洋地质与第四纪地质, 2009, 29(5): 89-98. doi: 10.3724/SP.J.1140.2009.05089
    [19] 孙烨忱, 王汝建, 陈建芳, 高爱国, 李秀珠, 韩贻兵.  鄂霍次克海南部晚第四纪的古海洋学记录 . 海洋地质与第四纪地质, 2009, 29(2): 83-90. doi: 10.3724/SP.J.1140.2009.02083
    [20] 董冬冬, 吴时国, 孙运宝, 王秀娟.  琼东南盆地深水区流体势分析及其对天然气水合物成藏的意义 . 海洋地质与第四纪地质, 2008, 28(5): 93-100.
  • 加载中
计量
  • 文章访问数:  1948
  • HTML全文浏览量:  162
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-08-01
  • 修回日期:  2006-11-08

鄂霍次克海天然气水合物成藏条件分析

    作者简介:

    栾锡武(1966-),男,博士,研究员,从事海洋地质地球物理研究,E-mail:xluan@ms.qdio.ac.cn

基金项目:

中国科学院海洋研究所知识创新领域前沿项目

中石化项目(wx2006-1)

  • 中图分类号: P744.4

摘要: 2006年5月由俄、韩、日、中四国共同组织的"海底冷泉与生命过程"联合调查航次,在鄂霍次克海域成功采获天然气水合物样品。从水合物发育的气源条件、温度压力条件、构造控制条件等方面,分析了该地区天然气水合物发育所具备的基本成藏条件。指出鄂霍次克海周边的高大山系为其提供了丰富的沉积物来源,并在鄂霍次克海中形成了宽广而深厚的陆架体系。陆架区沉积地层厚度一般超过10 km,且以新生代沉积为主。根据对重力柱状样品的观察和分析,并参照沉积物捕获器样品的测量结果,认为本区域沉积物总有机碳含量普遍较高。根据地震剖面解释和重力柱状样品的14C测年结果得出,本区沉积速率较高,并与目前已知水合物区的沉积速率相当。鄂霍次克海地处高纬度地区,冬季海面大部分被海冰覆盖。海面以下50~120 m之间常年存在一个低温盖层。这个低温盖层使得海底温度一直保持在2℃左右。在这样的温度条件下,鄂霍次克海350 m以深的区域都满足水合物赋存的压力条件。海底以下满足水合物温度、压力条件的沉积地层厚度为450~800 m。鄂霍次克板块位于四大板块之间,并受到四大板块的挤压。由于挤压作用,在萨哈林岛东侧陆坡地区形成一系列的海底泥火山构造,从而使该区域成为天然气水合物调查研究的主要目标区。鄂霍次克海域的沉积物源、沉积厚度、沉积速率、有机碳含量等构成该区域水合物发育良好的气源条件,而温度、压力和构造控制条件等也都非常有利于天然气水合物在该地区的发育。

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回