留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热液活动区数目和洋脊扩张速率的关系及其在冲绳海槽的应用

栾锡武

栾锡武. 热液活动区数目和洋脊扩张速率的关系及其在冲绳海槽的应用[J]. 海洋地质与第四纪地质, 2006, 26(2): 55-64.
引用本文: 栾锡武. 热液活动区数目和洋脊扩张速率的关系及其在冲绳海槽的应用[J]. 海洋地质与第四纪地质, 2006, 26(2): 55-64.
LUAN Xi-wu. RELATIONSHIP BETWEEN THE NUMBER OF HYDROTHERMAL ACTIVITY FIELDS AND SPREADING RATE AND ITS APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 55-64.
Citation: LUAN Xi-wu. RELATIONSHIP BETWEEN THE NUMBER OF HYDROTHERMAL ACTIVITY FIELDS AND SPREADING RATE AND ITS APPLICATION IN THE OKINAWA TROUGH[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 55-64.

热液活动区数目和洋脊扩张速率的关系及其在冲绳海槽的应用

详细信息
    作者简介:

    栾锡武(1966-),男,博士,研究员,从事海洋地质地球物理研究,E-mail:xluan@ms.qdio.ac.cn

  • 基金项目:

    中国科学院海洋研究所知识创新领域前沿项目

    中国大洋协会"十五"计划项目(DY105-01-6)

  • 中图分类号: P736.1

RELATIONSHIP BETWEEN THE NUMBER OF HYDROTHERMAL ACTIVITY FIELDS AND SPREADING RATE AND ITS APPLICATION IN THE OKINAWA TROUGH

More Information
  • 摘要: 根据11段洋脊上已经公布的热液活动区数目和扩张速率,建立了洋脊扩张速率和热液活动区数目之间的关系,发现洋脊的扩张速率越高,其上发育的热液活动区数目就越多。两者之间可用一个线性关系式来描述:Ph=0.000 199 294 89Us-0.000 625 479 19,其中,Us为洋脊的扩张速率(mm/a),Ph为单位洋脊上热液活动区的数目(个/km)。依据上述关系,在已知洋脊扩张速率的情况下可以预测洋脊上热液活动区的数目。冲绳海槽前期的扩张(拉张)速率很低,一般为15 mm/a左右。根据地震剖面计算了冲绳海槽现代扩张速率约为42 mm/a。总体上,冲绳海槽直到目前仍为一个低速扩张(拉张)的孤后盆地,但扩张(拉张)速率有明显加快的趋势,所得到的关系式能够较好地符合冲绳海槽的情况,这一方面验证了给出的热液活动区数目和扩张速率之间关系的合理性,另一方面也说明我们对冲绳海槽近期扩张(拉张)速率讨论的合理性。根据在冲绳海槽的应用结果,我们预测冲绳海槽仍然存在尚未查明的热液活动区。
  • [1] Kennet K P. Marine Geology[M]. NJ:Prentice-Hall, 1982,813.
    [2] Bevis M, Taylor F W, Schutz B E, et al. Geodetic observations of very rapid convergence extension at the Tonga Arc[J]. Nature, 1995, 374:249-251.
    [3] Detrick R S, Harding A J, Kent G M, et al. Seismic structure of the southern East Pacific Rise[J]. Science, 1993, 259:499-503.
    [4] Jin S, Zhu W. Present-day spreading motion of the mid-Atlantic ridge[J]. Chinese Science Bulletin, 2002, 47(18):1551-1555.
    [5] Rona P, Scott S D. A special issue on sea floor hydrothermal mineralization:new perspectives[J]. Economic Geology, 1993, 88:1935-1976.
    [6] 栾锡武,秦蕴珊.现代海底热液活动的调查研究方法[J].地球物理学进展,2002,17(4):592-598.

    [LUAN Xi-wu, QIN Yun-shan. Survey methods of modern hydrothermal activity[J].Progress in Geophysics, 2002, 17(4):592-598.]
    [7] 栾锡武,秦蕴珊.现代海底热液活动区的分布与构造环境分析[J].地球科学进展,2004,19(6):931-938.

    [LUAN Xi-wu, QIN Yun-shan. Distribution and tectonic environments of the hydrothermal fields[J]. Advances in Earth Science, 2004, 19(6):931-938.]
    [8] 栾锡武,赵一阳,秦蕴珊.热液柱的形态研究[J].热带海洋学报,2002,21(2):91-97.

    [LUAN Xi-wu, ZHAO Yi-yang, QIN Yun-shan. A study on shape of hydrothermal plume[J]. Journal of Tropical Oceanography, 2002, 21(2):91-97.]
    [9] Gamo T, Nakayama E, Shitashima K. Hydrothermal plumes at the Rodriguez triple Junction, Indian ridge[J]. Earth and Planetary Science Letter, 1996, 142:261-270.
    [10] German C R, Baker E T, Mevel C. Hydrothermal mineralization:new perspectives[J]. Economic Geology, 1993,88:1935-1976.
    [11] Scheier D S, Baker E T, Johnson K T. Detection of hydrothermal plums along the Southeast Indian Ridge near the Amsterdam-St.Plateau[J]. Geophysical Research Letter, 1998,25:97-100.
    [12] Baker E T. The relationship between near axis hydrothermal cooling and spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letter, 1996, 142:137-145.
    [13] Lisitzin A P, Lukashin V N, Gordeev V V, et al. Hydrological and geochemical anomalies associate with hydrothermal activity in SW Pacific marginal and back arc basins[J]. Marine Geology, 1997, 142:7-45.
    [14] Charlou J L, Fouquet Y. Axineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge:EPR17°~19°S (Nautile cruise,1993) phase separation processes controlled by volcanic and tectonic activity[J]. Journal of Geophysical Research, 1996,101:15899-15919.
    [15] Rona P A. Hydrothermal circulation, serpentinization, and degassing at a rift valley fracture zone intersection, MAR near 15°N, 45°W[J]. Geology, 1992, 20:783-786.
    [16] Tunnicliffe V. Hydrothermal vent of Explore Ridge, Northeast Pacific[J]. Deep Sea Research, 1986, 33:401-412.
    [17] Goodfellow W D, Franklin J M. Geology,minerology and chemistry of sediment hosted clastic massive sulfides in shallow core, Middle Valley, North Juan de Fuca Ridge[J]. Economic Geology, 1993, 88:2037-2069.
    [18] Embley R W,Chadwick Jr W W. Volcanic and hydrothermal processes associated with a recent phase of seafloor spreading at the north Cleft Segment:Juan de Fuca Ridge[J]. Journal of Geophysical Research, 1994, 99:4741-4760.
    [19] Zierenberg R A, Koski R A, Morton J L, et al. Genesis of massive sulfides deposits on a sediment-covered spreading centre, Escanaba Trough, 41°N, Gorda Ridge[J]. Economic Geology, 1993, 88:2069-2098.
    [20] Wooddruff L G,Shanks W C. Sulfur isotope study of chimney minerals and hydrothermal fluids from 21°N, East Pacific Rise:hydrothermal sulfur sources and disequilibrium sulfate reduction[J]. Journal of Geophysical Research, 1998, 93:4562-4572.
    [21] Lonsdale P, Batiza R,Aimkin T. Metallogenesis at seamounts on the East Pacific Rise[J]. Marine Technology Social Journal, 1982, 17:54-61.
    [22] Brower T S, Campbell A C. Chemical controls on the composition of vent fluids at 13°~11°N and 21°N EPR[J]. Journal of Geophysical Research, 1988, 93:4522-4536.
    [23] Wilson C, Charlou J L, Ludford E. Hydrothermal anomalies in the Lucky Strike segment(37°17'N)[J]. Earth Planetary Science Letter, 1996, 142:467-477.
    [24] Fouquet Y, Barriga F. Flores diving cruise with the Nautile near the Azores first dives on the Rainbow Field:hydrothermal seawater/mantle interaction[J]. InterRidge News, 1998, 2:1154-1162.
    [25] Ondréas H, Fouquet Y, Voisset M,et al. Detailed study of three contiguous segments of the Mid-Atlantic Ridge, South of the Azore(37°N to 38°30'N),using acoustic imaging coupled with submersible observations[J]. Marine Geophysical Research, 1997, 19(3):231-255.
    [26] German C R, Breem J, Chin C, et al. Hydrothermal activity on the Reykjanes Ridge:the Steinaholl Vent-Field at 63°06'N[J]. Earth and Planetary Science Letter, 1994,121:647-654.
    [27] 吴世迎. 马里亚纳海槽海底热液烟囱物研究[M]. 北京:海洋出版社,1995.[WU Shi-ying. Study of Hydrothermal Chimneys in the Mariana Trough[M]. Beijing:China Ocean Press, 1995.]
    [28] Horibe Y, Kim K R, Craig H. Hydrothermal methane plumes in the Mariana back-arc spreading center[J]. Nature, 1986, 324:131-133.
    [29] Fouquet Y, von Stackellberg U, Charlou J L. Metallogenesis in back-arc environments:The Lau Basin example[J]. Economic Geology, 1993, 88:2154-2181.
    [30] Lizasa K. Hydrothermal sulfides bearing Fe-Si oxyhydroxide deposits from the Coriolis trough, Vanuatu back arc, southweastern Pacific[J]. Marine Geology, 1998, 145:1-21.
    [31] Bornhold B D, Tiffin D L,Curriee R F. Trace metal geochemistry of sediments, northeast Pacific[J]. EOS, 1981, 62:59.
    [32] Embley R W, Joanasson I R, Perfit M R, et al. Submersible investigation of an extinct hydrothermal system on the Galapagos Ridge:Sulfide mounds, stockwork zone, and differentiated lavas[J]. Canadian Mineralogist, 1998, 26(3):517-539.
    [33] Nercessian O, Reysenbach A L, Prieur D,et al.Archaeal diversity associated with in situ samplers deployed on hydrothermal vent on the East Pacific Rise (13°N)[J]. Environmental Microbiology, 2003, 5:492-502.
    [34] Murton B J, Klinkhammer G, Becker K, et al. Direct evidence for the distribution and occurrence of hydrothermal activity between 27°~30° N on the MAR[J]. Earth and Planetary Science Letter, 1994, 125:119-128.
    [35] Rona P A, Von Herzen R P. Introduction to special section on measurements and monitoring at the TAG hydrothermal field, MAR 26°N, 45°W[J]. Geophysical Research Letters, 1996, 23:3427-3430.
    [36] Karson J A,Brown J R. Geologic setting of the sake pit hydrothermal site:An active vent field on the Mid-Atlantic Ridge[J]. Marine Geophysical Research, 1998, 10:91-107.
    [37] Lalou C, Reyss J L, Brichet E, et al. Initial chronology of a recently discovered hydrothermal field at 14°45'N, Mid-Atlantic Ridge[J]. Earth and Planetary Science Letter, 1996, 144:483-490.
    [38] Chiba H, Nakashima K, Gamo T,et al. Hydrothermal activity at the Minami-Ensei Knoll, Okinawa Trough:chemical characteristics of hydrothermal solutions[J]. Jamstectr Deepsea Research, 1993, 9:271-282.
    [39] Kimura M, Kaneoka I. Report on DELP1984 Cruises in the Middle Okinawa Trough, Part V:Topography and Geology of the Central Grabens and their Vicinity[J]. Bulletin of the Earthquake Research Institute of Tokyo, 1986:269-310.
    [40] Kimura M, Ujeda S, Kato Y, et al, Active hydrothermal mounds in the Okinawa Trough back arc basin[J]. Tectonophysics, 1988, 145:319-324.
    [41] Halbach P, Nakamura K W, Lange J, et al. Probable modern analogue of Kuroko-type massive sulfide deposits in the Okinawa Through back-arc basin[J]. Nature, 1989, 338:496-499.
    [42] 桂忠彦,大岛章一,获野卓司.冲绳南奄西海域地质、地球物理诸性质[J].水路部研究报告,1986,21:21-47.[Katsura T, Oshima S, Ogino T, et al. Geological and geophysical characteristics of the southwestern Okinawa Trough and adjacent area[J]. Research Reports and Technical Bulletins, 1986

    , 21:21-47.]
    [43] Lee C S. Exploration of submarine hydrothermal springs[M]//Liu K K,Liu C S, eds.Ocean and Taiwan in the 21st Century, NCOR (National Centre for Ocean Research). Taipei, 2002.
    [44] Letouzey J,Kimura M. The Okinawa Trough:genesis of a back-arc basin developing along a continental margin[J]. Geophysics, 1986, 125:209-230.
    [45] Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa Trough[J]. Journal of Geophysical Research, 1987, 92:14041-14063.
    [46] 梁瑞才,吴金龙,刘保华,等.冲绳海槽中段线性磁条带异常及其构造发育[J].海洋学报,2001,23(2):69-78.

    [LIANG Rui-cai,WU Jin-long,LIU Bao-hua,et al.Linear magnetic anomalies and tectonic development for the middle Okinawa Trough[J]. Acta Oceanologica Sinica, 2001, 23(2):69-78.]
    [47] Tsuburaya H,Sato T. Petroleum exploration well Miyakojima-Oki[J]. Journal of Japan Associate Petrol Technology, 1985, 50:25-53.
    [48] Furukawa M, Tokuyama H, Abe S, et al. Report on DELP 1988 cruise in the Okinawa Trough. Part:Seismic reflection studies in the southwestern part of the Okinawa Trough[J]. Bulletin of Earthquake Research,1991, 66:17-36.
    [49] 业治铮,张明书.冲绳海槽晚更新世和全新世沉积样品的初步研究[J].海洋地质与第四纪地质,1983,3(2):1-26.

    [YE Zhi-zheng, ZHANG Ming-shu. Primary study of Late Pleistocene and Holocene samples of Okinawa Trough[J]. Marine Geology and Quaternary Geology, 1983, 3(2):1-26.]
    [50] 栾锡武,高德章,喻普之,等.我国东海陆架地区新生代地层的导热率[J].海洋与湖沼,2002,33(2):151-159.

    [LUAN Xi-wu, GAO De-zhang, YU Pu-zhi, et al. Thermal conductivity of Cenozoic layer of East China Sea Shelf[J]. Oceanologia et Limnologia Sinica, 2002, 33(2):151-159.]
    [51] 栾锡武,赵一阳,秦蕴珊,等.我国东海陆架地区新生代地层岩石生热率研究[J].沉积学报,2003,21(4):634-639.

    [LUAN Xi-wu, ZHAO Yi-yang, QIN Yun-shan, et al. Heat generation of the Cenozoic layer of East China Sea Shelf[J]. Acta Sedimentologica Sinica, 2003, 21(4):634-639.]
  • [1] 曾志刚, 张玉祥, 陈祖兴, 李晓辉, 齐海燕, 王晓媛, 陈帅, 殷学博.  西太平洋弧后盆地的热液系统及其岩浆环境研究 . 海洋地质与第四纪地质, 2021, 41(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2021070101
    [2] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2020123101
    [3] 范佳慧, 窦衍光, 赵京涛, 李军, 邹亮, 蔡峰, 陈晓辉, 李清.  东海外陆坡−冲绳海槽水体剖面地球化学特征与指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-15.
    [4] 罗顺开, 周怀阳, 赵国庆, 袁伟.  加瓜海脊铁锰结壳的年龄及其定年方法适用性比较 . 海洋地质与第四纪地质, , (): -. doi: 10.16562/j.cnki.0256-1492.2021070502
  • 加载中
计量
  • 文章访问数:  596
  • HTML全文浏览量:  50
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-06-01
  • 修回日期:  2005-12-08

热液活动区数目和洋脊扩张速率的关系及其在冲绳海槽的应用

    作者简介:

    栾锡武(1966-),男,博士,研究员,从事海洋地质地球物理研究,E-mail:xluan@ms.qdio.ac.cn

基金项目:

中国科学院海洋研究所知识创新领域前沿项目

中国大洋协会"十五"计划项目(DY105-01-6)

  • 中图分类号: P736.1

摘要: 根据11段洋脊上已经公布的热液活动区数目和扩张速率,建立了洋脊扩张速率和热液活动区数目之间的关系,发现洋脊的扩张速率越高,其上发育的热液活动区数目就越多。两者之间可用一个线性关系式来描述:Ph=0.000 199 294 89Us-0.000 625 479 19,其中,Us为洋脊的扩张速率(mm/a),Ph为单位洋脊上热液活动区的数目(个/km)。依据上述关系,在已知洋脊扩张速率的情况下可以预测洋脊上热液活动区的数目。冲绳海槽前期的扩张(拉张)速率很低,一般为15 mm/a左右。根据地震剖面计算了冲绳海槽现代扩张速率约为42 mm/a。总体上,冲绳海槽直到目前仍为一个低速扩张(拉张)的孤后盆地,但扩张(拉张)速率有明显加快的趋势,所得到的关系式能够较好地符合冲绳海槽的情况,这一方面验证了给出的热液活动区数目和扩张速率之间关系的合理性,另一方面也说明我们对冲绳海槽近期扩张(拉张)速率讨论的合理性。根据在冲绳海槽的应用结果,我们预测冲绳海槽仍然存在尚未查明的热液活动区。

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回