PALEOENVIRONMENTAL SIGNIFICANCE OF CLAY MINERAL ASSEMBLAGES OF CORE ARC5-M06 ON THE CHUKCHI SEA CONTINENTAL SLOPE SINCE LATE PLEISTOCENE
-
摘要: 对中国第5次北极科学考察采自楚科奇海陆坡的ARC5-M06柱样进行粒度、冰筏碎屑、碎屑矿物、黏土矿物、岩心XRF扫描、沉积物颜色分析,初步建立了楚科奇海陆坡晚更新世MIS3期以来的沉积地层框架。ARC5-M06柱黏土矿物组合类型为伊利石(66%)-绿泥石(22%)-高岭石(9%)-蒙皂石(3%)组合,与北冰洋边缘海表层沉积物黏土矿物组合类型对比表明,MIS3期以来楚科奇海陆坡除MIS3期晚期黏土矿物陆源主要来自北美大陆的加拿大马更些河入海物质及少量太平洋水团携入的北美育空河入海物质外,其他时期均主要来自于东西伯利亚海的输入;自MIS2末次盛冰期以来,陆坡与海盆的黏土矿物源区发生了改变,陆坡主要来自于东西伯利亚海的输入,海盆主要来自于北美大陆物源输入,受波弗特海的输入影响较大。Abstract: A gravity core of ARC5-M06 was taken from the Chukchi Sea slope during the Fifth Chinese National Arctic Research Expedition in 2012. All samples were analysed for grain size, ice-raft detritus, clastic minerals, clay minerals, XRF scanning and sediment color features. The stratigraphic framework of the late Pleistocene of the core ARC5-M06 since Marine Isotope Stage (MIS) 3 was established by integration of IRD, color cycles, element cycles, as done previously for other cores. The clay mineral assemblages consist of illite, kaolinite and chlorite with small amount of smectite. Clay mineral assemblages in the core ARC5-M06 were compared with those in the adjacent marginal continental shelf to identify their provenance and transport processes during the Late Pleistocene. Based on the above studies, it is concluded that the clay mineral assemblages in the Chukchi Sea slope sediments were mainly from the East Siberia Sea during MIS3, but from the Mackenzie River in Canada and the Yukong River in the North America Continent through the Pacific water masses during late MIS3. And the clay minerals assemblages in the Chukchi Sea slope sediments were mainly from the the East Siberia Sea source input, but those in the Chukchi Sea basin sediments were mainly from the North American continent source input with much more from the Beaufort sea.
-
Keywords:
- grain size /
- ice-raft detritus /
- clay mineral /
- paleoenvironment /
- Arctic
-
-
[1] Mueller D R, Vincent W F, Jeffries M O. Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake[J]. Geophysical Research Letters, 2003, 30, 20, 2031, doi: 10.1029/2003GL017931.
[2] Meehl G A, Washington W M, Collins W D, et al. How much more global warming and sea level rise?[J].Science, 2005, 307:1769-1772.
[3] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008,35, L01703, doi: 10.1029/2007GL031972.
[4] Sellén E.Quaternary paleoceanography of the Arctic Ocean:A study of sediment stratigraphy and physical properties[D]. 2009:1-43.
[5] Pelletier B R. Sediment Dispersal in the Southern Beaufort Sea[R].Technical Report No. 25a, Geological Survey of Canada. 1975:1-80.
[8] 张德玉,高爱国,张道建.北冰洋加拿大海盆黏土矿物的分布特征[C]//张占海主编.快速变化中的北极海洋环境. 北京:科学出版社,2011:358-370.[ZHANG Deyu,GAO Aiguo,ZHANG Daojian. Distribution of clay minerals in the Canada Basin, Arctic Ocean[C]//In:Zhang Zhanhai, ed.Rapid Changes in the Marine Environment,Arctic Ocean. Beijing:Science Press, 2011:358 -370.]
[9] Wang R J,Xiao W S,März C,et al.Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain,western Arctic Ocean[J]. Global and Planetary Change, 2013, 108:100-118.
[10] Evgenia A B. Reconstruction of late Quaternarysedimentary environmentsat the southern Mendeleev Ridge (Arctic Ocean)[D].University of Bremen, 2012:1-91.
[11] Stein R,Matthieen J,Niessen F,et al.Towards a better (litho-) stratigraphy and reconstruction of quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J].Polarforschung, 2010, 79(2):97-121.
[12] Löwemark L, Jakobsson M, Morth M, et al. Arctic Ocean manganese contents and sediment colour cycles[J]. Polar Research, 2008, 27(2):105-113.
[13] Visher G S.Grain size distributions and depositional processes[J].Journal of Sedimentary Petrology,1969,39(4):1074-1106.
[14] 陈沈良,杨世伦,吴瑞明.杭州湾北岸潮滩沉积物粒度的时间变化及其沉积动力学意义[J].海洋科学进展,2004,22(3):299-305. [CHEN Shenliang,YANG Shilun,WU Ruiming.Temporal change in tidal flat sediment grain size along the north bank of the Hangzhou Bay and their implication of sedimentation dynamics[J].Advance in Marine Science,2004,22(3):299-305.]
[15] McCave I N, Hall I R. Size sorting in marine muds:Processes, pitfalls, and prospectsfor paleoflow-speed proxies[J]. Geochemical Geophysical Geosystem, 2006,7, Q10N05. doi: 10.1029/2006GC001284.
[16] Clark D L, Hanson A. Central Arctic Ocean sediment texture:A key to ice transportmechanism. In:B. F. Molnia,ed. Glacial-marine sedimentation[M].New York:PlenumPress,1983:301-330.
[17] Phillips R L, Grantz A. Regional variations in theprovenance and abundance of ice-rafted clasts in ArcticOcean sediments:implications for the configuration of lateQuaternary oceanic and atmospheric circulation in theArctic[J]. Marine Geology,2001, 172:91-115.
[18] Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval and the timing of the InnuitianandLaurentide ice sheet calving events[J]. Polar Res, 2008, 27:114-127.
[19] Chamley H. Clay Sedimentology[M]. Berlin:Springer, 1989.
[20] Ehrmann W,Schmiedl G,Hamann Y,et al. Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2007, 249(1-2):36-57.
[21] Esquevin J. Influence de la composicion chimique des illites sur-cristallinite[J]. Bull Centre Rech Rau-SNPA, 1969,3(1):147-153.
[22] 李双建,张然,王清晨.沉积物颜色和黏土矿物对库车坳陷第三纪气候变化的指示[J].沉积学报,2006,24(4):521-530. [LI Shuangjian, ZHANG Ran, WANG Qingchen. Implications of the color of sediments and clay minerals forTertiary climatic changes of Kuqadepression[J].Acta Sedimentologica Sinica, 2006,24(4):521-530.]
[23] Backman J,Jakobsson M,Løvlie R,et al. Is the central Arctic Ocean a sediment starved basin?[J].Quat Sci Rev,2004,23:1435-1454.
[24] 王汝建,肖文申,李文宝, 等. 北冰洋西部楚科奇海盆晚第四纪的冰筏碎屑事件[J].科学通报,2009,54:3761-3770.[WANG Rujian, XIAO Wenshen, LI Wenbao, et al. Late Quaternary ice-rafted detritus events in the Chukchi Basin, western Arctic Ocean[J]. Chinese Sci Bull, 2009 ,54:3761-3770.]
[25] Jakobsson M. Optically Stimulated Luminescence dating supports central Arctic Ocean cm-scale sedimentation rates[J]. Geochemistry Geophysics Geosystems,2003,4(2),1016,doi: 10.1029/2002GC000423.
[26] Jakobsson M,Løvlie R,Arnold E M, et al. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments,central Arctic Ocean[J]. Global and Planetary Change, 2001,31:1-22.
[27] Spielhagen R F,Baumann K H,Erlenkeuser H,et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history[J]. Quaternary Science Reviews,2004,23:1455-1483.
[28] Rabineau M, Berne S, Olivet J L,et al. Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000 years)[J]. Earth and Planetary Science Letters, 2007,254(3-4):446-447.
[29] Hu A, Meehl G A, Otto-Bliesner B L,et al. Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes[J]. Nat Geosci, 2010,729(3):118-121.
[30] Bischof J, Clark D L, Vincent J S. Origin of ice-rafted debris:Pleistocene paleoceanography in the western Arctic Ocean[J]. Paleoceanography, 1996,1:743-756.
[31] Bischof J F, Darby D A. Mid-to late Pleistocene ice drift in the western Arctic Ocean:evidence for a different circulation in the past[J]. Science, 1997, 277:74-78.
[32] Polyak L,Bischof J,Ortiz J D,et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean[J]. Global and Planetary Change, 2009, 68:5-17.
[33] Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,203(1-2):73-93.
[34] Jakobsson M,Lvlie R,Al-Hanbali H,et al.Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology,2000,28(3):23-26.
[35] Clark D L, Whitman R R, Morgan K A, et al. Stratigraphy and glacio marine sediments of theAmerasian Basin, central Arctic Ocean[R]. Geological Society of America Special Paper 181. Boulder, CO:Geological Society of America,1980.
[36] Hunkins K, Thorndike E M, Mathieu G. Nepheloidlayers and bottom currents in the Arctic Ocean[J]. Journal of Geophysical Research, 1969,74:6995-7008.
[37] Winkler A, Wolf-Welling T C W, Stattegger K,et al. Clay mineral sedimentation in high northernlatitude deep-sea basins since the Middle Miocene (ODPLeg 151, NAAG)[J]. International Journal of Earth Science,2002, 91:133-148.
[38] Colony R, Thorndike A S. An estimate of the meanfield of Arctic sea ice motion[J]. Journal of Geophysical Research-Oceans. 1984,89:10623-10629.
[39] Rudels B, Jones E P, Anderson L G, et al. On the intermediate depth waters of the Arctic Ocean[C]//The polar oceans and their role in shaping the global environment. Washington D C:American Geophysical Union, 1994:33-46.
[40] Rudels B, Jones E P, Schauer U, et al. Atlantic sources of the Arctic Ocean surface and halocline waters[J]. Polar Research, 2004, 23:181-208.
[41] Wahsner M, Müller C,Stein R, et al. Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways-a synthesis[S]. Boreas, 1999,28:215-233.
[42] Naidu A S, Mowatt T C. Sources and dispersal patterns of clay minerals in surface sediments from the western continental shelf areas of Alaska[J]. Geological Society of America Bulletin,1983, 94:841-854.
[43] Darby D A. Kaolinite and other clay minerals in Arctic Ocean sediments[J]. Journal Sedimentary Petrology, 1975,45:272-279.
[44] Khim B K. Two modes of clay mineral dispersal pathways on the continental shelves of the East Siberian Sea and western Chukchi sea[J].Geosciences Journal, 2003,7(3):253-262.
[45] Griffin J J, Windom H, Goldberg E D. The distribution of clay minerals in the World Ocean[J]. Deep Sea Res, 1968, 15:433-459.
[46] Dalrymple R W, Maass O C. Clay mineralogy of late Cenozoic sediments in the CESAR cores, Alpha Ridge, central Arctic Ocean[J]. Canadian Journal of Earth Science,1987, 24:1562-1569.
-
期刊类型引用(2)
1. 贾福福, 沙龙滨, 李冬玲, 刘焱光. 西伯利亚极地海域第四纪以来古海洋环境研究进展. 极地研究. 2020(02): 250-263 . 百度学术
2. 章伟艳, 于晓果, 汪卫国, 刘焱光, 叶黎明, 边叶萍, 许冬, 杨海丽, 姚旭莹. 近百年来楚科奇海域沉积环境变化的有机碳、氮记录. 海洋地质与第四纪地质. 2018(02): 13-24 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 2110
- HTML全文浏览量: 374
- PDF下载量: 25
- 被引次数: 2