地质计时的天文“钟摆”

汪品先

汪品先. 地质计时的天文“钟摆”[J]. 海洋地质与第四纪地质, 2006, 26(1): 1-7.
引用本文: 汪品先. 地质计时的天文“钟摆”[J]. 海洋地质与第四纪地质, 2006, 26(1): 1-7.
WANG Pin-xian. ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.
Citation: WANG Pin-xian. ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.

地质计时的天文“钟摆”

详细信息
    作者简介:

    汪品先(1936-),男,教授,中国科学院院士,从事海洋地质和微体古生物研究

  • 中图分类号: P533

ASTRONOMICAL “PENDULUM” FOR GEOLOGICAL CLOCK

  • 摘要: 地球系统科学的发展,对于地质过程的时间度量提出了新要求。迄今为止,地球轨道参数的变化是地质尺度上惟一可以精确定量计算的周期现象,可以用作地质计时的标尺。40万年的偏心率长周期,是地质历史上最为稳定的轨道参数,至少在新生代以来通过低纬过程驱动着大洋碳储库的周期变化,是普遍出现而且容易辨认的轨道周期,可望作为地球历史的天文"钟摆"用于地质计时。
    Abstract: Development of Earth system science calls for new approaches to time measurement of geological processes. Up to now, the Earth's orbital parameters remain the only periodicities in geology subject to precise calculations and, therefore, may provide new scales for geochronology. The 400-ka long eccentricity is the most stable orbital parameter over the entire geological history and drives long-term periodical changes in the oceanic carbon reservoir through low-latitude processes, at least since the Cenozoic. Being extensively and easily recognizable in geological records, the 400-ka cycles are potentially the astronomical "pendulum" for the geological clock.
  • [2] 余明. 简明天文学教程[M].北京:科学出版社, 2003:404.[YU Ming. Astronomy[M]. Beijing:Science Press, 2003:404.]
    [3]

    Audoin C, Guinot B. The Measurement of Time. Time, Frequency and the Atomic Clock[M]. Cambridge University Press, 2001:335.

    [4]

    Hays J D, Imbrie J,Shackleton N J.Variations in the Earth's orbit:Pacemaker of the ice age[J]. Science, 1976, 194:1121-1132.

    [5]

    Tian J, Wang P, Cheng X, et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison[J]. Earth and Planetary Science Letters, 2002, 203:1015-1029.

    [6]

    Short D A, Mengel J G, Crowley T J, et al. Filtering of Milankovitch cycles by Earth's geography[J]. Quaternary Research, 1991, 35:157-173.

    [7]

    Ruddiman W F. Earth's Climate. Past and Future[M]. Freeman & Co., N.Y., 2001:465.

    [8]

    Rossignol-Stick M, Nesteroff V, Olive P,et al. After the deluge:Mediterranean stagnation and sapropel formation[J]. Nature, 1982, 295:105-110.

    [9]

    Hilgen F J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale[J]. Earth and Planetary Science Letters, 1991, 104:226-244.

    [10]

    Hilgen F J. Extention of astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary[J]. Earth and Planetary Science Letters, 1991, 107:349-368.

    [11]

    Lourens L J, Antonarakou A, Hilgen F J, et al. Evaluation of the Plio-Pleistocene astronomical timescale[J]. Paleoceanography, 1996, 11:391-413.

    [12]

    Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the Earth's history for paleoclimate studies[J]. Science, 1992, 255:560-566.

    [13]

    Lourens L J, Wehausen R, Brumsack H J. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years[J]. Nature, 2001, 409:1029-1033.

    [14]

    Laskar J. The limits of Earth orbital calculations for geological time-scale use[J]. Philos. Trans., Royal Soc. London, 1999, A1757:1735-1759.

    [15] 汪品先, 田军, 成鑫荣,等. 探索大洋碳储库的演变周期[J].科学通报,2003, 48:2216-2227.[WANG Pin-xian, TIAN Jun, CHENG Xin-rong, et al. Exploring cyclic changes of the ocean carbon reservoir[J]. Chinese Science Bulletin, 2003

    , 48:2536-2548.]

    [16]

    Wang P, Tian J, Cheng X, et al. Carbon reservoir change preceded major ice-sheet expansion at the Mid-Brunhes event[J]. Geology, 2003, 31:239-242.

    [17]

    Wang P, Tian J, Cheng X, et al. Major Pleistocene stages in a carbon perspective:The South China Sea record and its global comparison[J]. Paleoceanography, 2004, 19, PA 4005, doc.10.1029/2003PA000991.

    [18]

    Cramer B S. Deconvolving the carbon isotope record (Abstract)[C]. Eos. Trans. AGU, 2003, 84(46), F213.

    [19]

    Wade B S, P like H. Oligocene climate dynamics[J]. Paleoceanography,2004,19,PA4019,dio:10.1029/2004 PA001042.

    [20]

    Cramer B S, Wright J D, Kent D V, et al. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n)[J]. Paleoceanography,2003,18(4):1097, doi: 10.1029/2003PA000909.

    [21]

    Matthews R K, Froelich C. Maximum flooding surfaces and sequence boundaries:comparisons between observations and orbital forcing in the Cretaceous and Jurassic (65~190 Ma)[J]. GeoArabia, Middle East Petroleum Geosciences, 2002, 7(3):503-538.

    [22]

    Olsen P E. Periodicity of lake-level cycles in the Late Triassic Lochatong Formation of the Newark Basin (Newark Supergroup, New Jersey and Pennsylvania)[M]//In:Berger A, Imbrie J, Hays J, et al(Eds.). Milankovitch and Climate. NATO ASI, 1984:C126:129-146.

    [23]

    Kashiwaya K, Ochiai S, Sakai H, et al. Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal[J]. Nature, 2001, 410:71-74.

    [24] 李前裕,田军,汪品先.认识偏心率周期的地层古气候意义[J].地球科学——中国地质大学学报,2005, 30(5):519-528.

    [LI Qian-yu, Tian Jun, WANG Pin-xian. Recognizing the stratigraphic and paleoclimatic significance of eccentricity cycles[J]. Earth Science-Journal of China University of Geosciences,30(5):519-528.]

    [25]

    Matthews R K, Froelich C,Duffy A. Orbital forcing of global change throughout the Phanerozoic:A possible stratigraphic solution to the eccentricity phase problem[J]. Geology, 1997, 25:807-810.

    [26]

    Abels H A, Hilgen F J, Krijgsman W, et al. Long-period orbital control on middle Miocene global cooling:Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta[J]. Paleoceanography, 2005, 20:PA4012, doi: 1029/2004PA001129.

    [27]

    Handoh I C, Lenton T M. Periodic mid-Cretaceaous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles[J]. Global Beigeochemical Cycles, 2003,17(4):1092, doi: 10.1029/2003GB002039.

    [28]

    Lourens L J, Wehausen R, Brumsack H L. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years[J]. Nature, 2001, 409:1029-1033.

    [29]

    Pälike H, Laskar J, Shackleton N J. Geologic constraints on the chaotic diffusion of the solar system[J]. Geology, 2004, 32:929-932.

    [30]

    Laskar J, Levrard B, Mustard J F. Orbital forcing of the martian polar layered deposits[J]. Nature, 2002, 419:375-377.

计量
  • 文章访问数:  1650
  • HTML全文浏览量:  191
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-01-12
  • 修回日期:  2006-01-15

目录

    /

    返回文章
    返回