FORMATION OF AUTHIGENIC GYPSUM AND PYRITE ASSEMBLAGE AND ITS SIGNIFICANCE TO GAS VENTINGS IN NANSHA TROUGH,SOUTH CHINA SEA
-
摘要: 南海海槽是潜在的天然气水合物发育区,在表层沉积物中分布有石膏-黄铁矿组合。通过对石膏、黄铁矿的形貌特征、矿物组成、化学元素、硫同位素等的分析,讨论和揭示了石膏-黄铁矿组合的成岩环境、形成机理及其与天然气渗漏的关系。石膏集合体为土块状和多孔状、玫瑰状,表面分布有孔洞或微孔,黄铁矿为莓球状、球粒结块状和虫管状。不同形状的石膏、黄铁矿的化学成分没有明显差别。石膏-黄铁矿的形成机理是海底渗漏的天然气与硫酸盐发生缺氧甲烷氧化反应,产物HS-与沉积物中的Fe2+反应产生FeS并转变为黄铁矿,在形成FeS的过程中产生的H+促进碳酸盐溶解,Ca2+与SO42-达到过饱和沉淀出重34S的石膏。因此,石膏-黄铁矿组合是海底存在天然气渗漏的证据,这一发现对开展南沙海槽潜在天然气水合物的调查以及对天然气渗漏事件的研究具有一定的科学意义。Abstract: Nansha Trough located in the southwestern South China Sea (SCS) is a promising area of gas hydrate resources in China, in which authigenic gypsum and pyrite assemblages in surface sediments are widely distributed. Gypsum and pyrite were picked out from surface sediment collected from 1987 to 2004 and very useful to structural, mineralogical, geochemical and isotopic studies. Gypsum often occurs as muddy aggregates with milk-white micrite grains or intergrowth rosettes with large pores, and surface of the aggregates has pores or micro-pores,and pyrite often shows framboids, granular masses or worm tubes. However, two types of recognized gypsum are not distinctly different from each other in chemical composition, and types of pyrite are not obviously different in chemical composition, either. The results demonstrate that diagenesis environment of gypsum and pyrite assemblages were associated with gas venting in the seafloor where seepage gas came in contact with downward-diffusing seawater sulfate, and then anaerobic oxidation of methane took place. HS-reagent reacted with Fe2+ in the marine sediments and produced metastable FeS that turnt into pyrite through polysulfide pathway or H2S pathway. This process resulted in a lowering of pH,which promoted carbonate dissolution. The elevated levels of both calcium and sulfate led to a supersaturation and precipitation of gypsum with heavy 34S. It shows that gypsum and pyrite assemblage is an evidence of gas venting in the seafloor of Nansha Trough, where gas hydrates most likely occur. Therefore,gypsum and pyrite assemblage here would provide new implications for further exploration of potential gas hydrates in modern submarine sediments and for detailed researches of ancient methane seeps in the Nansha Trough.
-
Keywords:
- gypsum and pyrite assemblage /
- sulfur isotope /
- gas venting /
- diagenesis environment /
- Nansha Trough
-
-
[1] Commeau R F, Paull C K, Commeau J A,et al. Chemistry and mineralogy of pyrite-enriched sediments at a passive margin sulfide brine seep:abyssal Gulf of Mexico[J]. Earth and Planetary Science Letters, 1987, 82:62-74.
[2] Peckmann J, Goedert J L, Heinrichs T, et al. The Late Eocene Whiskey Creek' methane seep deposit (western Washington State):Part Ⅱ. Petrology, stable isotopes, and biogeochemistry[J]. Facies,2003, 48, 241-254.
[3] Peckmann J,Thiel V.Carbon cycling at ancient methane seeps[J]. Chemical Geology,2004,205:443-467.
[4] Arvidson R S, Morse J W,Joye S B. The sulfur biogeochemistry of chemosynthetic cold seep communities, Gulf of Mexico, USA[J].Marine Chemistry,2004, 87:97-119.
[5] Chen D F,Huang YY,Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2005,22:613-621.
[6] Chen D F,Feng D, Su Z, et al.Pyrite crystallization in seep carbonates at gas vent and hydrate site[J]. Materials Science and Engineering, 2006,26(4):602-605.
[7] Briskin M,Schreiber B C. Authigenic gypsum in marine sediments[J]. Marine Geology, 1978, 28:37-49.
[8] Xavier A,Klemm D D. Authigenic gypsum in deep sea manganese nodules[J]. Sedimentology, 1979, 26:307-310.
[9] Guptha M V S.Authigenic gypsum in a deep sea core from southeastern Arabian Sea[J]. Journal Geological Society of India, 1980, 21:568-571.
[10] 黄惠玉,王惠中.南极Bransfield海峡海水沉积物中的自生石膏[J].同济大学学报,1994,22(1):121-125. [HUANG Hui-yu,WANG Hui-zhong. Autogenetic gypsum in marine glacial sediments in Bransfield Strait Antarctica[J]. Journal of Tongji University,1994, 22(1):121-125.]
[11] JØrgensen N O. Gypsum formation in recent submarine sediments from Kattegat, Denmark[J]. Chemical Geology,1980, 28:349-353.
[12] Bttcher M E, Brumsack H-J,de Lange G J. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters of the eastern Mediterranean[C]//Scientific Results ODP 160,1998:365-373.
[13] Wang J, Suess E,Rickert D. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific[J].Science in China Series(Series D), 2004,47(3):280-288.
[14] Sassen R,Roberts H H, Carney R,et al.Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope:relation to microbial processes[J]. Chemical Geology,2004, 205:185-217.
[15] Criddle A J. A preliminary description of microcrystalline pyrite from nannoplankton ooze at site 251, Southwest Indian Ocean[C]//Initial Reports. DSDP, 26:Washington (U S Govt. Printing Office),1974:603-611.
[16] Robert C,Chamley H. Gypse et sapropels profonds de Mediterrnaee oriental[J]. C.R. Acad. Sci. Paris (Ser D),1974:843-846.
[17] Siesser W G,Rogers J. Authigenic pyrite and gypsum in South West African continental slope sediments[J].Sedimentology,1976, 23(4):567-577.
[18] Muza J P,Wise S W Jr.An authigenic gypsum, pyrite, and glauconite association in a Miocene deep sea biogenic ooze from the Falkland Plateau, Southwest Atlantic Ocean[C]//Initial Reports. ODP, 71, Part I:Washington (U S Govt. Printing Office), 1983:361-375.
[19] Vuaykumar P,Avz G G.Occurrence of authigenic gypsum in deep sea core off Madras[J]. Journal geological Society of India,1995,45:483-486.
[20] Garcia-Gil S. A natural laboratory for shallow gas:the R1'as Baixas (NW Spain)[J]. Geo-Marine Letter,2003, 23:215-229.
[21] 苏广庆,王有强,王天行,等.南沙群岛及其邻近海区的自生矿物[M]//南沙群岛及其邻近海区第四纪沉积地质学.湖北科学技术出版社,1994:89-106.[SU Guang-qing,,WANG You-qiang,Wang Tian-xing,et al. Authigenic minerals of Nansha Islands and Adjacent Sea Area[C]//Sedimentary Geology of Nansha Islands and Adjacent Sea Area.Hubei Science and Technology Press:Wuhan,1994:89 -106.]
[22] 张智武,吴世敏,樊开意,等.南沙海区沉积盆地油气资源评价及重点勘探地区[J]. 大地构造与成矿学,2005,29(3):418-424. [ZHANG Zhi-wu,WU Shi-min,FAN Kai-yi,et al. Evaluation of hydrocarbon resources and key exploration areas in Nansha Block,Southern South China Sea[J].Geoteconica et Metallogenia, 2005,29(3):418-424.]
[23] Berner U,Faber E.Hydrocarhon gases in surface sediments of the South China Sea[M]//Marine Geology and Geophysics of the South China Sea.China Ocean Press,l990:199-21l.
[24] 罗斌杰,宋之光,王有孝,等.南沙群岛及其邻近海区沉积有机地球化学[M]//南沙群岛及其邻近海区第四纪沉积地质学.湖北科学技术出版社,1994:166-195.[LUO Bin-jie,SONG Zhi-guang,WANG You-xiao,et al.Sedimentary organic geochemistry of Nansha Islands and adjacent sea area[C]//Sedimentary Geology of Nansha Islands and Adjacent Sea Area. Wuhan:Hubei Science and Technology Press,1994:166 -195.]
[25] Rehder G,Suess E.Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures[J]. Marine Chemistry,2001,75:89-108.
[26] 刘海龄,阎贫,孙岩,等.南沙微板块的层块构造[J].中国地质,2002,29(4):374-381. [LIU Hai-ling,YAN Pin,SUN Yan, et al. Layer-block tectonics of the Nansha microplate[J]. Geology in China, 2002,29(4):374-381.]
[27] 苏新,陈芳,于兴河,等.南海陆坡中新世以来沉积物特性与气体水合物分布初探[J].现代地质,2005,19(1):1-13. [SU Xin,CHEN Fang,YU Xing-he,et al. A pilot study on Miocene through Holocene sediments from the continental slope of the South China Sea in correlation with possible distribution of gas hydrates[J]. Geoscience, 2005,19(1):1-13.]
[28] 邓辉,阎贫,刘海龄.南沙海域天然气水合物地震特征[J].海洋地质与第四纪地质,2004,24(4):89-94. [DENG Hui,YAN Pin,LIU Hai-ling.Seismic characteristics of gas hydrate in the Nansha waters[J]. Marine Geology and Quaternary Geology,2004, 24(4):89-94.]
[29] 姚伯初.南沙海槽的构造特征及其构造演化史[J]. 南海地质研究,1996(8):1-13.[YAO Bo-chu.Tectonic characteristics and evolution of the Nansha Trough[J].Geological Research of South China Sea,1996 (8):1-13.]
[30] Ingrama G M, Chisholma T J, Granta C J,et al. Deepwater North West Borneo:hydrocarbon accumulation in an active fold and thrust belt[J].Marine and Petroleum Geology, 2004,21:879-887.
[31] 张光学,黄永样,祝有海,等.南海天然气水合物的成矿远景[J].海洋地质与第四纪地质,2002,22(1):75-87. [ZHANG Guang-xue,HUANG Yong-xiang,ZHU You-hai,et al.Prospect of gas hydrate resources in the South China Sea[J].Marine Geology and Quaternary Geology, 2002,22(1):75-87.
[32] 吴必豪,张光学,祝有海,等.中国近海天然气水合物的研究进展[J].地学前缘,2003,10(1):177-189. [WU Bi-hao,ZHANG Guang-xue,ZHU You-hai,et al.Progress of gas hydrate investigation in China offshore[J].Earth Science Frontiers,2003,10(1):177-189.]
[33] 卢振权,吴必豪,强祖基,等. 中国近海海域卫星热红外亮温增温异常探讨[J].现代地质,2005,19(1):74-82. [LU Zhen-quan,WU Bi-hao,QIANG Zu-ji,et al.Brightness temperature anomalies in satallite-based thermal infrared remote sensing along the offshore China seas[J].Geoscience, 2005, 19(1):74-82.]
[34] 金春爽,汪集旸,张光学.南海天然气水合物稳定带的影响因素[J].矿床地质,2005,24(4):388-397. [JIN Chun-shuang,WANG Ji-yang, ZHANG Guang-xue.Factors affecting natural gas hydrate stability zone in the South China Sea[J]. Mineral Deposits, 2005,24(4):388-397.]
[35] 姚伯初.南海的天然气水合物矿藏[J].热带海洋学报,2001,20(2):20-28. [YAO Bo-chu.The gas hydrate in the South China Sea[J].Journal of Tropical Oceanography, 2001,20(2):20-28.]
[36] 曾维平,周蒂.GIS辅助估算南海南部天然气水合物资源量[J].热带海洋学报,2003,22(6):35-45. [ZENG Wei-ping,ZHOU Di.GIS-aided estimation of gas hydrate resources in Southern South China Sea[J]. Journal of Tropical Oceanography, 2003,22(6):35-45.]
[37] Rees C E, Jenkins W J, Monster J. The sulphur isotopic composition of oceanic water sulphate[J]. Geochim. Cosmochim. Acta, 1978,42:377-382.
[38] 曾志刚,蒋富清,秦蕴珊,等. 现代海底热液沉积物的硫同位素组成及其地质意义[J]. 海洋学报,2001,23(10):48-56. [ZENG Zhi-gang,JIANG Fu-qing,QIN Yun-shan,et al. Sulfur isotopic composition of modern seafloor hydrothermal sediment and its geological significance[J]. Acta Oceanologica Sinica, 2001,23(1):48-56.]
[39] Schnitker D, Mayer L M,Norton S. Loss of calcareous microfossils from sediments through gypsum formation[J]. Marine Geology,1980, 36:35-44.
[40] Hensen C, Zabel M. Early diagenesis at the benthic boundary layer:oxygen and nitrate in marine sediments[C]//Marine Geochemistry. Berlin:Springer Verlag, 2000:209-231.
[41] Thode H G,Rees C E. Sulphur isotope geochemistry of Middle East oil studies[J]. Endeavour, 1970,XXIX:24-28.
[42] Cunningham K I,Takahashi-Kenneth I. Evidence for petroleum-assisted speleogenesis, Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico[R]. USGS Research on Energy Resources, 1992:16-17.
[43] Kaplan I R,Ritterberg S C. Microbiological fractionation of sulphur isotopes[J]. Journal of General Microbiology,1964, 34:195-212.
[44] Borowski W S,Paull C K,Ussler Ⅲ W.Global and local variations of interstitial sulfate gradients in deep-water,continental margin sediments:Sensitivity to underlying methane and gas hydrates[J].Marine Geology,1999,159:131-154.
[45] 蒋少涌,杨涛,薛紫晨,等.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J]. 现代地质,2005,19(1):45-54. [JIANG Shao-yong,YANG Tao,XUE Zi-chen,et al.Chlorine and sulfate concentrations in pore waters from marine sediments in the north margin of the South China Sea and their implications for gas hydrate exploration[J].Geoscience,2005,19(1):45-54.]
[46] Coleman M L,Raiswell R. Source of carbonate and origin of zonation in pyritiferous carbonate concretions:evaluation of a dynamic model[J]. American Journal of Science, 1995,295:282-308.
[47] Berner R A. Sedimentary pyrite formation:an update[J]. Geochimica et Cosmochtmica Acta, 1984, 48:605-615.
[48] Hurtgen M T, Lyons T W,Ingall E D, et al. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations:examples from Effingham inlet, Orca Basin, and the Black Sea[J]. American Journal of Science,1999, 299:556-588.
[49] Shen Y,Buick R.The antiquity of microbial sulfate reduction[J]. Earth-Science Reviews,2004, 64:243-272.
[50] Campbell K A, Farmer J D,Des Marais D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California:carbonate geochemistry, fluids and paleoenvironments[J]. Geofluids 2002,2:63-94.
计量
- 文章访问数: 2329
- HTML全文浏览量: 171
- PDF下载量: 19