白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录

胡利民, 石学法, 刘焱光, 白亚之, 董林森, 黄元辉

胡利民, 石学法, 刘焱光, 白亚之, 董林森, 黄元辉. 白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录[J]. 海洋地质与第四纪地质, 2015, 35(3): 37-47. DOI: 10.3724/SP.J.1140.2015.03037
引用本文: 胡利民, 石学法, 刘焱光, 白亚之, 董林森, 黄元辉. 白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录[J]. 海洋地质与第四纪地质, 2015, 35(3): 37-47. DOI: 10.3724/SP.J.1140.2015.03037
HU Limin, SHI Xuefa, LIU Yanguang, BAI Yazhi, DONG Linsen, HUANG Yuanhui. GEOCHEMICAL CHARACTERISTICS AND BURIAL RECORDS OF ORGANIC CARBON IN THE COLUMN SEDIMENTS FROM WESTERN BERING SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 37-47. DOI: 10.3724/SP.J.1140.2015.03037
Citation: HU Limin, SHI Xuefa, LIU Yanguang, BAI Yazhi, DONG Linsen, HUANG Yuanhui. GEOCHEMICAL CHARACTERISTICS AND BURIAL RECORDS OF ORGANIC CARBON IN THE COLUMN SEDIMENTS FROM WESTERN BERING SEA[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 37-47. DOI: 10.3724/SP.J.1140.2015.03037

白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录

基金项目: 

南北极环境综合考察与评估专项(CHINARE2015-03-02,CHINARE2015-04-03)

国家自然科学基金项目(41476054,41306205)

详细信息
    作者简介:

    胡利民(1983-),男,博士,主要从事海洋地球化学和海洋沉积学研究,E-mail:hulimin@fio.org.cn

  • 中图分类号: P736.4

GEOCHEMICAL CHARACTERISTICS AND BURIAL RECORDS OF ORGANIC CARBON IN THE COLUMN SEDIMENTS FROM WESTERN BERING SEA

  • 摘要: 基于2012年中国第5次北极科学考察专项调查获得的样品资料,重点探讨了百年来白令海西部柱样沉积物中有机碳(TOC)的地球化学特征及其埋藏记录,结果显示,基于两柱样210Pbex随深度的指数衰变趋势,整体能反映出调查区相对稳定的现代沉积环境,可获得两沉积柱约70年以来的海洋沉积环境序列。陆架区BL16柱样中TOC的垂向分布与TN及粒度具有较好的一致性,反映出有机质来源较为一致,粒度可能对沉积有机碳的赋存起控制作用;而陆坡区BL10柱样粒度相对略粗,且TOC与TN、粒度无明显相关关系,这可能与该区复杂的沉积水动力环境、有机质输入和较强的细菌微生物作用有关。两柱样上层样品(近20年以来)都不同程度表现出TOC含量增加和CaCO3含量下降,这可能指示了近期北极地区变暖和海洋酸化加剧等过程对沉积有机质的影响。计算得到两柱样沉积有机碳的埋藏通量分别为3 100 mmol C·m-2·a-1(BL16)和1 400 mmol C·m-2·a-1(BL10),通过对有机碳埋藏保存效率的分析和区域对比,认为该区较高的有机碳埋藏通量,可能主要受控于较高的上层水体初级生产力和有机碳输出效率,较为有利的沉积有机碳保存代谢机制以及较快的沉积速率等因素的共同作用。
    Abstract: Using the two column samples (BL16 and BL10) taken during the Fifth Chinese National Arctic Expedition Cruise at the western Bering Sea, the geochemical characteristics and burial records of total organic carbon (TOC) over the past century were studied. The results show that the depositional regime was rather stable in the study area according to the vertical distribution of 210Pb profiles and its relationship to the core depth. Therefore, the sedimentary record of the past seventy years could be established for the two short cores respectively. As in the core BL16, there is a good correlation between TOC and total nitrogen (TN) as well as grain sizes, suggesting a consistent provenance of sedimentary organic components and the control of sediment grain size over the OM burial. On the other hand, the core BL10 from the upper slope was composed of more coarser sediments where exist poor relation between TOC and TN, probably caused by the complex depositional regime, varying OM input and microorganism activity. A clear shift of TOC and CaCO3 abundance in the upper sections (about twenty years ago) were observed in both two cores, which may indicate the recent regional warming in the arctic area and ocean acidification. The TOC sequestration in the two cores were estimated as 3100 mmol C·m-2·a-1 and 1400 mmol C·m-2·a-1, respectively. After the examination of the preservation of sedimentary TOC and the regional correlation of TOC sink fluxes, the relatively higher sequestration of TOC in the study area could be constrained by the higher marine productivity, quick POC export from the upper water column, effective metabolic processing and higher sedimentation rates of the seabed.
  • [1]

    Dahl K A, Repeta D J, Goericke R. Reconstructing the phytoplankton community of the Cariaco Basin during the Younger Dryas cold event using chlorin steryl esters[J]. Paleoceanography, 2004, 19(1):19-29.

    [2]

    Hays G C, Richardson A J, Robinson C. Climate change and marine plankton[J]. Trends in Ecology & Evolution, 2005, 20:337-344.

    [3]

    Raven J, Caldeira K, Elderfield H, et al. Ocean acidification due to increasing atmospheric carbon dioxide[M]. The Royal Society, 2005.

    [4]

    Guo L, Ping C L, Macdonald R W. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate[J]. Geophysical Research Letters, 2007, 34.

    [5] 陈建芳, 张海生, 金海燕, 等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16:193-201.[CHEN Jianfang, ZHANG Haisheng, JIN Haiyan, et al. Accumlation of sedimentary organic carbon in the Arctic shelves and its significance on global carbon budget[J]. Chinese Journal of Polar Research, 2004

    , 16:193-201.]

    [6]

    McGuire A D, Anderson L G, Christensen T R, et al. Sensitivity of the carbon cycle in the Arctic to climate change[J]. Ecological Monographs, 2009, 79:523-555.

    [7]

    Stabeno P J, Schumacher J D, Ohtani K. The physical oceanography of the Bering Sea[C]//Dynamics of the Bering Sea. 1999:1-28.

    [8]

    Wang J, Hu H, Mizobata K, et al. Seasonal variations of sea ice and ocean circulation in the Bering Sea:A model-data fusion study[J]. Journal of Geophysical Research:Oceans (1978-2012), 2009, 114(C2),DOI: 10.1029/2008JC004727.

    [9]

    Tsyban A. The BERPAC Project:development and overview of ecological investigations in the Bering and Chukchi Seas[C]//Dynamics of the Bering Sea. 1999:713-729.

    [10] 陈立奇. 南极和北极地区在全球变化中的作用研究[J]. 地学前缘, 2002, 9:245-253.[CHEN Liqi. Study of the role of the Arctic and Antarctic regions in global change[J]. Earth Science Frontires, 2002

    , 9:245-253.]

    [11]

    Takahashi K, Fujitani N, Yanada M. Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990-2000[J]. Progress in Oceanography, 2002, 55:95-112.

    [12]

    Chen L, Gao Z. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2007, 54:2619-2629.

    [13]

    Rodger Harvey H, Sigler M F. An introduction to the Bering Sea Project[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2013, 94:2-6.

    [14]

    Guo L, Tanaka T, Wang D, et al. Distributions, speciation and stable isotope composition of organic matter in the southeastern Bering Sea[J]. Marine Chemistry, 2004, 91:211-226.

    [15] 张海峰, 王汝建, 孙烨忱, 等. 白令海北部表层沉积物中的生源组分分布特征及其古海洋学意义[J]. 海洋地质与第四纪地质, 2011, 31(5):79-87.

    [ZHANG Haifeng, WANG Rujian, SUN Yechen, et al. Distribution pattern of biogenic components in surface sediments of the northern Bering Sea and their paleoceanographic implications[J]. Marine Geology and Quaternary Geology, 2011, 31(5):79-87.]

    [16] 王寿刚, 王汝建, 陈建芳, 等. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28:282-295.[WANG Shouguang, WANG Rujian, CHEN Jianfang, et al. Spatial distribution patterns of GDGTs in the surface sediments from the Bering Sea and Arctic Ocean and their environmental significances[J]. Advances in Earth Science, 2013

    , 28(2):282-295.]

    [17]

    Méheust M, Fahl K, Stein R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea:Reconstruction from biomarker data[J]. Organic Geochemistry, 2013, 57:54-64.

    [18]

    Goñi M A, O'Connor A E, Kuzyk Z Z, et al. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin[J]. Journal of Geophysical Research:Oceans, 2013, 118:4017-4035.

    [19]

    Park Y-H, Yamamoto M, Nam S I, et al. Distribution, source and transportation of glycerol dialkyl glycerol tetraethers in surface sediments from the western Arctic Ocean and the northern Bering Sea[J]. Marine Chemistry, 2014, 165:10-24.

    [20] 马豪, 何建华, 曾志, 等. 白令海颗粒有机碳输出通量的初步研究[J]. 极地研究, 2009, 21:116-123.[MA Hao, HE Jianhua, ZHENG Zhi, et al. Preliminary study on particulate organic carbon export fluxes in the Bering Sea[J]. Chinese Journal of Polar Research, 2009

    , 21:116-123.]

    [21] 邹建军, 石学法, 白亚之, 等.末次冰消期以来白令海古环境及古生产力演化[J]. 地球科学——中国地质大学学报, 2012, 37:1-10.[ZHOU Jianjun, SHI Xuefa, BAI Yazhi, et al. Paleoenvironment and Paleoproductivity variations in the Bering Sea Since the Last Deglacial[J]. Earth Science-Journal of China Univeristy of Geosciences, 2012

    , 37:1-10.]

    [22] 张海峰, 王汝建, 陈荣华, 等. 白令海北部陆坡全新世以来的生物标志物记录及其古环境意义[J]. 极地研究, 2014, 26(1):1-16.

    [ZHANG Haifeng, WANG Rujian, CHEN Ronghua, et al. Holocene biomarker records on the northern Bering Sea slope and their paleoenvironmental implications[J]. Chinese Journal of Polar Research, 2014, 26(1):1-16.]

    [23] 陈志华, 陈毅, 王汝建, 等. 末次冰消期以来白令海盆的冰筏碎屑事件与古海洋学演变记录[J]. 极地研究, 2014, 26(1):17-28.

    [CHEN Zhihua, CHEN Y, WANG Rujian, et al. Ice-rafted detritus events and paleoceanography records in the Bering Sea Basin since the Last Deglaciation[J]. Chinese Journal of Polar Research, 2014, 26(1):17-28.]

    [24] 卢冰, 陈荣华, 王自磐, 等. 亚北极白令海近百年海洋环境变化——来自分子化石的证据[J]. 中国科学D辑, 2004, 34(4):367-374.

    [LU Bing, CHEN Ronghua, WANG Zipan, et al. The changing evironment over the past century in the sub-arctic Bearing Sea[J]. Science in China:Earth Sciences, 2004, 34(4):367-374.]

    [25]

    Knebel H J, Creager J S. Sedimentary environments of the east-central Bering Sea continental shelf[J]. Marine Geology, 1973, 15:25-47.

    [26]

    Naidu A, Mowatt T. Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska[J]. Geological Society of America Bulletin, 1983, 94:841-854.

    [27]

    Oguri K, Harada N, Tadai O. Excess 210Pb and 137Cs concentrations, mass accumulation rates, and sedimentary processes on the Bering Sea continental shelf[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2012, 61-64:193-204.

    [28]

    Carlson P R, Karl H A. Mass movement of fine-grained sediment to the basin floor, Bering Sea, Alaska[J]. Geo-marine letters, 1984, 4:221-225.

    [29] 黄元辉, 石学法, 葛淑兰,等. 白令海深海异常沉积特征及成因分析[J]. 极地研究, 2014, 26(1):39-45.

    [HUANG Yuanhui, SHI Xuefa, GE Shulan, et al. Characteristics of abnormal deep sea sediments in the Bering Sea and their possible causes[J]. Chinese Journal of Polar Research, 2014, 26(1):39-45.]

    [30]

    Iwata H, Tanabe S, Aramoto M, et al. Persistent organochlorine residues in sediments from the Chukchi Sea, Bering Sea and Gulf of Alaska[J]. Marine Pollution Bulletin, 1994, 28:746-753.

    [31]

    Springer A M, McRoy C P, Flint M V. The Bering Sea Green Belt:shelf-edge processes and ecosystem production[J]. Fisheries Oceanography, 1996, 5:205-223.

    [32]

    Mizobata K, Saitoh S I. Variability of Bering Sea eddies and primary productivity along the shelf edge during 1998-2000 using satellite multisensor remote sensing[J]. Journal of Marine Systems, 2004, 50:101-111.

    [33]

    Moore W S, Dymondt J. Correlation of 210Pb removal with organic carbon fluxes in the Pacific Ocean[J]. Nature, 1988, 331:339-341.

    [34]

    Stein R, Macdonald R W. The organic carbon cycle in the Arctic Ocean[M]. Springer, 2004.

    [35]

    Iida T, Saitoh S-I. Temporal and spatial variability of chlorophyll concentrations in the Bering Sea using empirical orthogonal function (EOF) analysis of remote sensing data[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2007, 54:2657-2671.

    [36]

    Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 1997, 44:1623-1644.

    [37]

    Merico A, Tyrrell T, Lessard E J, et al. Modelling phytoplankton succession on the Bering Sea shelf:role of climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997-2000[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51:1803-1826.

    [38]

    Lehmann M F, Sigman D M, McCorkle D C, et al. Origin of the deep Bering Sea nitrate deficit:Constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes[J]. Global Biogeochemical Cycles, 2005, 19.

    [39]

    Tanoue E, Handa N. Differential sorption of organic matter by various sized sediment particles in recent sediment from the Bering Sea[J]. Journal of the Oceanographical Society of Japan, 1979, 35:199-208.

    [40]

    Thompson S, Eglinton G. The fractionation of a recent sediment for organic geochemical analysis[J]. Geochimica et Cosmochimica Acta, 1978, 42:199-207.

    [41] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2014, 29(5):569-576.

    [QI Di, CHEN Liqi. Review on researches of aragonite saturation state in the Arctic Ocean:A key parameter of Arctic Ocean acidification[J]. Advances in Earth Science, 2014, 29(5):569-576.]

    [42]

    Yamamoto-Kawai M, McLaughlin F, Carmack E. Effects of ocean acidification, warming and melting of sea ice on aragonite saturation of the Canada Basin surface water[J]. Geophysical Research Letters, 2011, 38.

    [43]

    McNeil B I, Matear R J. Southern Ocean acidification:A tipping point at 450-ppm atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2008, 105:18860-18864.

    [44]

    Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea water[M]//The Sea. Wiley, New York, 1963:26-77.

    [45]

    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnlogic, and paleclimatic processes[J]. Organic Geochemistry, 1997, 27:213-250.

    [46]

    Müller P J. C/N ratios in Pacific deep-sea sediments:Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays[J]. Geochimica et Cosmochimica Acta, 1977, 41:765-776.

    [47]

    Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments::implications for nutrient utilization and organic matter composition[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2001, 48:789-810.

    [48]

    Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27:319-361.

    [49]

    Hu L M, Shi X F, Yu Z G, et al. Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea:Implications for hydrodynamic forces and anthropogenic impact[J]. Marine Chemistry, 2012, 142-144:29-40.

    [50]

    Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea:The importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335:52-63.

    [51]

    Volkman J K. Lipid markers for marine organic matter, Marine Organic Matter:Biomarkers, Isotopes and DNA[M]. Springer,2006:27-70.

    [52]

    Naidu A, Scalan R, Feder H, et al. Stable organic carbon isotopes in sediments of the north Bering-south Chukchi seas, Alaskan-Soviet Arctic Shelf[J]. Continental Shelf Research, 1993, 13:669-691.

    [53]

    Eicken H. The role of Arctic sea ice in transporting and cycling terrestrial organic matter. The organic carbon cycle in the Arctic Ocean:present and past[M]. Springer-Verlag, Berlin, 2004.

    [54]

    Ping C L, Michaelson G J, Guo L, et al. Soil carbon and material fluxes across the eroding Alaska Beaufort Sea coastline[J]. Journal of Geophysical Research:Biogeosciences (2005-2012), 2011:116.

    [55] 杨伟锋, 陈敏, 刘广山, 等. 楚科奇海陆架区沉积物中核素的分布及其对沉积环境的示踪[J]. 自然科学进展, 2002, 12:515-518.[YANG Weifeng, CHEN Min, LIU Guangshan, et al. Distribution of the radionuclides in sediments from the Chukchi Sea shelf and its implication for the depositiona regime[J]. Progress in Natural Science, 2002

    , 12:515-518.]

    [56] 余雯, 何建华, 李奕良,等. 基于210Pb测年法的楚科奇海陆架北缘有机碳沉积通量研究[J]. 极地研究, 2012, 24(4):391-396.

    [YU Wen, HE Jianhua, LI Yiliang, et al. 210Pb-derived organic carbon deposition flux on the north Chukchi shelf[J]. Chinese Journal of Polar Research, 2012, 24(4):391-396.]

    [57]

    Buesseler K O. The decoupling of production and particulate export in the surface ocean[J]. Global Biogeochemical Cycles, 1998, 12:297-310.

    [58]

    Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58:1271-1284.

    [59]

    Hedges J I, Keil R G. Sedimentary organic matter preservation:an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49:81-115.

    [60]

    Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J]. Nature, 1998, 391:572-575.

    [61]

    Schulz H D, Zabel M. Marine Geochemistry[M]. Springer. 2006.

    [62]

    Keil R G, Dickens A F, Arnarson T, et al. What is the oxygen exposure time of laterally transported organic matter along the Washington margin?[J]Marine Chemistry, 2004, 92:157-165.

    [63]

    Connelly T L, Deibel D, Parrish C C. Biogeochemistry of near-bottom suspended particulate matter of the Beaufort Sea shelf (Arctic Ocean):C, N, P, δ13C and fatty acids[J]. Continental Shelf Research, 2012, 43:120-132.

    [64]

    Dunton K H, Weingartner T, Carmack E C. The nearshore western Beaufort Sea ecosystem:circulation and importance of terrestrial carbon in arctic coastal food webs[J]. Progress in Oceanography, 2006, 71:362-378.

    [65]

    Vonk J E, Alling V, Rahm L,et al. A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of Lake Torneträsk[J]. Journal of Geophysical Research:Biogeosciences (2005-2012), 2012, 117.

  • 期刊类型引用(6)

    1. 万霞,张海龙,肖晓彤. 极地峡湾有机碳来源和埋藏研究进展. 海洋地质与第四纪地质. 2022(04): 73-83 . 本站查看
    2. 石学法,乔淑卿,杨守业,李景瑞,万世明,邹建军,熊志方,胡利民,姚政权,董林森,王昆山,刘升发,刘焱光. 亚洲大陆边缘沉积学研究进展(2011—2020). 矿物岩石地球化学通报. 2021(02): 319-336 . 百度学术
    3. 修淳,霍素霞,周勐佳,张旭,邢健,徐美娜. 南极罗斯海柱样沉积物中有机碳和氮元素地球化学特征及其来源. 海洋地质与第四纪地质. 2019(01): 83-90 . 本站查看
    4. 宋腾飞,王宏雷,陈漪馨,李朝新,朱爱美,白亚之,石学法,Gorbarenko Sergei,Bosin Aleksandr,刘焱光. 白令海北部陆坡23ka以来古生产力变化及其对海冰扩张的响应. 海洋学报. 2018(05): 90-106 . 百度学术
    5. 高超,于晓果,杨义,杨欢,吕晓霞,阮小燕. 白令海陆架区柱样沉积物脂类分子特征及其气候变化响应. 地球科学. 2018(11): 4008-4017 . 百度学术
    6. Zhang Haisheng,Chen Jianfang,Han Zhengbing,Han Xibin,Xu Xudan,Fan Gaojing,Lu Bing. Application of ~(210)Pb, Carbon and Nitrogen Isotope in Tracing of Changes and Burial Effect of Endogenous and Terrigenous Organic Matter in the Bering Sea over the Past 100 Years. Meteorological and Environmental Research. 2017(05): 111-117 . 必应学术

    其他类型引用(6)

计量
  • 文章访问数:  2183
  • HTML全文浏览量:  251
  • PDF下载量:  25
  • 被引次数: 12
出版历程
  • 收稿日期:  2015-04-12
  • 修回日期:  2015-04-26

目录

    /

    返回文章
    返回