留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海天然气水合物的地震特征

栾锡武 岳保静 鲁银涛

栾锡武, 岳保静, 鲁银涛. 东海天然气水合物的地震特征[J]. 海洋地质与第四纪地质, 2006, 26(5): 91-99.
引用本文: 栾锡武, 岳保静, 鲁银涛. 东海天然气水合物的地震特征[J]. 海洋地质与第四纪地质, 2006, 26(5): 91-99.
LUAN Xi-wu, YUE Bao-jing, LU Yin-tao. SEISMIC CHARACTERISTICS OF GAS HYDRATES IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 91-99.
Citation: LUAN Xi-wu, YUE Bao-jing, LU Yin-tao. SEISMIC CHARACTERISTICS OF GAS HYDRATES IN THE EAST CHINA SEA[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 91-99.

东海天然气水合物的地震特征

详细信息
    作者简介:

    栾锡武(1966-),男,博士,研究员,从事海洋地质地球物理研究,E-mail:xluan@ms.qdio.ac.cn

  • 基金项目:

    国家自然科学基金项目(40006004)

    国家重点基础研究发展规划项目(G200004670303)

    中石化项目(wx200x)

    中国科学院海洋研究所知识创新领域前沿项目

  • 中图分类号: P744.4

SEISMIC CHARACTERISTICS OF GAS HYDRATES IN THE EAST CHINA SEA

More Information
  • 摘要: 使用中国科学院海洋研究所"科学一号"调查船于2001年以及20世纪80年代在东海地区采集的多道地震资料,以海域天然气水合物研究为目的,对这些资料进行了数据处理并获得了偏移地震剖面。通过对地震剖面的解释,在6条剖面上确定了6段异常反射为BSR,均有振幅强、与海底相位相反的特点。6段BSR基本上都没有出现和沉积地层相交的现象。分析认为,这与东海地区第四纪以来的沉积特征有关,并不能由此否认这些异常反射是BSR。6段BSR出现的水深为750~2 000 m,埋深在0.1~0.5 s (双程时间)之间。随着海底深度的增大,BSR埋深有增大的趋势。计算结果显示,6段BSR所处的温度和压力条件都满足水合物稳定赋存所需要的温度和压力条件。本文的BSR主要与北卡斯凯迪亚盆地以及智利海域水合物的温度、压力条件相似,而与日本南海海槽、美国布莱克海台等海域水合物的温度、压力条件相差比较大。在地震剖面上,6段BSR所处的局部构造位置都和挤压、断层有关,有利于水合物的发育;在空间上,它们主要分布在东海陆坡近槽底的位置以及与陆坡相近的槽底。在南北方向上,除分布在吐噶喇断裂和宫古断裂附近外,还与南奄西、伊平屋和八重山热液活动区相邻。热液活动和水合物虽然没有直接的成因关系,但岩浆活动为水合物气源的形成提供了热源条件,为流体和气体的运移、聚集提供了通道条件,从而有利于水合物的发育与赋存。根据地震剖面反射特征推断,剖面A1A2和A14A23发育BSR的位置应该有气体或者流体从海底流出,可能是海底冷泉发育的位置。剖面A14A23上BSR发育处,振幅比的异常增大和BSR埋深的降低是相关联的。这种关联支持该处发育海底冷泉的推测。
  • [1] Singh B C, Minshull T A, Spence G D. Velocity structure of a gas hydrate reflector[J]. Sicence, 1993,260:204-207.
    [2] Kvenvolden K A.Gas hydrates-geologic perspective and global change[J].Rev. Geophys., 1993,31:173-187.
    [3] Dickens G R, Paull C K, Wallace P, et al.Direct measurement of in situ methane quantities in a large gas reservoir[J]. Nature, 1997, 385:426-428.
    [4] Brewer P G, Orr F M, Friederich G,et al.Deep ocean field test of methane hydrate formation from a remotely operated vehicle[J]. Geology, 1997, 25:407-410.
    [5] Paull C K, Borowski W S, Rodrigues N M,et al.Marine gas hydrate inventory:preliminary results of ODP Leg 164 and implications for gas venting and slumping associated with the Blake Ridge gas hydrate field[M]//In:Henrient J P, Mienert J (eds). Gas hydrates:relevance to world margin stability and climate change. Geol.Soc.London Spec.Publ., 1998, 137:153-160.
    [6] 宋海斌,松林修,吴能友,等.海洋天然气水合物的地球物理研究(I):岩石物性[J].地球物理学进展,2001,16(2):118-126.

    [SONG Hai-bin, Matsubayashi O, WU Neng-you,et al.Geophysical researches on marine gas hydrates (I):physical properties[J]. Progress in Geophysics, 2001, 16(2):118-126.]
    [7] 张光学,祝有海,徐华宁.非活动大陆边缘的天然气水合物及其成藏过程述评[J].地质论评, 2003,49(2):181-186.

    [ZHANG Guang-xue, ZHU You-hai,XU Hua-ning. Gas hydrate on the passive continental margin and its pool formation process[J]. Geological Review, 2003, 49(2):181-186.]
    [8] Kvenvolden K A, Barnard L A.Gas hydrates of the Black Outer Ridge. DSDP site 553, Leg76[R]. Initial Reports of Deep Sea Drilling Project 76,1983:353-366.
    [9] Kvenvolden K A.Subaquatic gas hydrate occurrence-models and settings[J]. Eos,Trans, AGU, Spring Meeting, Suppl.,1993:74, 369
    [10] Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and seafloor bottom simulating reflectors by vertical fluid expulsion[J]. Journal Geophysical Research, 1992, 97:7025-7041.
    [11] Hyndman R D, Spence G D. A seismic study of methane hydrate marine bottom simulating reflectors[J]. Journal of Geophysical Research, 1992, 97:6683-6698.
    [12] Dillon W P, Paul C K. Marine gas hydrates Ⅱ, Geophysical evidence[M]//In:Cox J L(ed).Natural gas hydrates:Properties, Occurrences and Recovery. Butterworth, London, 1983:73-90.
    [13] Miller J J, Lee M W, von Huene R. An analysis of a reflection from the base of a gas hydrate zone off Peru[J]. Am. Assoc. Pet. Geol. Bull.,1991, 75:910-924.
    [14] Neben S, Hinz K, Beiersdorf H. Reflection characteristics, depth and geographical distribution of bottom simulating reflectors within the accretionary wedge of Sulawesi[M]//In:Henriet J P, Mienert J (eds).Gas hydrates:relevance to world margin stability and climate change. Geol Soc London Spec Publ., 1998,137:255-265.
    [15] 宋海斌,张岭,江为为,等.海洋天然气水合物的地球物理研究(Ⅲ):似海底反射[J].地球物理学进展,2003,18(2):183-187.

    [SONG Hai-bin, ZHANG Ling, JIANG Wei-wei,et al. Geophysical researches on marine gas hydrates (Ⅲ):bottom simulating reflector[J]. Progress in Geophysics, 2003, 18(2):183-187.]
    [16] Lee M W, Hutchinson D R, Dillon W P,et al.Method of estimating the amount of in situ gas hydrates in deep marine sediments[J]. Mar. Petr. Geol.,1993, 10:493-506.
    [17] Minshull T A, Singh B C, Westbrook G K. Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion[J]. Journal of Geophysical Research, 1994, 99:4715-4734
    [18] 秦蕴珊,赵一阳,陈丽蓉.东海地质[M].北京:科学出版社,1987.[QIN Yun-shan,ZHAO Yi-yang,CHEN Li-rong.East China Sea Geology[M].Beijing:Science Press,1987.]
    [19] 许东禹.中国近海地质[M].北京:地震出版社,1997.[XU Dong-yu.Offshore Geology of China Seas[M].Beijing:Seism Press,1997.]
    [20] 刘光鼎.中国海区及邻域地质地球物理特征[M].北京:科学出版社,1992.[LIU Guang-ding.Geologic and Geophysical Features of China Seas and Adjacent Regions[M].Beijing:Science Press,1992.]
    [21] 金翔龙.东海海洋地质[M].北京:海洋出版社,1992.[JIN Xiang-long.Marine Geology of East China Sea[M].Beijing:China Ocean Press,1992.]
    [22] 赵金海.东海中、新生代盆地成因机制和演化(上)[J].海洋石油,2004,24(4):6-14.

    [ZHAO Jin-hai.The forming factors and evolvement of the Mesozoic and Cenozoic basin in the East China Sea(I)[J]. Offshore Oil, 2004, 24(4):6-14.]
    [23] 赵金海.东海中、新生代盆地成因机制和演化(下)[J].海洋石油,2005,25(1):1-10.

    [ZHAO Jin-hai.The forming factors and evolvement of the Mesozoic and Cenozoic basin in the East China Sea(Ⅱ)[J]. Offshore Oil, 2005, 25(1):1-10.]
    [24] 方银霞,金翔龙,杨树峰.冲绳海槽西北边坡天然气水合物的初步研究[J].海洋学报,2000,22(增刊):49-52.[FANG Yin-xia,JIN Xiang-long,YANG Shu-feng.Gas hydrate study of the northwest slope margin of the Okinawa Trough[J].Acta Oceaniologica Sinica,2000

    ,22(Sup.):49-52.]
    [25] 孟宪伟,刘保华,石学法,等.冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析[J].沉积学报,2000,18(4):629-633.

    [MENG Xian-wei,LIU Bao-hua,SHI Xue-fa,et al.The possibility existence of gas hydrate in the lower slope margin of middle Okinawa Trough[J].Acta Sedimentologica Sinica,2000,18(4):629-633.]
    [26] 栾锡武,初凤友,赵一阳,等.我国东海及邻近海域气体水合物可能的分布范围[J].沉积学报,2001,19(2):315-321

    [LUAN Xi-wu,CHU Feng-you,ZHAO Yi-yang et al.The possible distribution of gas hydrate in the area of East China Sea and its vicinity[J].Acta Sedimentologica Sinica,2001,19(2):315-321.]
    [27] 方银霞,黎明碧,金翔龙,等.东海冲绳海槽天然气水合物的形成条件[J].科技通报,2003,19(1):1-5.

    [FANG Yin-xia, LI Ming-bi, JIN Xiang-long,et al. Formation condition of gas hydrate in Okinawa Trough of East China Sea[J]. Bulletin of Science and Technology, 2003, 19(1):1-5.]
    [28] 栾锡武,秦蕴珊,张训华,等.东海陆坡及相邻槽底天然气水合物的稳定域分析[J].地球物理学报,2003,46(4):467-475.

    [LUAN Xi-wu, QIN Yun-shan, ZHANG Xun-hua, et al. The stability zone of gas hydrate on the slope of the East China Sea and adjacent trough area[J]. Chinese Journal of Geophysics, 2003, 46(4):675-685.]
    [29] 栾锡武, 翟世奎, 干晓群.冲绳海槽中部热液活动区构造地球物理特征分析[J].沉积学报,2001,19(1):43-48.

    [LUAN Xi-wu,ZHAI Shi-kui, GAN Xiao-qun. The characteristic of tectonophysics of the middle Okinawa Trough[J]. Acta Sedimentologica Sinica, 2001, 19(1):43-48.]
    [30] 栾锡武.现代海底热液活动区的分布与构造环境分析[J].地球科学进展,2004,19(6):931-938.

    [LUAN Xi-wu. Distribution and tectonic environments of hydrothermal fields[J]. Advance in Earth Science, 2004, 19(6):931-938.]
    [31] 栾锡武.热液活动区数目与洋脊扩张速率的关系及其在冲绳海槽的应用[J].海洋地质与第四纪地质,2006,26(2):55-64.

    [LUAN Xi-wu. Relationship between the number of hydrothermal activity fields and spreading rate and its application in the Okinawa Trough[J]. Marine Geology and Quaternary Geology, 2006, 26(2):55-64.]
    [32] Lee C S.Exploration of submarine hydrothermal springs[M]//In:Liu K K,Liu C S, eds. Ocean and Taiwan in the 21st Century, NCOR (National Center for Ocean Research). Taipei,2002.
    [33] Chow J,Lee J S,Sun R,et al.Characters of the bottom simulating reflectors near mud diapis:offshore southwestern Taiwan[J].Geo-Marine Letters,2000,20:3-9.
    [34] Chi W C,Reed D L,Liu C S,et al. Distribution of the bottom simulating reflector in the offshore Taiwan collision zone[J]. TAO, 1998, 9(4):779-794.
    [35] 栾锡武,张训华.东海及琉球沟弧盆体系热流测量及分布[J].地球物理学进展,2003,18(4):670-678.

    [LUAN Xi-wu, ZHANG Xun-hua. Heat flow measurement and distribution in the East China Sea and Ryukyu Trench Arc Back-Arc System[J]. Progress in Geophysics, 2003, 18(4):670-678.]
    [36] 栾锡武,高德章,赵金海,等.东海及邻近海域一条剖面地壳速度结构[J].地球物理学进展,2001,16(2):28-35.

    [LUAN Xi-wu,GAO De-zhang,ZHAO Jin-hai,et al.The crust velocity structure of a profile in the area of East China Sea and its vicinity[J].Progress in Geophysics,2001,16(2):28-35.]
    [37] Hyndman R D, Spence G D, Chapman R,et al.Geophysical studies of marine gas hydrate in Northern Cascadia[J]. Gas Hydrate in Northern Cascadia, 2001:273-295.
    [38] Hamilton E L. Sound velocity-density relations in seafloor in sediments and rocks[J]. J. Acoust. Soc. Am.,1978, 63:366.
    [39] Field M E,Kvenvolden K A.Gas hydrates on the northern California continental margin[J].Geology,1985,13:517-520.
    [40] Milkov A V,Claypool G E,Lee Y J,et al.In situ methane concentrations at Hydrate Ridge,offshore Oregon:New constraints on the global gas hydrate inventory from an active margin[J].Geology,2003,31(10):833-836.
    [41] Schwalenberg K,Willoughby E,Yuan J,et al.A controlled source electromagnetic experiment for gas hydrate assessment:first results from the Chilean margin[J].AGU,Spring Meeting 2004,abstract #OS24A-06.
    [42] Miller J J,Lee M W,Huene R von. An analysis of a seismic reflection from the base of a gas hydrate zone,offshore Peru[J].AAPG Bull.,1982,66:789-792.
    [43] Netzeband G L,Hübscher C P,Gajewski D,et al.Seismic velocities from the Yaquina forearc basin off Peru:evidence for free gas within the gas hydrate stability zone[J].International Journal of Earth Sciences,2005,94(3):420-432.
    [44] Nouzé H,Henry P,Noble M,et al.Large gas hydrate accumulations on the eastern Nankai Trough inferred from new high-resolution 2-D seismic data[J].Geophysical Research Letters,2004,31,doi:10.1029/2004GL019848
    [45] Collett T S,Ladd J.Detection of gas hydrate with downhole logs and assessment of gas hydrate contrations(staurations)and gas volumes on the Blake Ridge with electrical resistivity log data[J]. Proceedings of the Ocean Drilling Program,Scinentific Results,2000,164:179-191.
    [46] 梁瑞才,吴金龙,刘保华,等.冲绳海槽中段线性磁条带异常及其构造发育[J].海洋学报,2001,23(2):69-78.

    [LIANG Rui-cai, WU Jin-long, LIU Bao-hua,et al. Tectonic and linear magnetic anamaly of Middle Okinawa Trough[J]. Acta Oceanologica Sinica, 2001, 23(2):69-78.]
    [47] 栾锡武,秦蕴珊.冲绳海槽宫古段西部槽底海底气泉的发现[J].科学通报,2005,50(8):801-810.

    [LUAN Xi-wu,QIN Yun-shan.Gas seepage on the sea floor of Okinawa Trough Miyako Section[J].Chinese Science Bulletin,2005,50(13):1358-1365.]
  • [1] 余翼, 栾锡武, 刘鸿, 郭龙祥, 秘丛永, 石艳锋, 刘嘉程, 张豪.  海底冷泉气泡羽流声学探测参数研究 . 海洋地质与第四纪地质, 2019, 39(2): 188-199. doi: 10.16562/j.cnki.0256-1492.2018042401
    [2] 卢健, 李绍科, 李安春, 刘喜停, 董江, 张晋.  CT扫描方法在东海泥质沉积物孔隙度分析中的应用与对比 . 海洋地质与第四纪地质, 2018, 38(2): 198-207. doi: 10.16562/j.cnki.0256-1492.2018.02.020
    [3] 李进, 王淑红, 颜文.  海底泥火山及其与油气和天然气水合物的关系 . 海洋地质与第四纪地质, 2017, 37(6): 204-214. doi: 10.16562/j.cnki.0256-1492.2017.06.022
    [4] 李晶, 贺行良, 刘昌岭, 孟庆国, 宁伏龙, 陈宇峰.  海底多组分水合物分解气好氧氧化实验研究 . 海洋地质与第四纪地质, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
    [5] 靳佳澎, 王秀娟, 陈端新, 郭依群, 苏丕波, 梁金强, 钱进.  基于测井与地震多属性分析神狐海域天然气水合物分布特征 . 海洋地质与第四纪地质, 2017, 37(5): 122-130. doi: 10.16562/j.cnki.0256-1492.2017.05.012
    [6] 张金华, 魏伟, 刘杰, 杨睿, 肖红平, 彭涌, 张巧珍, 丛晓荣.  海底水合物冰丘的特征及意义 . 海洋地质与第四纪地质, 2017, 37(1): 117-124. doi: 10.16562/j.cnki.0256-1492.2017.01.014
    [7] 张辉, 杨睿, 匡增桂, 黄丽, 阎贫.  海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景 . 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
    [8] 李凤, 贺行良, 徐刚, 陈立雷, 刘健.  东海近岸表层沉积物中脂肪酸与脂肪醇的组成以及分布与来源 . 海洋地质与第四纪地质, 2016, 36(4): 13-18. doi: 10.16562/j.cnki.0256-1492.2016.04.002
    [9] 王力峰, 尚久靖, 梁金强, 徐行, 沙志彬, 陆敬安, 王静丽.  南海东北部陆坡水合物钻探区海底表层热导率分布特征 . 海洋地质与第四纪地质, 2016, 36(2): 29-37. doi: 10.16562/j.cnki.0256-1492.2016.02.004
    [10] 蔡骥, 李予国.  时间域可控源电磁法探测海底天然气水合物可行性分析 . 海洋地质与第四纪地质, 2016, 36(1): 159-163. doi: 10.3724/SP.J.1140.2016.01016
    [11] 钱进, 王秀娟, 董冬冬, 吴时国.  裂隙充填型天然气水合物的地震各向异性数值模拟 . 海洋地质与第四纪地质, 2015, 35(4): 149-154. doi: 10.16562/j.cnki.0256-1492.2015.04.016
    [12] 张光学, 徐华宁, 刘学伟, 张明, 伍忠良, 梁金强.  海底高频地震仪在南海北部天然气水合物探测中的应用 . 海洋地质与第四纪地质, 2015, 35(1): 185-192. doi: 10.3724/SP.J.1140.2015.01185
    [13] 田振兴, 张训华, 张志珣, 杨金玉, 刘展.  利用重磁震资料解释推断东海海底火成岩 . 海洋地质与第四纪地质, 2014, 34(6): 145-152. doi: 10.3724/SP.J.1140.2014.06145
    [14] 沙志彬, 梁金强, 郑涛, 陆敬安, 王力峰, 苏丕波.  地震属性在天然气水合物预测中的应用 . 海洋地质与第四纪地质, 2013, 33(5): 185-192. doi: 10.3724/SP.J.1140.2013.05185
    [15] 叶鸿, 杨涛, 朱国荣, 蒋少涌.  海底天然气水合物生长的数值模拟研究及进展 . 海洋地质与第四纪地质, 2013, 33(2): 143-152. doi: 10.3724/SP.J.1140.2013.02143
    [16] 李艳菊, 史建南, 朱利东, 付修根, 杨文光, 杨若羿.  羌塘盆地双湖地区冷泉碳酸盐岩的发现及其天然气水合物成藏地质意义 . 海洋地质与第四纪地质, 2013, 33(2): 105-110. doi: 10.3724/SP.J.1140.2013.02105
    [17] 朱爱美, 刘季花, 张辉, 白亚之, 崔菁菁, 刘升发.  东海内陆架泥质区表层沉积物稀土元素的分布特征 . 海洋地质与第四纪地质, 2012, 32(1): 1-10. doi: 10.3724/SP.J.1140.2012.01001
    [18] 张光学, 张明, 杨胜雄, 雷新华, 徐华宁, 刘学伟, 梁金强, 沙志彬.  海洋天然气水合物地震检测技术及其应用 . 海洋地质与第四纪地质, 2011, 31(4): 51-58. doi: 10.3724/SP.J.1140.2011.04051
    [19] 田姗姗, 张富元, 阎丽妮, 徐轩.  东海西南陆架表层沉积物粒度分布特征 . 海洋地质与第四纪地质, 2009, 29(5): 13-20. doi: 10.3724/SP.J.1140.2009.05013
    [20] 张明, 彭朝旭, 沙志彬.  天然气水合物准三维地震调查导航定位技术 . 海洋地质与第四纪地质, 2008, 28(6): 101-106. doi: 10.3724/SP.J.1140.2008.06101
  • 加载中
计量
  • 文章访问数:  1431
  • HTML全文浏览量:  113
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-01
  • 修回日期:  2006-06-08

东海天然气水合物的地震特征

    作者简介:

    栾锡武(1966-),男,博士,研究员,从事海洋地质地球物理研究,E-mail:xluan@ms.qdio.ac.cn

基金项目:

国家自然科学基金项目(40006004)

国家重点基础研究发展规划项目(G200004670303)

中石化项目(wx200x)

中国科学院海洋研究所知识创新领域前沿项目

  • 中图分类号: P744.4

摘要: 使用中国科学院海洋研究所"科学一号"调查船于2001年以及20世纪80年代在东海地区采集的多道地震资料,以海域天然气水合物研究为目的,对这些资料进行了数据处理并获得了偏移地震剖面。通过对地震剖面的解释,在6条剖面上确定了6段异常反射为BSR,均有振幅强、与海底相位相反的特点。6段BSR基本上都没有出现和沉积地层相交的现象。分析认为,这与东海地区第四纪以来的沉积特征有关,并不能由此否认这些异常反射是BSR。6段BSR出现的水深为750~2 000 m,埋深在0.1~0.5 s (双程时间)之间。随着海底深度的增大,BSR埋深有增大的趋势。计算结果显示,6段BSR所处的温度和压力条件都满足水合物稳定赋存所需要的温度和压力条件。本文的BSR主要与北卡斯凯迪亚盆地以及智利海域水合物的温度、压力条件相似,而与日本南海海槽、美国布莱克海台等海域水合物的温度、压力条件相差比较大。在地震剖面上,6段BSR所处的局部构造位置都和挤压、断层有关,有利于水合物的发育;在空间上,它们主要分布在东海陆坡近槽底的位置以及与陆坡相近的槽底。在南北方向上,除分布在吐噶喇断裂和宫古断裂附近外,还与南奄西、伊平屋和八重山热液活动区相邻。热液活动和水合物虽然没有直接的成因关系,但岩浆活动为水合物气源的形成提供了热源条件,为流体和气体的运移、聚集提供了通道条件,从而有利于水合物的发育与赋存。根据地震剖面反射特征推断,剖面A1A2和A14A23发育BSR的位置应该有气体或者流体从海底流出,可能是海底冷泉发育的位置。剖面A14A23上BSR发育处,振幅比的异常增大和BSR埋深的降低是相关联的。这种关联支持该处发育海底冷泉的推测。

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回