多孔介质体系中甲烷水合物生成动力学的模拟实验

陈强, 业渝光, 刘昌岭, 刁少波, 张剑

陈强, 业渝光, 刘昌岭, 刁少波, 张剑. 多孔介质体系中甲烷水合物生成动力学的模拟实验[J]. 海洋地质与第四纪地质, 2007, 27(1): 111-116.
引用本文: 陈强, 业渝光, 刘昌岭, 刁少波, 张剑. 多孔介质体系中甲烷水合物生成动力学的模拟实验[J]. 海洋地质与第四纪地质, 2007, 27(1): 111-116.
CHEN Qiang, YE Yu-guang, LIU Chang-ling, DIAO Shao-bo, ZHANG Jian. RESEARCH ON FORMATION KINETICS OF METHANE HYDRATE IN POROUS MEDIA[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 111-116.
Citation: CHEN Qiang, YE Yu-guang, LIU Chang-ling, DIAO Shao-bo, ZHANG Jian. RESEARCH ON FORMATION KINETICS OF METHANE HYDRATE IN POROUS MEDIA[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 111-116.

多孔介质体系中甲烷水合物生成动力学的模拟实验

基金项目: 

中国海域天然气水合物资源调查评价转向项目(G2H200200202)

国家"863"计划项目(2001AA611020102)

详细信息
    作者简介:

    陈强(1980-),男,硕士,主要从事海洋天然气水合物模拟实验研究,E-mail:denniseasy@yahoo.com.cn

  • 中图分类号: TE122.11

RESEARCH ON FORMATION KINETICS OF METHANE HYDRATE IN POROUS MEDIA

  • 摘要: 多孔介质中的水合物动力学研究由于对实验技术与设备的要求较高,在国内开展的工作相对较少。主要研究了等容等压、等容等温条件以及不同粒径范围的多孔介质中甲烷水合物生成动力学过程。结果表明,低温高压条件能够为甲烷水合物生成提供更大的驱动力,从而明显促进水合物生成。在粒径为250~355 μm的天然海砂中,压力5 MPa时,1℃的反应釜温度可以使甲烷水合物较快生成;在粒径为180~250 μm的天然海砂中,温度为2.5℃时,5 MPa的压力即可使水合物较容易生成。但粒径范围125~700 μm的多孔介质对水合物生成没有明显的影响。
    Abstract: Based on the high requirements of technique and equipment, there is relatively few researches on the kinetics of gas hydrates. In this paper, we mainly study the effects of temperature pressure and pore radius of sediments on the formation kinetics of methane hydrate. It turns out that as the pore radius of sediments is 250~355 μm and pressure is 5 MPa, methane hydrate can be quickly synthesized at 1℃; as the pore radius of sediments is 180~250 μm and temperature is 2.5℃, methane hydrate can be quickly synthesized at 5 MPa. We also find out that as the pore radius is between 125 μm and 700 μm, it has little to do with the reaction.
  • [1]

    Buffett B A, Zatsepina O Y. Formation of gas hydrate from dissolved gas in natural porous media[J]. Marine Geology, 2000, 164:69-77.

    [2]

    Kashchiev D, Firoozabad A. Driving force for crystallization of gas hydrate[J]. Journal of Crystal Growth,2002,241:220-230.

    [3]

    Sloan E D. Clathrate Hydrates of Natural Gases[M]. Marcel Dekker Inc, New York,1990:641.

    [4]

    Handan Y P, Stupin D. Thermodynamic Properties and Dissociation Characteristics of Methane and Propane Hydrates in 70 Radius Silicagel Pores[J]. Journal of Physical Chemistry, 1992, 96:8599-8603.

    [5]

    Chuvilin E M, Yakushev V S, Perlova E V. Experimental Study of Gas Hydrate Formation in Porous Media[J]. VNⅡGAN, 1999, 9:431-440.

    [6]

    Clarke M A, Pooladi-Darvish M, Bishnoi P R. A Method to predict equilibrium conditions of gas hydrate formation in porous media[J]. Ind. Eng. Chem. Tes., 1999, 38:2485-2490.

    [7] 刘锋,樊栓狮.海泥石英砂沉积物中甲烷水合物的生成[J].天然气化工,2005,30:22-27.[LIU Feng, FAN Shuan-shi. Formation of methane hydrate in marine muddy quartz sand-bearing sediments[J]. Natural Gas Chemical Industry, 2005

    ,30:22-27.]

    [8]

    David Riestenberg, Olivia West, Sangyoug Lee, et al. Sediment surface effects on methane hydrate formation and dissociation[J]. Marine Geology, 2003,198:181-190.

    [9]

    Turner D, Sloan E D. Hydrate Phase Equilibrium Measurements and Predictions in Sediments[C]//Proceedings of the Fourth International Conference on Gas Hydrates. Yokohama, 2002:327-330.

计量
  • 文章访问数:  1479
  • HTML全文浏览量:  125
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-07-19
  • 修回日期:  2006-12-25

目录

    /

    返回文章
    返回