早期成岩阶段锰氧化物相转变驱动海底金属元素迁移研究进展

Research progress on submarine polymetallic element migration driven by manganese mineral phase transformation during early diagenesis

  • 摘要: 海洋沉积物中的锰氧化物是地球上最具地球化学活性的矿物之一,其含量虽不足沉积物总量的1%,却因其强吸附能力与高氧化还原活性,在微量金属元素的迁移、转变与循环中扮演关键角色。早期成岩阶段,海底锰氧化物会发生复杂的矿物相转变,这涉及元素的吸附-解吸以及向孔隙水和上覆水体的元素释放,直接影响海洋中Co、Ni、Cu、Zn等微量金属元素的地球化学循环。这一元素释放过程不仅构成了海洋元素循环中一种重要的“自下而上”通量机制,也为解释全球痕量金属收支失衡现象提供了新的视角。本文系统综述了海底沉积物的沉积特征及早期成岩作用对锰氧化物形成与转变的影响,梳理了锰氧化物矿物相转变对微量金属元素迁移与同位素分馏的控制机制,重点总结了微量金属元素在不同矿物相中的赋存形态、吸附/解吸行为及其在矿物转变过程中的再分配规律。在此基础上,评估了锰氧化物矿物转变及其所产生的底栖通量对海洋元素收支的潜在调控作用,并探讨了该过程对海洋生态系统功能及全球生物地球化学循环的意义。总结认为,目前该领域研究仍面临反应机理解析不足、微量金属元素协同作用机制不明、定量约束有限以及模型适用性不足等问题。未来研究应整合多尺度反应-传输模拟、同位素示踪与原位观测技术,系统揭示锰氧化物成岩转变及其所驱动的微量金属释放过程,以完善全球微量金属循环模型,并为古环境重建与金属资源评估提供理论支撑。

     

    Abstract: Manganese oxides in marine sediments are among the most geochemically active minerals. Although they account for less than 1% of the total sediment content, their strong adsorption capacity and redox reactivity play a crucial role in the migration, transformation, and cycling of trace metals. Previous studies have shown that during early diagenesis, manganese oxides undergo complex mineral phase transitions, accompanied by adsorption-desorption and redox reactions. These processes directly influence the forms of trace metals of Co, Ni, Cu, and Zn, and may drive their re-release into pore water and overlying water, which represents an important “bottom-up” flux mechanism in the marine element cycle and offers a new perspective for understanding the imbalance in the global trace metal budget. We systematically reviewed the effects of sediment deposition and early diagenetic processes on the formation and transformation of manganese oxides and examined the mechanisms by which these mineral phase transitions control trace metal migration and isotopic fractionation, focusing on summarizing the forms, adsorption/desorption behaviors, and redistribution patterns of key metals in different manganese oxide minerals. In addition, we evaluated the potential regulatory effects of manganese oxide mineral transformations and benthic fluxes on marine element budgets and furthermore explored the significance of these processes for marine ecosystem functions and global biogeochemical cycles. Despite progress, challenges remain in understanding reaction mechanisms, metal synergistic effects, quantitative constraints, and model applicability. Future research shall integrate multi-scale reaction-transport simulations, isotope tracing, and in-situ observations to comprehensively reveal the diagenetic transformations of manganese oxides and the release processes of trace metals they drive. Such studies will enhance the global marine metal cycle framework and provide theoretical bases for paleoenvironmental reconstruction and resource assessment.

     

/

返回文章
返回