地形地貌变化对调水调沙期间黄河口沉积格局的影响

毕乃双, 时义睿, 葛春海, 巴旗, 吴晓, 王厚杰

毕乃双,时义睿,葛春海,等. 地形地貌变化对调水调沙期间黄河口沉积格局的影响[J]. 海洋地质与第四纪地质,2024,44(5): 1-14. DOI: 10.16562/j.cnki.0256-1492.2024080102
引用本文: 毕乃双,时义睿,葛春海,等. 地形地貌变化对调水调沙期间黄河口沉积格局的影响[J]. 海洋地质与第四纪地质,2024,44(5): 1-14. DOI: 10.16562/j.cnki.0256-1492.2024080102
BI Naishuang,SHI Yirui,GE Chunhai,et al. Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation[J]. Marine Geology & Quaternary Geology,2024,44(5):1-14. DOI: 10.16562/j.cnki.0256-1492.2024080102
Citation: BI Naishuang,SHI Yirui,GE Chunhai,et al. Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation[J]. Marine Geology & Quaternary Geology,2024,44(5):1-14. DOI: 10.16562/j.cnki.0256-1492.2024080102

地形地貌变化对调水调沙期间黄河口沉积格局的影响

基金项目: 国家自然科学基金项目“调水调沙影响下黄河口冲淤格局转变的动力机制研究”(42076175)
详细信息
    作者简介:

    毕乃双(1981—),男,教授,主要从事河口沉积动力学、地貌学研究,E-mail:binaishuang@ouc.edu.cn

  • 中图分类号: P736

Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation

  • 摘要:

    自2002年实施调水调沙以来,由于入海径流、沉积物的通量和组成发生变化,黄河现行河口三角洲叶瓣不断向海淤积造陆,水下三角洲坡度变陡。地形地貌变化对调水调沙期间入海泥沙沉积格局的影响成为黄河口研究的重要科学问题。本文基于Delft3D模型系统,利用岸线、水深和河流水沙数据构建三维水沙数值模型,对2002年、2008年、2014年和2019年调水调沙期间现行河口近岸海域泥沙的输运和沉积过程进行模拟。结果表明,随着水深、岸线的变化,黄河口近岸海域动力环境增强,泥沙的横向输运增强,纵向输运相应减弱;进而导致黄河入海泥沙堆积体的横向长度增加约30%,纵向长度减小约27%,厚度、形态也相应变化。本研究揭示了地形地貌变化条件下,黄河调水调沙期间入海泥沙在河口的沉积格局及动力机制,对深入理解黄河口近岸海域水动力-地貌耦合系统有重要参考价值。

    Abstract:

    Since the water and sediment regulation scheme (WSRS) was implemented in 2002, the present active Huanghe (Yellow) River delta lobe has continuously prograded seaward and the slope of delta has become steeper due to the changes of the river runoff, and riverine sediment flux and components. The impact of morphological evolution of the river mouth on the sedimentation pattern during the WSRS has become a crucial scientific issue. A Delft3D-based three-dimensional hydro-sediment coupling numerical model was established to simulate the transport and sedimentation of riverine sediment in the river mouth during the WSRS conducted in 2002, 2008, 2014, and 2019. Results show that the hydrodynamics in the area were enhanced and the river mouth progressed. Meanwhile, the along-shore transport of sediment was increased while the cross-shore transport was weakened correspondingly. The along-shore extent of the deposition was increased by ~30% while the cross-shore extent was reduced by ~27%, and the thickness and shape of deposition center were changed significantly. This study provided a reference for better understanding the hydrodynamic-morphology coupling system off the Huanghe river mouth.

  • 图  1   黄河三角洲遥感影像及2019年近岸海域定点连续观测站位

    Figure  1.   Remote sensing images of the Huanghe River delta and the deployment of in-situ observation sites off the Huanghe river mouth in 2019

    图  2   利津水文站实测黄河日均水沙数据(a)和悬浮沉积物组成(b)

    Figure  2.   Daily river runoff and suspended sediment concentration at gauge station Lijin (a) and components of suspended sediment (b)

    图  3   黄河口近岸海域表层沉积物中值粒径分布(a)和临界起动应力(b)

    Figure  3.   Distribution of median grain size (a) and critical shear stress (b) of surface sediment off the Huanghe River Mouth

    图  4   M1、M2站位悬浮泥沙观测值(红色点)与模拟值对比(实线)

    Figure  4.   Comparison between observed SSC (suspended sediment concentration) (red point) and modeled SSC (solid line) at Stations M1 and M2

    图  5   2002、2008、2014和2019年黄河三角洲岸线(a)和断面CQ水下斜坡坡度变化(b)

    Figure  5.   The shoreline evolution of the Huanghe River delta (a) and slope gradient changes of subaqueous delta (b) along the section CQ in 2002, 2008, 2014, and 2019

    图  6   2002、2008、2014及2019年黄河口近岸海域泥沙堆积体

    Figure  6.   Riverine sediment deposition patterns off the Huanghe river mouth in 2002, 2008, 2014, and 2019

    图  7   黄河口近岸海域不同深度范围内泥沙堆积体积百分比

    Figure  7.   The volume percentage of riverine sediment accumulation at different water depth off the Huanghe river mouth

    图  8   2002、2008、2014和2019年CQ断面的泥沙堆积体

    Figure  8.   Riverine sediment deposition buildup at section CQ in 2002, 2008, 2014, and 2019

    图  9   黄河口近岸海域表层泥沙单宽余通量变化

    黑色箭头指示泥沙的输运方向。

    Figure  9.   Variation in the net transport rate of riverine sediment in surface layer off the Huanghe river mouth

    Black arrows indicate the direction of sediment transport.

    图  10   泥沙输运高值区域(>1 kg·m−1·s−1)(a)、泥沙输运低值区域(>0.001 kg·m−1·s−1) (b)和泥沙堆积体(c)的长、短轴变化

    Figure  10.   Changes of major and minor axes of area with F>1 kg·m−1·s−1 (a), F>0.001 kg·m−1·s−1 (b), and riverine sediment deposition accumulation (c)

    图  11   河口CQ断面的余流、盐度和平均悬浮泥沙浓度

    黑色和绿色箭头使用不同比例尺表示余流大小,红色箭头示意河口环流的方向。

    Figure  11.   Residual current, salinity, and suspended sediment concentration at section CQ

    The black and green arrows indicate the value of the residual flow on different scales,the red arrows indicate the direction of the estuarine circulation.

    图  12   2002、2008、2014和2019年断面CQ(a)涨急和(b)落急流速分布

    Figure  12.   The maximum flood current velocity (a) and maximum ebb current velocity (b) distributions along section CQ in 2002, 2008, 2014, and 2019

    表  1   模型黏性泥沙和非黏性泥沙参数设置

    Table  1   The physical parameter settings for cohesive and non-cohesive sediment in the model

    泥沙类型 泥沙类型 中值粒径/μm 沉降速率/
    (mm·s−1)
    侵蚀速率/
    (kg·m−2·s−1)
    非黏性泥沙 85 5.0×10−5
    黏性泥沙 粉砂 16 0.12
    黏土 11 0.03
    下载: 导出CSV

    表  2   M1、M2站位悬浮泥沙浓度验证结果

    Table  2   The validation on the suspended sediment concentration at Stations M1 and M2

    站位分层相关系数均方根误差/(kg/m3)
    M1表层0.902.66
    中层0.901.73
    底层0.671.85
    M2表层0.760.12
    中层0.720.18
    底层0.710.13
    下载: 导出CSV
  • [1]

    Syvitski J P M, Voeroesmarty C J, Kettner A J, et al. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean[J]. Science, 2005, 308(5720):376-380. doi: 10.1126/science.1109454

    [2]

    Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans[J]. Global and Planetary Change, 2007, 57(3):261-282.

    [3]

    Wright L D. Sediment transport and deposition at river mouths: A synthesis[J]. Geological Society of America Bulletin, 1977, 88(6):857-868. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    [4]

    Bi N S, Wang H J, Yang Z S. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities[J]. Continental Shelf Research, 2014, 90:70-78.

    [5]

    Edmonds D A, Slingerland R L. Significant effect of sediment cohesion on delta morphology[J]. Nature Geoscience, 2009, 3(2):105-109.

    [6]

    Nittrouer J A, Best J L, Brantley C, et al. Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand[J]. Nature Geoscience, 2012, 5(8):534-537. doi: 10.1038/ngeo1525

    [7]

    Nittrouer J A, Viparelli E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta[J]. Nature Geoscience, 2014, 7(5):350-354. doi: 10.1038/ngeo2142

    [8]

    Temmerman B S, Kirwan M L, Karina H. Building land with a rising sea[J]. Science, 2015, 349(6248):9-11.

    [9]

    Loicz IPO[Z]. Land-ocean interactions in the coastal zone: Science plan and implementation strategy, 2005.

    [10]

    Future Eearth Coasts IPO[Z]. Strategy for research 2018–2028, 2018.

    [11]

    Margins Office[Z]. NSF margins program science plans, 2003.

    [12]

    Milliman J D, Syvitski J P M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers[J]. Journal of Geology, 1992, 100(5):525-544. doi: 10.1086/629606

    [13]

    Milliman J D, Meade R H. World-Wide Delivery of River Sediment to the Oceans[J]. Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741

    [14]

    Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50:212-225. doi: 10.1016/j.gloplacha.2006.01.005

    [15]

    Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57:331-354. doi: 10.1016/j.gloplacha.2007.01.003

    [16]

    Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review[J]. Global and Planetary Change, 2017, 157:93-113. doi: 10.1016/j.gloplacha.2017.08.005

    [17]

    Wu X, Wang H J, Bi N S, et al. Impact of artificial floods on the quantity and grain size of river-borne sediment: A case study of a dam regulation scheme in the Yellow River catchment[J]. Water Resources Research, 2021, 57:e2021WR029581.

    [18]

    Bi N S, Sun Z Q, Wang H J, et al. Response of channel scouring and deposition to the regulation of large reservoirs: A case study of the lower reaches of the Yellow River (Huanghe)[J]. Journal of Hydrology, 2019, 568:972-984. doi: 10.1016/j.jhydrol.2018.11.039

    [19]

    Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108:68-80. doi: 10.1016/j.jseaes.2015.04.028

    [20]

    Wang H J, Bi N S, Saito Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3-4):302-313. doi: 10.1016/j.jhydrol.2010.07.030

    [21]

    Wang N, Li G X, Xu J S, et al. The marine dynamics and changing trend off the modern Yellow River Mouth[J]. Journal of Ocean University of China, 2015, 14(3):433-445. doi: 10.1007/s11802-015-2764-0

    [22] 王永刚, 魏泽勋, 方国洪, 等. 黄河口及其邻近海域水深和岸线变化对M2分潮影响的数值研究[J]. 海洋科学进展, 2014, 32(2):141-147 doi: 10.3969/j.issn.1671-6647.2014.02.003

    WANG Yonggang, WEI Zexun, Fang Guohong, et al. A numerical study on the effect of changes in water depth and coastline on M2 tidal component near the Yellow River Estuary[J]. Advances in Marine Science, 2014, 32(2):141-147.] doi: 10.3969/j.issn.1671-6647.2014.02.003

    [23]

    Zhu L H, Hu R J, Zhu H J, et al. Modeling studies of tidal dynamics and the associated responses to coastline changes in the Bohai Sea, China[J]. Ocean Dynamics, 2018, 68:1625-1648. doi: 10.1007/s10236-018-1212-2

    [24]

    Rafael J B, Alejandro L, Miguel O. Implications of delta retreat on wave propagation and longshore sediment transport - Guadalfeo case study (southern Spain)[J]. Marine Geology, 2016, 382:1-16. doi: 10.1016/j.margeo.2016.09.011

    [25] 卢昱岑, 沈永明, 张明. 地形演变对黄河口切变锋位置及盐度分布的影响[J]. 水动力学研究与进展, 2012, 27(3):348-358

    LU Yucen, SHEN Yongming, ZHANG Ming. Influence of topography evolution on position of tidal shear front and distribution of salinity around Yellow River estuary[J]. Chinese Journal of Hydrodynamics, 2012, 27(3):348-358.]

    [26]

    Wang N, Li G X, Qiao L L, et al. Long-term evolution in the location, propagation, and magnitude of the tidal shear front off the Yellow River Mouth[J]. Continental Shelf Research, 2017, 137:1-12. doi: 10.1016/j.csr.2017.01.020

    [27]

    Wang N, Li K, Song D H, et al. Impact of tidal shear fronts on terrigenous sediment transport in the Yellow River Mouth: Observations and a synthesis[J]. Marine Geology, 2024, 469:107222. doi: 10.1016/j.margeo.2024.107222

    [28] 王厚杰, 杨作升, 毕乃双, 等. 2005年黄河调水调沙期间河口入海主流的快速摆动[J]. 科学通报, 2005, 50(23):2656-2662 doi: 10.3321/j.issn:0023-074X.2005.23.016

    WANG Houjie, YANG Zuosheng, BI Naishuang, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Chinese Science Bulletin, 2005, 50(23):2656-2662.] doi: 10.3321/j.issn:0023-074X.2005.23.016

    [29] 徐丛亮, 谷硕, 刘喆, 等. 黄河调水调沙14a来河口拦门沙形态变化特征[J]. 人民黄河, 2016, 38(10):69-73 doi: 10.3969/j.issn.1000-1379.2016.10.014

    XU Congliang, GU Shuo, LIU Zhe, et al. Characteristic of the river mouth bar in the past 14 years of the Yellow River Water-Sediment Regulation[J]. Yellow River, 2016, 38(10):69-73.] doi: 10.3969/j.issn.1000-1379.2016.10.014

    [30] 葛春海, 范勇勇, 巴旗, 等. 现行黄河口分汊河道的分流特征及其影响机制[J]. 海洋地质与第四纪地质, 2024, 44(2):131-145

    GE Chunhai, FAN Yongyong, BA Qi, et al. Diversion characteristics of the branching channels in the Yellow River mouth and its influencing mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(2):131-145.]

    [31]

    Fan H, Huang H J, Zeng T Q, el al. River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow River) delta, China[J]. Geomorphology, 2006, 74(1):124-136.

    [32] 杨卓媛, 夏军强, 周美蓉, 等. 黄河口尾闾河道近期自然出汊过程及其机理探讨[J]. 泥沙研究, 2022, 47(1):65-72

    YANG Zhuoyuan, XIA Junqiang, ZHOU Meirong, et al. Study on channel avulsion in the recent tail reach of the Yellow River Estuary[J]. Journal of Sediment Research, 2022, 47(1):65-72.]

    [33] 胡春宏, 曹文洪. 黄河口水沙变异与调控Ⅰ——黄河口水沙运动与演变基本规律[J]. 泥沙研究, 2003(5):1-8 doi: 10.3321/j.issn:0468-155X.2003.05.001

    HU Chunhong, CAO Wenhong. Variation, Regulation and Control of Flow and Sediment in the Yellow River Estuary I: Mechanism of Flow-Sediment Transport and Evolution[J]. Journal of Sediment Research, 2003(5):1-8.] doi: 10.3321/j.issn:0468-155X.2003.05.001

    [34] 侍茂崇, 赵进平. 黄河三角洲半日潮无潮区位置及水文特征分析[J]. 山东海洋学院学报, 1985, 15(1):127-136

    SHI Maochong, ZHAO Jinping. The analysis of hydrographical characteristics in the nontidal region M2 near the delta of the Huanghe River[J]. Journal of Shandong College of Oceanology, 1985, 15(1):127-136.]

    [35] 姬泓宇. 新入海水沙情势下黄河三角洲地貌动态变化与演变机制[D]. 华东师范大学博士学位论文, 2021

    JI Hongyu. Morphological variability of the Yellow River Delta and its dynamic mechanism under the new regime of river delivery[D]. Doctor dissertation of East China Normal University, 2021.]

    [36] 王宝灿, 黄仰松. 海岸动力地貌[M]. 上海: 华东师范大学出版社, 1989

    WANG Baocan, HUANG Yangsong. Coastal Dynamics[M]. Shanghai: East China Normal University Press, 1989.]

    [37]

    Wang H J, Yang Z S, Li G X, et al. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion[J]. Journal of Coastal Research, 2006, 224(4):906-918.

    [38] 藏启运. 黄河三角洲近岸泥沙[M]. 北京: 海洋出版社, 1996: 34-42

    ZANG Qiyun, Nearshore Sediment of the Huanghe River and Its Delta[M]. Beijing: China Ocean Press, 1996: 34-42.]

    [39]

    Qiao L L, Bao X W, Wu D X, et al. Numerical study of generation of the tidal shear front off the Yellow River mouth[J]. Continental Shelf Research, 2008, 28(14):1782-1790. doi: 10.1016/j.csr.2008.04.007

    [40]

    Fagherazzi S, Edmonds D A, Nardin W, et al. Dynamics of river mouth deposits[J]. Reviews of Geophysics, 53(3): 642-672.

    [41] 刘猛, 毕乃双, 纪金龙, 等. 现行黄河三角洲叶瓣蚀积演化对动力环境的影响[J]. 海洋地质前沿, 2018, 34(6):8-18

    LIU Meng, BI Naishuang, JI Jinlong, et al. Evolution of the active deltaic lobe of Huanghe River and its response to hydrodynamics[J]. Marine Geology Frontiers, 2018, 34(6):8-18.]

    [42] 凡姚申. 黄河三角洲近岸海床侵蚀过程及其动力机制[D]. 华东师范大学博士学位论文, 2019

    FAN Yaoshen. Seabed erosion and its mechanism in the littoral area of Yellow River Delta[D]. Doctor dissertation of East China Normal University, 2019.]

    [43]

    Ji H Y, Pan S Q, Chen S L, et al. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425:106210. doi: 10.1016/j.margeo.2020.106210

    [44] 乔璐璐, Le D, 李珏, 等. 超强台风“威马逊”作用下红河三角洲海域水动力环境变化的数值研究[J]. 海洋科学, 2021, 45(4):64-74 doi: 10.11759/hykx20190508002

    QIAO Lulu, LE DUC Cuong, LI Yu, et al. Numerical modeling of hydrodynamic changes due to super Typhoon Rammasun in the Red River Delta coastal area[J]. Marine Sciences, 2021, 45(4):64-74.] doi: 10.11759/hykx20190508002

    [45]

    Umgiesser G, Ferrarin C, Bajo M, et al. Hydrodynamic modelling in marginal and coastal seas — The case of the Adriatic Sea as a permanent laboratory for numerical approach[J]. Ocean Modelling, 2022, 179:102123. doi: 10.1016/j.ocemod.2022.102123

    [46]

    Gratiot N, Bildstein A, Anh T T, et al. Sediment flocculation in the Mekong River estuary, Vietnam, an important driver of geomorphological changes[J]. Comptes Rendus Géoscience, 2017, 349(6-7):260-268.

    [47] 季有俊. 渤海海域泥沙输运对季节性因素及地形变化响应的数值模拟研究[D]. 中国海洋大学博士学位论文, 2010

    JI Youjun. Numerical study on response of suspended sediment transport to the changes of seasonal factors and topography in the Bohai Sea[D]. Doctor dissertation of Ocean University of China, 2010.]

    [48]

    Liu L, Wang H J, Yang Z S, et al. Coarsening of sediments from the Huanghe (Yellow River) delta-coast and its environmental implications[J]. Geomorphology, 401: 108105.

    [49] 窦国仁. 河口海岸全沙模型相似理论[J]. 水利水运工程学报, 2001(1):1-12 doi: 10.3969/j.issn.1009-640X.2001.01.001

    DOU Guoren. Similarity theory of total sediment transport modeling for estuarine and coastal regions[J]. Hydro-Science and Engineering, 2001(1):1-12.] doi: 10.3969/j.issn.1009-640X.2001.01.001

    [50]

    Zheng S, Wu B S, Wang K R, et al. Evolution of the Yellow River delta, China: Impacts of channel avulsion and progradation[J]. International Journal of Sediment Research, 2017, 32(1):34-44. doi: 10.1016/j.ijsrc.2016.10.001

    [51] 刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1):139-152 doi: 10.11821/dlxb202101011

    LIU Qinglan, CHEN Junqing, CHEN Shenliang. Spatiotemporal evolution of Yellow River estuarine channel and its influencing factors since the water-sediment regulation scheme[J]. Acta Geographica Sinica, 2021, 76(1):139-152.] doi: 10.11821/dlxb202101011

    [52] 董年虎, 王广月. 渤海湾黄河入海口区余流特性分析[J]. 黄渤海海洋, 1997(1):64-69

    DONG Nianhu, WANG Guangyue. Residual current analysis of the Yellow River mouth area in Bohai gulf[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1997(1):64-69.]

    [53] 王楠. 现代黄河口沉积动力过程与地形演化[D]. 中国海洋大学博士学位论文, 2014

    WANG Nan. Sedimentary dynamics process and topographic evolution in the modern Yellow River Mouth[D]. Doctor dissertation of Ocean University of China, 2014.]

    [54]

    Wu G X, Wang K M, Liang B C, et al. Modeling the Morphological Responses of the Yellow River Delta to the Water-Sediment Regulation Scheme: The Role of Impulsive River Floods and Density-Driven Flows. Water Resources Research, 2023, 59(7): e2022WR033003.

    [55] 寿玮玮, 宗海波, 丁平兴. 夏季黄河入海径流对黄河口及附近海域环流影响的数值研究[J]. 海洋学报, 2016, 38(7):1-13 doi: 10.3969/j.issn.0253-4193.2016.07.001

    SHOU Weiwei, ZONG Haibo, DING Xingping. Numerical study of the circulation influenced by runoff input in the Huanghe (Yellow) River estuary and adjacent waters in summer[J]. Haiyang Xuebao, 2016, 38(7):1-13.] doi: 10.3969/j.issn.0253-4193.2016.07.001

    [56]

    LeBlond P H, Emery W J, Nicol T. A climatic model of runoff-driven coastal circulation[J]. Estuarine, Coastal and Shelf Science, 1986, 23(1):59-79. doi: 10.1016/0272-7714(86)90085-5

    [57]

    Hill D F, Ciavola S J, Etherington L, et al. Estimation of freshwater runoff into Glacier Bay, Alaska and incorporation into a tidal circulation model[J]. Estuarine, Coastal and Shelf Science, 2009, 82(1):95-107. doi: 10.1016/j.ecss.2008.12.019

    [58]

    Chao Shenn-Yu. River-forced estuarine plume[J]. Journal of Physical Oceanography, 1987, 18(1):72-88.

    [59]

    Cléa D, Budgell W P, Toumi R. The Congo River plume: impact of the forcing on the far-field dynamics[J]. Journal of Geographic Research: Oceans, 2013, 118(C2):964-989.

    [60] 梁书秀, 孙昭晨, Nakatsuji Keiji, 等. 渤海典型余环流及其影响因素研究[J]. 大连理工大学学报, 2006(1):103-110 doi: 10.3321/j.issn:1000-8608.2006.01.021

    LIANG Shuxiu, SUN Zhaochen, NAKATSUJI Keiji, et al. Research on typical residual circulation and its driving factors in the Bohai Sea[J]. Journal of Dalian University of Technology, 2006(1):103-110.] doi: 10.3321/j.issn:1000-8608.2006.01.021

    [61] 王悦, 林霄沛. 地形变化下渤海湾M2分潮潮致余流的相应变化及其对污染物输运的影响[J]. 中国海洋大学学报: 自然科学版, 2006, 36(1):1-6

    WANG Yue, LIN Xiaopei. The variation of M2 constituent corresponding to the change of topography in Bohai Bay and its effects on the transport of pollutants[J]. Journal of Ocean University of China, 2006, 36(1):1-6.]

    [62]

    Wang H J, Yang Z S, Li Y H, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Continental Shelf Research, 2007, 27:854-871. doi: 10.1016/j.csr.2006.12.002

    [63] 王厚杰, 杨作升, 毕乃双. 黄河口泥沙输运三维数值模拟 Ⅰ——黄河口切变锋[J]. 泥沙研究, 2006, 2:1-9 doi: 10.3321/j.issn:0468-155X.2006.03.001

    WANG Houjie, YANG Zuosheng, BI Naishuang. 3-D simulation of the suspended sediment transport in the Yellow River mouth Ⅰ: Shear front off the Yellow River mouth[J]. Journal of Sediment Research, 2006, 2:1-9.] doi: 10.3321/j.issn:0468-155X.2006.03.001

    [64]

    Jiang C, Pan S Q, Chen S L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: causes and environmental implications. Geomorphology, 2017, 293: 93-107.

    [65]

    Jiang C, Chen S L, Pan S Q, et al. Geomorphic evolution of the Yellow River Delta: quantification of basin-scale natural and anthropogenic impacts. Catena, 2018, 163: 361-377.

    [66]

    Wu X, Bi N S, Xu J P, et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size[J]. Geomorphology, 2017, 292:115-127. doi: 10.1016/j.geomorph.2017.04.042

    [67]

    Xing G P, Wang H J, Yang Z S, et al. Spatial and temporal variation in erosion and accumulation of the subaqueous Yellow River Delta (1976-2004)[J]. Journal of coastal research, 2016, 74(10074):32-47.

    [68]

    Bi N S, Wang H J, Wu X, et al. Phase change in evolution of the modern Huanghe (Yellow River) Delta: Process, pattern, and mechanisms[J]. Marine Geology, 2021, 437:106516. doi: 10.1016/j.margeo.2021.106516

    [69]

    Pritchard D W. Estuarine Hydrography[J]. Advances in Geophysics, 1952, 1:243-280.

    [70]

    Geyer W R, MacCready P. The Estuarine Circulation[J]. Annual Review of Fluid Mechanics, 2014, 46(46):175-197.

    [71] 谢荣耀, 刘锋, 罗向欣, 等. 河控型河口盐度层化对悬沙的捕集机制——以洪季磨刀门河口为例[J]. 海洋学报, 2021, 43(5):38-49

    XIE Rongyao, LIU Feng, LUO Xiangxin, et al. Sediment trapping mechanism by salinity stratification in a river-dominated estuary: A case study of the Modaomen Estuary in flood season[J]. Haiyang Xuebao, 2021, 43(5):38-49.]

    [72] 龚雪雷, 姬泓宇, 李鹏, 等. 黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应[J]. 海洋学报, 2024, 46(2): 64-78

    Response of tidal dynamics to geomorphic evolution and depositional effects in the Huanghe River Delta[J]. Haiyang Xuebao, 2024, 46(2): 64-78.]

图(12)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-17
  • 录用日期:  2024-09-17
  • 刊出日期:  2024-10-27

目录

    /

    返回文章
    返回