亚北极太平洋阿拉斯加湾50 kaBP以来放射虫组合指示的古海洋变化

张海峰, 王汝建, 肖文申, 李文宝

张海峰, 王汝建, 肖文申, 李文宝. 亚北极太平洋阿拉斯加湾50 kaBP以来放射虫组合指示的古海洋变化[J]. 海洋地质与第四纪地质, 2015, 35(3): 23-36. DOI: 10.3724/SP.J.1140.2015.03023
引用本文: 张海峰, 王汝建, 肖文申, 李文宝. 亚北极太平洋阿拉斯加湾50 kaBP以来放射虫组合指示的古海洋变化[J]. 海洋地质与第四纪地质, 2015, 35(3): 23-36. DOI: 10.3724/SP.J.1140.2015.03023
ZHANG Haifeng, WANG Rujian, XIAO Wenshen, LI Wenbao. PALEOCEANOGRAPHIC CHANGES SINCE 50 kaBP INFERRED FROM RADIOLARIAN ASSEMBLAGES IN GULF OF ALASKA, SUBARCTIC PACIFIC[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 23-36. DOI: 10.3724/SP.J.1140.2015.03023
Citation: ZHANG Haifeng, WANG Rujian, XIAO Wenshen, LI Wenbao. PALEOCEANOGRAPHIC CHANGES SINCE 50 kaBP INFERRED FROM RADIOLARIAN ASSEMBLAGES IN GULF OF ALASKA, SUBARCTIC PACIFIC[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 23-36. DOI: 10.3724/SP.J.1140.2015.03023

亚北极太平洋阿拉斯加湾50 kaBP以来放射虫组合指示的古海洋变化

基金项目: 

国家自然科学基金重点项目(41030859)

南北极环境综合考察与评估专项项目(CHINARE2015-03-02)

中国地质调查局地质调查工作项目(水[2015]02-013-012)

国家自然科学基金中俄合作与交流项目(41211120173)

国家海洋局极地考察办公室对外合作支持项目(IC201105)

详细信息
    作者简介:

    张海峰(1986-),男,硕士,主要从事海洋地质学和古环境研究,E-mail:zhanghf@sio.org.cn

  • 中图分类号: P736.22

PALEOCEANOGRAPHIC CHANGES SINCE 50 kaBP INFERRED FROM RADIOLARIAN ASSEMBLAGES IN GULF OF ALASKA, SUBARCTIC PACIFIC

  • 摘要: 利用SO202-INOPEX航次在亚北极太平洋阿拉斯加湾获取的沉积物岩心,以及基于AMS14C测年数据建立的年龄模式,开展了50 kaBP以来放射虫的古海洋学研究,获得如下认识:(1) Cycladophora davisiana是阿拉斯加湾最具代表性的优势种放射虫,其次是Siphocampe arachneaAcanthodesmia micropora;(2)对放射虫的统计数据进行Q型因子分析,提取出4个方差极大因子,可以代表不同的水团甚至是水体的混合作用,其中C.davisiana作为中层水团演化的替代性指标,对冰期-间冰期旋回和快速气候变化事件的响应较为敏感,其变化特征表明该区中层水团的演化主要受控于亚北极太平洋NPIW形成源区及其输送机制的变化;(3)基于放射虫标志种Ceratospyris borealis,Actinomma boreale/leptodermumRhizoplegma boreale的变化特征及其环境指示意义,认为50 kaBP以来阿拉斯加湾上层海洋环境的变化具有阶段性:LGM之前,该区海洋表层生产力相对稳定,海冰消长与冰融水脉冲明显地响应于冰阶-间冰阶等气候旋回;LGM期间,受大陆冰盖、大气环流和海洋环流变化的综合影响,冰融水事件以及海冰持续增加、生产力明显下降的状况可能较少出现;LGM以来,在B-A和YD等快速气候变化事件的影响下,冰融水脉冲引起表层生产力快速增加,气候快速变冷则造成生产力急剧降低。
    Abstract: The paleoceanographic record of radiolarian assemblage for the past 50 ka is investigated using a box core (SO202-27-6) obtained from the Gulf of Alaska, subarctic Pacific during the R/V Sonne cruise SO202-INOPEX. Ten AMS14C data are used for establishing the stratigraphic age model.The study suggests that:(1) Cycladophora davisiana is the most dominant radiolarian specie in the Gulf of Alaska during the past 50 ka, followed by Siphocampe arachnea and Acanthodesmia micropora. (2) The Q-mode factor analysis obtains 4 maximum variance factors, which represent different radiolarian assemblages. Among them, C. davisiana can be used as a proxy for intermediate water of the Gulf of Alaska, which was sensitive to the rapid climate change of glacial-interglacial cycle, and the variable pattern reveals that the evolution of intermediate water was controlled by the formation and transportation of NPIW from subarctic Pacific. (3) Based on the indicative radiolarian species for environmental changes, such as Ceratospyris borealis, Actinomma boreale/leptodermum and Rhizoplegma boreal, we argue that the upper ocean conditions in the Gulf of Alaska underwent periodic changes during the past 50 ka. Before LGM, relatively stable surface productivity, sea-ice expansion and retreat, and melt-water pulse (MWP) responded clearly to the interstadial (GI) to stadial (GS) cycles. During LGM, under the conditions of complex ice sheet effects, atmospheric circulation and oceanic currents, there were rarely WMP,continuous sea-ice extension and limited productivity in the Gulf of Alaska. Since LGM, rapid increase and decrease in surface productivity was caused by rich-nutrient water from MWP and by rapid cooling event, respectively.
  • [1]

    Stabeno P J, Bond N A, Hermann A J, et al. Meteorology and oceanography of the Northern Gulf of Alaska[J]. Continental Shelf Research, 2004, 24(7):859-897.

    [2]

    Sabin A L, Pisias N G. Sea surface temperature changes in the northeastern Pacific Ocean during the past 20000 years and their relationship to climate change in northwestern North America[J]. Quaternary Research, 1996, 46:48-61.

    [3]

    Vernal A, Pedersen T F. Micropaleontology and palynology of core PAR87A-10:A 23000 year record of paleoenvironmental changes in the Gulf of Alaska, northeast North Pacific[J]. Paleoceanography, 1997, 12(6):821-830.

    [4]

    Calkin P E, Wiles G C, Barclay D J. Holocene coastal glaciation of Alaska[J]. Quaternary Science Reviews, 2001, 20(1):449-461.

    [5]

    Finney B P, Gregory-Eaves I, Douglas M S V, et al. Fisheries productivity in the northeastern Pacific Ocean over the past 2200 years[J]. Nature, 2002, 416(6882):729-733.

    [6]

    Hu F S, Kaufman D, Yoneji S, et al. Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic[J]. Science, 2003, 301(5641):1890-1893.

    [7]

    Anderson L, Abbott M B, Finney B P, et al. Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada[J]. Quaternary Research, 2005, 64(1):21-35.

    [8]

    Addison J A, Finney B P, Dean W E, et al. High-resolution records of mid-Holocene paleoceanographic change from the Subarctic Northeast Pacific Ocean[C]//AGU Fall Meeting Abstracts. 2008, 1:1458.

    [9]

    Barron J A, Bukry D, Dean W E, et al. Paleoceanography of the Gulf of Alaska during the past 15000 years:results from diatoms, silicoflagellates, and geochemistry[J]. Marine Micropaleontology, 2009, 72(3):176-195.

    [10]

    Karlin R, Lyle M, Zahn R. Carbonate variations in the Northeast Pacific during the late Quaternary[J]. Paleoceanography, 1992, 7(1):43-61.

    [11]

    Imbrie J, Kipp N G. A new micropaleontological method for quantitative paleoclimatology:application to a late Pleistocene Caribbean core[M]//The late Cenozoic glacial ages. Yale University Press New Haven, 1971, 3:71-181.

    [12]

    Kamikuri S, Nishi H, Motoyama I. Effects of late Neogene climatic cooling on North Pacific radiolarian assemblages and oceanographic conditions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 249(3):370-392.

    [13]

    Takahashi K. Radiolarian flux and seasonality:climatic and El Nino response in the subarctic Pacific, 1982-1984[J]. Global Biogeochemical Cycles, 1987, 1(3):213-231.

    [14]

    Takahashi K. Siliceous microplankton fluxes in the eastern subarctic Pacific, 1982-1986[J]. Journal of Oceanography, 1997, 53:455-466.

    [15]

    Takahashi K. Time-series fluxes of Radiolaria in the eastern subarctic Pacific Ocean[J]. News of Osaka Micropaleonotlogists, Special Volume, 1997, 10:299-309.

    [16]

    Harrison P J, Boyda P W, Varela D E, et al. Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres[J]. Progress in Oceanography, 1999, 43(2):205-234.

    [17]

    Fujii M, Yamanaka Y, Nojiri Y, et al. Comparison of seasonal characteristics in biogeochemistry among the subarctic North Pacific stations described with a NEMURO-based marine ecosystem model[J]. Ecological Modelling, 2007, 202(1):52-67.

    [18]

    Kishi M J, Ito S, Megrey B A, et al. A review of the NEMURO and NEMURO. FISH models and their application to marine ecosystem investigations[J]. Journal of Oceanography, 2011, 67(1):3-16.

    [19]

    Reed R K. Flow of the Alaskan Stream and its variations[J]. Deep Sea Research Part A:Oceanographic Research Papers, 1984, 31(4):369-386.

    [20]

    Reed R K, Stabeno P J. Recent observations of variability in the path and vertical structure of the Alaskan Stream[J]. Journal of Physical Oceanography, 1989, 19(10):1634-1642.

    [21]

    Royer T C. Baroclinic transport in the Gulf of Alaska. 2. A fresh-water driven coastal current[J]. Journal of Marine Research, 1981, 39(2):251-266.

    [22]

    Stabeno P J, Reed R K, Schumacher J D. The Alaska coastal current:continuity of transport and forcing[J]. Journal of Geophysical Research:Oceans (1978-2012), 1995a, 100(C2):2477-2485.

    [23]

    Stabeno P J, Hermann A J, Bond N A, et al. Modeling the impact of climate variability on the advection of larval walleye pollock (Theragra chalcogramma) in the Gulf of Alaska[J]. Canadian Special Publication of Fisheries and Aquatic Sciences, 1995b:719-727.

    [24]

    Royer T C. Hydrographic responses at a coastal site in the northern Gulf of Alaska to seasonal and interannual forcing[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(1):267-288.

    [25]

    Childers A R, Whitledge T E, Stockwell D A. Seasonal and interannual variability in the distribution of nutrients and chlorophyll a across the Gulf of Alaska shelf:1998-2000[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(1):193-216.

    [26]

    Levitus S. Climatological atlas of the world ocean[M]. NOAA Prof. Paper, U.S. Govt. Printing Off., Washington D. C.1982,13:173.

    [27]

    Warren B A. Why is no deep water formed in the North Pacific?[J]. Journal of Marine Research, 1983, 41(2):327-347.

    [28]

    Berger W H, Adelseck C G, Mayer L A. Distribution of carbonate in surface sediments of the Pacific Ocean[J]. Journal of Geophysical Research, 1976, 81(15):2617-2627.

    [29]

    Abelmann A, Brathauer U, Gersonde R, et al. Radiolarian-based transfer function for the estimation of sea surface temperatures in the Southern Ocean (Atlantic Sector)[J]. Paleoceanography, 1999, 14(3):410-421.

    [30]

    Wang R, Abelmann A. Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene[J]. Marine Micropaleontology, 2002, 46(1):25-44.

    [31]

    Klovan J E, Imbrie J. An algorithm and Fortran-iv program for large-scale Q-mode factor analysis and calculation of factor scores[J]. Journal of the International Association for Mathematical Geology, 1971, 3(1):61-77.

    [32]

    Barbante C, Barnola J M, Becagli S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116):195-198.

    [33]

    Blockley S P E, Lane C S, Hardiman M, et al. Synchronisation of palaeoenvironmental records over the last 60000 years, and an extended INTIMATE event stratigraphy to 48000 b2k[J]. Quaternary Science Reviews, 2012, 36:2-10.

    [34]

    Gorbarenko S A, Basov I A, Chekhovskaya M P, et al. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene:Geochemical and paleontological evidence[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(16):2174-2185.

    [35]

    Itaki T, Uchida M, Kim S, et al. Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments:evidence from the radiolarian species Cycladophora davisiana[J]. journal of Quaternary Science, 2009, 24(8):856-865.

    [36]

    Itaki T, Kim S, Rella S F, et al. Millennial-scale variations of late Pleistocene radiolarian assemblages in the Bering Sea related to environments in shallow and deep waters[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2012, 61:127-144.

    [37]

    Tanaka S, Takahashi K. Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(16):2131-2149.

    [38]

    Nimmergut A, Abelmann A. Spatial and seasonal changes of radiolarian standing stocks in the Sea of Okhotsk[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002, 49(3):463-493.

    [39]

    Abelmann A, Nimmergut A. Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2005, 52(16):2302-2331.

    [40]

    Okazaki Y, Takahashi K, Yoshitani H, et al. Radiolarians under the seasonally sea-ice covered conditions in the Okhotsk Sea:flux and their implications for paleoceanography[J]. Marine Micropaleontology, 2003a, 49(3):195-230.

    [41]

    Okazaki Y, Takahashi K, Itaki T, et al. Comparison of radiolarian vertical distributions in the Okhotsk Sea near the Kuril Islands and in the northwestern North Pacific off Hokkaido Island[J]. Marine Micropaleontology, 2004, 51(3):257-284.

    [42]

    Okazaki Y, Takahashi K, Nakatsuka T, et al. The production scheme of Cycladophora davisiana (Radiolaria) in the Okhotsk Sea and the northwestern North Pacific:implication for the paleoceanographic conditions during the glacials in the high latitude oceans[J]. Geophysical Research Letters, 2003b, 30(18), 1939, doi:10.1029/2003GL018070, 1-5.

    [43]

    Okazaki Y, Seki O, Nakatsuka T, et al. Cycladophora davisiana (Radiolaria) in the Okhotsk Sea:a key for reconstructing glacial ocean conditions[J]. Journal of Oceanography, 2006, 62(5):639-648.

    [44]

    Itaki T, Ikehara K. Middle to late Holocene changes of the Okhotsk Sea Intermediate Water and their relation to atmospheric circulation[J]. Geophysical Research Letters, 2004, 31(24), L24309, doi:10.1029/2004GL021384, 1-9.

    [45]

    Abelmann A, Gersonde R, Cortese G, et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean[J]. Paleoceanography, 2006, 21, PA1013, doi:10.1029/2005PA001199, 1-9

    [46]

    Wang R, Xiao W, Li Q, et al. Polycystine radiolarians in surface sediments from the Bering Sea Green Belt area and their ecological implication for paleoenvironmental reconstructions[J]. Marine Micropaleontology, 2006, 59(3):135-152.

    [47]

    Itaki T, Ikehara K, Motoyama I, et al. Abrupt ventilation changes in the Japan Sea over the last 30 ky:evidence from deep-dwelling radiolarians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208(3):263-278.

    [48]

    Itaki T, Khim B K, Ikehara K. Last glacial-Holocene water structure in the southwestern Okhotsk Sea inferred from radiolarian assemblages[J]. Marine Micropaleontology, 2008, 67(3):191-215.

    [49]

    Matul A G, Abelmann A, Gersonde R, et al. Late quaternary distribution of the Cycladophora davisiana radiolarian species:Reflection of possible ventilation of the North Pacific intermediate water during the Last Glacial Maximum[J]. Oceanology, 2015, 55(1):91-99.

    [50]

    Ohkushi K, Itaki T, Nemoto N. Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific[J]. Quaternary Science Reviews, 2003, 22(14):1477-1484.

    [51]

    Ling H Y, Stadum C J, Welch M L. Polycystine radiolaria from Bering Sea surface sediments[C]//Proceedings of the Second Planktonic Conference, Roma. 1970:705-729.

    [52] 王汝建,陈荣华,肖文申. 白令海表层沉积物中放射虫的深度分布特征及其海洋学意义[J]. 微体古生物学报,2005,22(2):127-135.

    [WANG Rujian, CHEN Ronghua, XIAO Wenshen. Depth distribution pattern of radiolarians in surface sediments of the Bering Sea and their oceanography implications[J]. Acta Micropalaeontologica Sinica, 2005, 22(2):127-135.]

    [53]

    Ikenoue T, Takahashi K, Tanaka S. Fifteen year time-series of radiolarian fluxes and environmental conditions in the Bering Sea and the central subarctic Pacific, 1990-2005[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2012, 61:17-49.

    [54]

    Itaki T, Takahashi K. Preliminary results on radiolarian fluxes in the central subarctic Pacific and Bering Sea[C]//Proceedings of the Hokkaido Tokai University Science and Engineering. 1995, 7:37-47.

    [55]

    Popofsky A. Die Radiolarien der Antarktis. Deutsche Südpolar-Expedition (1901-1903)[J]. Zoologie, 1908, 10(3):185-305.

    [56]

    Abelmann A. Radiolarian taxa from Southern Ocean sediment traps (Atlantic sector)[J]. Polar Biology, 1992, 12(3-4):373-385.

    [57]

    Hays J D, Morley J J. The sea of Okhotsk:a window on the ice age ocean[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(4):593-618.

    [58]

    Hays J D, Martinson D G, Morley J J. Biological and climatic consequences of a cold, stratified, high latitude ocean[J]. Quaternary Science Reviews, 2013, 82:78-92.

    [59]

    Talley L D. Distribution and formation of North Pacific intermediate water[J]. Journal of Physical Oceanography, 1993, 23(3):517-537.

    [60]

    Yasuda I. The origin of the North Pacific intermediate water[J]. Journal of Geophysical Research:Oceans (1978-2012), 1997, 102(C1):893-909.

    [61]

    You Y. Implications of cabbeling on the formation and transformation mechanism of North Pacific Intermediate Water[J]. Journal of Geophysical Research:Oceans (1978-2012), 2003, 108(C5), 3134, doi:10.1029/2001JC001285, 1-24.

    [62]

    Morley J J, Hays J D. Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana[J]. Earth and Planetary Science Letters, 1983, 66:63-72.

    [63]

    Wang R, Chen R. Cycladophora davisiana (Radiolarian) in the Bering Sea during the late Quaternary:A stratigraphic tool and proxy of the glacial subarctic Pacific Intermediate Water[J]. Science in China Ser. D:Earth Sciences, 2005, 48(10):1698-1707.

    [64]

    Shcherbina A Y, Talley L D, Rudnick D L. Direct observations of North Pacific ventilation:Brine rejection in the Okhotsk Sea[J]. Science, 2003, 302(5652):1952-1955.

    [65]

    Kim S J, Park Y G. Glacial ocean circulation and property changes in the North Pacific[J]. Atmosphere-Ocean, 2008, 46(2):257-275.

    [66]

    Wainer I, Goes M, Murphy L N, et al. Changes in the intermediate water mass formation rates in the global ocean for the Last Glacial Maximum, mid-Holocene and pre-industrial climates[J]. Paleoceanography, 2012, 27(3), PA3101, doi:10.1029/2012PA002290, 1-10

    [67]

    Matul A, Abelmann A. Quaternary water structure of the Sea of Okhotsk based on radiolarian data[C]//Doklady Earth Sciences. 2001, 381(8):1005-1007.

    [68]

    Matul A, Abelmann A, Khusid T, et al. Late Quaternary changes of the oxygen conditions in the bottom and intermediate waters on the western Kamchatka continental slope, the Sea of Okhotsk[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2015, in press.

    [69]

    Fairbanks R G. A 17000-year glacio-eustatic sea level record:influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature, 1989, 342(6250):637-642.

  • 期刊类型引用(6)

    1. 马志颖,王洪松,袁庆政,董华洋,何腾. 烟台芝罘区北部海域表层沉积物粒度特征及其对沉积动力环境的指示作用. 海洋环境科学. 2025(01): 59-66 . 百度学术
    2. 张鑫悦,邓兵,杜金洲. 北极克罗斯峡湾冰川活动的沉积记录. 华东师范大学学报(自然科学版). 2023(03): 43-52 . 百度学术
    3. 王丽艳,李广雪. 南极普里兹湾沉积物中生物硅对粒度测量结果的影响. 极地研究. 2020(01): 25-36 . 百度学术
    4. 吕纪轩,胡日军,李毅,朱龙海,刘波,皇甫雪睿. 烟台北部近岸海域表层沉积物粒度分布及沉积动力环境特征. 海洋地质前沿. 2020(04): 27-36 . 百度学术
    5. 谢一璇,杨小强,张伙带,陈琼,李冠华. 西太平洋深海沉积物记录的~80 ka以来风尘物质输入与东亚冬季风强度. 古地理学报. 2019(05): 855-868 . 百度学术
    6. 代振飞,薛勇,章海波,涂晨,骆永明. 渤海表层沉积物中的生物硅. 海洋科学. 2017(05): 42-49 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  2255
  • HTML全文浏览量:  217
  • PDF下载量:  70
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-04-11
  • 修回日期:  2015-05-07

目录

    /

    返回文章
    返回