Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation
-
摘要:
自2002年实施调水调沙以来,由于入海径流、沉积物的通量和组成发生变化,黄河现行河口三角洲叶瓣不断向海淤积造陆,水下三角洲坡度变陡。地形地貌变化对调水调沙期间入海泥沙沉积格局的影响成为黄河口研究的重要科学问题。本文基于Delft3D模型系统,利用岸线、水深和河流水沙数据构建三维水沙数值模型,对2002年、2008年、2014年和2019年调水调沙期间现行河口近岸海域泥沙的输运和沉积过程进行模拟。结果表明,随着水深、岸线的变化,黄河口近岸海域动力环境增强,泥沙的横向输运增强,纵向输运相应减弱;进而导致黄河入海泥沙堆积体的横向长度增加约30%,纵向长度减小约27%,厚度、形态也相应变化。本研究揭示了地形地貌变化条件下,黄河调水调沙期间入海泥沙在河口的沉积格局及动力机制,对深入理解黄河口近岸海域水动力-地貌耦合系统有重要参考价值。
Abstract:Since the water and sediment regulation scheme (WSRS) was implemented in 2002, the present active Huanghe (Yellow) River delta lobe has continuously prograded seaward and the slope of delta has become steeper due to the changes of the river runoff, and riverine sediment flux and components. The impact of morphological evolution of the river mouth on the sedimentation pattern during the WSRS has become a crucial scientific issue. A Delft3D-based three-dimensional hydro-sediment coupling numerical model was established to simulate the transport and sedimentation of riverine sediment in the river mouth during the WSRS conducted in 2002, 2008, 2014, and 2019. Results show that the hydrodynamics in the area were enhanced and the river mouth progressed. Meanwhile, the along-shore transport of sediment was increased while the cross-shore transport was weakened correspondingly. The along-shore extent of the deposition was increased by ~30% while the cross-shore extent was reduced by ~27%, and the thickness and shape of deposition center were changed significantly. This study provided a reference for better understanding the hydrodynamic-morphology coupling system off the Huanghe river mouth.
-
红河三角洲位于越南北部(图1),面积约为17 000 km2[1],受波浪、潮流、河流共同控制[2]。红河一共有8条支流,年均径流量达120 km3[3],其中大型的河口主要有白藤(Bach Dang)河口、太平(Thai Binh)河口、巴拉特(Balat)河口、宁科(Ninh Co)河口、天(Day)河口,其中巴拉特河口的径流量约占总量的65%[4]。红河年均入海泥沙量约8.2×107 m3[5],其中90%在雨季输送[6],主要沉积在北部湾西南近海区域[7]。
图 1 1987—2015年红河三角洲海岸线背景为2005年遥感影像图;a. 红河三角洲地理位置,b. 红河三角洲岸线,c. 巴拉特河口岸线。Figure 1. Red River Delta coastline changes from 1987 to 2015The background map is from the remote sensing image of 2005; a. Geographical location of the Red River Delta, b. Red River Delta coastline, c. Balat estuary coastline.红河三角洲所位于的北部湾海域以全日潮为主,平均潮差2.5~3.5 m;波浪在旱季为东—东北方向,在雨季为东—东南方向,平均和最大波高分别为0.7~1.3 m和3.5~4.5 m[8]。根据前人研究,北部湾1990—2010年海岸线的总长度在持续减小,20年间减小了118.50 km,其中后10年减小幅度明显大于前10年[9],且岸线趋向于平直化[10]。北部湾岸线的变迁主要和人类活动有关[11-12],海岸线被大量开发为港口、码头、养殖区等[13]。砂质、淤泥和基岩岸线的占比逐渐减小[14],到1998年人工堤坝已占北部湾岸线总长度的39.46%[15]。除人类活动影响外,河口岸线变化也较大[16-17]。
关于红河三角洲岸线,前人主要分析了岸线变化特征以及河口沙坝、上游大坝等对其的影响:红河三角洲岸线在1999年之后的10年总体上向陆迁移[5],岸线变化频繁剧烈,受多种因素共同影响。关于河口沙坝的影响,Do Minh Duc等发现,河流输送的泥沙主要聚集在河口,使海岸线快速淤积(可达100 m/a),而其他岸段因缺少泥沙供应,导致侵蚀[4, 18-19]。关于上游大坝的影响,Tran Duc Thanh等发现,和平大坝建立之后,大坝下游河水中泥沙含量减少,宁科(Ninh Co)河口附近岸线的年平均后退速率从1965—1990年的0.41 m/a提高到了1990—1998年的14.5 m/a[20],但对主要河口巴拉特的岸线变化速率在大坝建立前后的变化缺少研究。另外,入海泥沙量变化导致的河口演变[18]、波浪斜向入射[21]、潮流和波浪流[22]都会对海岸侵蚀产生重要影响。近年来岸线趋于平直,各种人工建筑物也会影响波浪和潮汐的动力作用,从而影响岸线侵蚀[13, 23]。虽然红树林能很好地应对海岸侵蚀[24],但由于人类的砍伐,红树林也受到了很大程度的破坏。加剧的岸线侵蚀将导致建筑物不稳定等各种灾害发生,三角洲生态服务功能也会逐渐减弱[25-27]。
前人对红河三角洲岸线演变进行了定性描述,但缺少定量化分析,而且研究年份仅截止于2001年,对人类活动频繁的近20年的海岸变化相关报道较少。近年来,由于全球变暖,海平面上升,台风发生频率增加[28],海洋动力发生了重要变化,对岸线变化产生了重要影响。在岸线变化机制上,前人的研究分析了海洋动力和河流入海泥沙对岸线变化的影响,但是对于北部湾海域每年夏季高频次的台风作用分析较少。前人已在山东威海海滩观测发现,台风梅花(1109号)过境后,天鹅湖沙滩后退了3.6 m[29],热带气旋对岸线变化产生了剧烈影响。因此,本文基于1987—2015年Landsat遥感数据,收集1935—1985年历史数据、红河多年径流量与输沙量,以及该海域多年热带气旋数量等数据,对红河三角洲变化最频繁剧烈的巴拉特河口的岸线演变开展研究,从而为岸线防护以及海岸带经济发展提供科学支撑。
1. 数据与方法
本文采用的基础数据来自Landsat系列卫星的影像数据,从美国地质勘探局官网(网址:https://earthexplorer.usgs.gov/)下载,影像分辨率为30 m。为保证影像精度及多年研究中的可对比性,选取云量小于10%、高潮时的遥感影像进行对比分析。基于ENVI软件,进行辐射校正、拼接、大气校正、研究区裁剪、几何精校正等预处理[30]。预处理之后,根据“我国近海海洋综合调查与评价项目(908专项)”海岸带遥感调查和前人岸线解译经验[31-32],在MapInfo软件中提取大潮高潮线作为岸线,共提取了1987、1990、1995、2000、2005、2010、2015近30年共7张红河三角洲的岸线,结果如图1所示。
2. 多年岸线变化特征
2.1 1930—1985年巴拉特地区岸线变化
根据收集的资料[8],前人已对1930—1985年巴拉特地区岸线变化进行了研究(图2),可以看出在巴拉特河口地区前进与后退剧烈,在靠近河口部位发生明显前进,而远离河口部位发生明显后退。
2.2 1987—1990年红河三角洲岸线变化
1987—1990年,红河三角洲南部岸线有多处明显前进,而北部出现多处后退,中部变化不大(图1),主要是巴拉特地区变化明显。通过计算得到如图3所示的巴拉特地区主岸线沿岸平均年变化率,可以看出巴拉特地区沿岸大部分岸线以后退为主。河口位置发生明显后退,从遥感图像上对比发现,该岸线后退可能与入海泥沙量减少和沙坝侵蚀有关。定量对比发现,1987—1990年巴拉特地区年平均前进速率为39.19 m/a,年平均后退速率为30.68 m/a。
2.3 1990—1995年红河三角洲岸线变化
1990—1995年,红河三角洲除河口岸线以前进为主外,河口的南部和北部岸线均出现了多处明显后退(图1)。巴拉特地区变化明显,通过计算得到如图4所示的巴拉特地区主岸线沿岸平均年变化率,可以看出巴拉特地区沿岸大部分岸线以前进为主,而河口位置发生明显后退,从遥感图像上对比发现,在这一时期,由于波浪等导致沙坝侵蚀或者由于海平面上升,主岸线与沙坝之间的人工养殖池长时间被水淹没,主岸线发生明显后退。1990—1995年巴拉特地区年平均前进速率为28.26 m/a,年平均后退速率为87.25 m/a。
2.4 1995—2000年红河三角洲岸线变化
1995—2000年,红河三角洲岸线变化不大,南部出现了几处明显前进,北部也出现几处明显前进,中部变化不大(图1)。对于巴拉特地区,岸线的后退与前进交替出现,在河口位置发生了一处明显前进(图5),从遥感图像上对比发现,该岸线前进与人工养殖池有关。1995—2000年巴拉特地区年平均前进速率为23.63 m/a,年平均后退速率为11.57 m/a。
2.5 2000—2005年红河三角洲岸线变化
2000—2005年,红河三角洲南部岸线发生一处明显前进,而北部出现几处后退,中部变化不大(图1)。巴拉特地区岸线的后退与前进交替出现,变化不剧烈(图6)。2000—2005年巴拉特地区年平均前进速率为5.93 m/a,年平均后退速率为5.06 m/a。
2.6 2005—2010年红河三角洲岸线变化
2005—2010年,红河三角洲南部岸线有多处明显前进,而北部出现多处明显后退,中部出现多处前进(图1)。巴拉特地区沿岸岸线以后退为主(图7),从遥感图像上(图8)对比发现,该岸线后退可能与2009年宣光(Tuyen Quang)大坝和2010年桑拉(Sonla)大坝建成导致入海泥沙量减少有关,因此沙坝侵蚀,人工养殖池被水淹没,主岸线发生明显后退。2005—2010年巴拉特地区年平均前进速率为20.87 m/a,年平均后退速率为56.19 m/a。
2.7 2010—2015年红河三角洲岸线变化
2010—2015年,红河三角洲南部岸线以明显前进为主,北部也以明显前进为主,但出现几处后退,中部以前进为主(图1)。巴拉特地区沿岸岸线以前进为主,后退仅限于河口东北部(图9),从遥感图像上对比发现,该岸线后退可能与入海泥沙量减少,沙坝侵蚀有关。2010—2015年巴拉特地区年平均前进速率为22.13 m/a,年平均后退速率为89.72 m/a。
2.8 1987—2015年红河三角洲岸线总体变化
观察多年岸线变化图(图1),可以看出沿岸地区变化不一致,部分岸段前进与后退交替变化特征明显,在巴拉特河口地区淤进与蚀退频繁,变化剧烈,河口北部岸线后退明显,主要受沙坝侵蚀影响。计算得到1987—2015年巴拉特地区主岸线年平均前进速率为3.94 m/a,年平均后退速率为29.43 m/a。前人计算得到长江口河口岸线1974年到2015年的平均变化速率为34 m/a[20],与其对比,发现巴拉特地区主岸线年平均变化速率大小与其类似(图10)。
3. 岸线多年变化原因分析
通过调查资料,发现红河三角洲海岸线演变受热带气旋以及河流上游水坝等多种因素共同影响。
3.1 河口沙坝的影响
海岸线的向海推进与沙坝的形成和扩大密切相关。大量入海沉积物在河口前形成沙坝,沙坝的快速增长降低了波浪的破坏作用,为海岸线和沙坝之间的河道中沉积物沉降提供了良好的环境[9]。河口沙坝在红河三角洲的巴拉特地区作用非常明显。当沙坝被侵蚀时,沙坝与主岸线之间的人工养殖池也被水淹没,因此,主岸线明显后退,如1990—1995年和2005—2010年。
3.2 河流上游建坝的影响
红河入海径流量和输沙量受堤坝建设影响明显(图11),进而会对岸线前进与后退速率产生影响[20]。前人在1972年第一个大坝塔婆建立之后,在山西站(Son Tay,图11e)观测到的年输沙量下降[33]。根据前人对1965—1990年宁科(Ninh Co)地区岸线变化的研究结果,可以发现在和平大坝建立之后,宁科河口岸线的年平均后退速率从1965—1990年的0.41 m/a提高到了1990—1998年的14.5 m/a[21]。而前人对1930—1985年巴拉特地区岸线变化的研究结果表明,在塔婆大坝建立之后巴拉特河口前进速率相应发生了降低[3]。本文对比发现,在2009年宣光(Tuyen Quang)大坝和2010年桑拉(Sonla)大坝建成之后,沉积物供应减少,2005—2015年巴拉特河口岸线后退速率有所提高。
3.3 气候变化影响
厄尔尼诺现象可造成世界气候的变化,使局部地区降雨量过多,极大地影响岸线的变化速率。调查资料发现,红河上游的大东勇站、中游的元江站、下游的蛮耗站的年径流序列在1993年均由枯水期突变为丰水期[34],这可能与1991—1994年发生的厄尔尼诺带来的强降雨有关[4],沙坝与主岸线之间的人工养殖池被水淹没,1990—1995年巴拉特河口岸线的后退速率明显增长。同时,2006—2007年、2009—2010年均发生了厄尔尼诺现象,对应的2005—2010年巴拉特河口岸线的后退速率也有明显增长。
海平面上升对海岸侵蚀速率的影响也很大。根据前人研究结果,1965—1995年期间,海平面上升对红河三角洲海岸侵蚀速率增加的作用约占34%,而1995—2005年为12%。
3.4 热带气旋的影响
热带气旋是越南北部地区典型的天气事件,台风数量与岸线年平均后退速率有很好相关性(图12),台风数量越多,平均后退速率越大。1990—1995年经过红河三角洲台风数量增多,年平均后退速率有明显提高;1995—2005年经过红河三角洲台风数量减少,年平均后退速率对应有明显降低;2005—2015年经过红河三角洲台风数量增多,年平均后退速率对应有明显提高。海后(Hai Hau)潮汐站曾测得当波高为4.25 m,持续时间2.4 h的情况下,岸线后退了7.1 m[8]。
3.5 海洋动力的影响
海流和波浪是影响海岸侵蚀的重要因素[5]。前者在红河三角洲海域呈现出明显的季节性变化:冬季流向南、夏季流向北[7],并可能通过诱发增水等影响岸线变化。后者在近岸破碎并诱生沿岸流,进而引起沿岸输沙作用,造成海岸侵蚀[8]。
无论旱季或者雨季,巴拉特河口南部海域平均波高始终高于河口北部(图13a,图13b),河口南部的海洋动力始终强于北部。从沉积物输运方向(图14)也可以看出:在巴拉特、拉赫(Lach)和天河口,5~10 m等深线海域,沉积物主要向东南输运,5 m等深线以浅的区域,沉积物沿岸向西南输运;在特雷(Tra Ly)河口,沉积物向东北输运;在太平河口,沉积物向东输运[35]。因此,巴拉特河口北部和南部岸线呈现不一样的变化特征;北部岸线后退与前进交替出现,总体以前进为主,可能与复杂的岸线和动力条件及河流入海物质变化有关;南部岸线持续后退,与波浪导致的沿岸南向输沙密切相关。
4. 结论
(1)在时间变化上,红河三角洲岸线表现为前进与后退交替变化特征。南部岸线变化趋势较为稳定,除1990—1995年、2010—2015年以前进为主外,1935—2015年其他年份均以后退为主,与波浪导致的沿岸南向输沙密切相关。红河三角洲北部岸线由于岸线复杂且为河流入海物质控制区,表现为后退与前进交替出现,总体以前进为主。
(2)红河主要支流之一巴拉特河口地区淤进与蚀退变化剧烈,1987—2015年巴拉特河口主岸线年平均前进速率为3.94 m/a,年平均后退速率为29.43 m/a。该河口岸线的频繁变化主要与上游建坝造成入海沙量变化、台风造成的侵蚀有关。
-
图 11 河口CQ断面的余流、盐度和平均悬浮泥沙浓度
黑色和绿色箭头使用不同比例尺表示余流大小,红色箭头示意河口环流的方向。
Figure 11. Residual current, salinity, and suspended sediment concentration at section CQ
The black and green arrows indicate the value of the residual flow on different scales,the red arrows indicate the direction of the estuarine circulation.
表 1 模型黏性泥沙和非黏性泥沙参数设置
Table 1 The physical parameter settings for cohesive and non-cohesive sediment in the model
泥沙类型 泥沙类型 中值粒径/μm 沉降速率/
(mm·s−1)侵蚀速率/
(kg·m−2·s−1)非黏性泥沙 砂 85 − 5.0×10−5 黏性泥沙 粉砂 16 0.12 黏土 11 0.03 表 2 M1、M2站位悬浮泥沙浓度验证结果
Table 2 The validation on the suspended sediment concentration at Stations M1 and M2
站位 分层 相关系数 均方根误差/(kg/m3) M1 表层 0.90 2.66 中层 0.90 1.73 底层 0.67 1.85 M2 表层 0.76 0.12 中层 0.72 0.18 底层 0.71 0.13 -
[1] Syvitski J P M, Voeroesmarty C J, Kettner A J, et al. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean[J]. Science, 2005, 308(5720):376-380. doi: 10.1126/science.1109454
[2] Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans[J]. Global and Planetary Change, 2007, 57(3):261-282.
[3] Wright L D. Sediment transport and deposition at river mouths: A synthesis[J]. Geological Society of America Bulletin, 1977, 88(6):857-868. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2
[4] Bi N S, Wang H J, Yang Z S. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities[J]. Continental Shelf Research, 2014, 90:70-78.
[5] Edmonds D A, Slingerland R L. Significant effect of sediment cohesion on delta morphology[J]. Nature Geoscience, 2009, 3(2):105-109.
[6] Nittrouer J A, Best J L, Brantley C, et al. Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand[J]. Nature Geoscience, 2012, 5(8):534-537. doi: 10.1038/ngeo1525
[7] Nittrouer J A, Viparelli E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta[J]. Nature Geoscience, 2014, 7(5):350-354. doi: 10.1038/ngeo2142
[8] Temmerman B S, Kirwan M L, Karina H. Building land with a rising sea[J]. Science, 2015, 349(6248):9-11.
[9] Loicz IPO[Z]. Land-ocean interactions in the coastal zone: Science plan and implementation strategy, 2005.
[10] Future Eearth Coasts IPO[Z]. Strategy for research 2018–2028, 2018.
[11] Margins Office[Z]. NSF margins program science plans, 2003.
[12] Milliman J D, Syvitski J P M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers[J]. Journal of Geology, 1992, 100(5):525-544. doi: 10.1086/629606
[13] Milliman J D, Meade R H. World-Wide Delivery of River Sediment to the Oceans[J]. Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741
[14] Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50:212-225. doi: 10.1016/j.gloplacha.2006.01.005
[15] Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57:331-354. doi: 10.1016/j.gloplacha.2007.01.003
[16] Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review[J]. Global and Planetary Change, 2017, 157:93-113. doi: 10.1016/j.gloplacha.2017.08.005
[17] Wu X, Wang H J, Bi N S, et al. Impact of artificial floods on the quantity and grain size of river-borne sediment: A case study of a dam regulation scheme in the Yellow River catchment[J]. Water Resources Research, 2021, 57:e2021WR029581.
[18] Bi N S, Sun Z Q, Wang H J, et al. Response of channel scouring and deposition to the regulation of large reservoirs: A case study of the lower reaches of the Yellow River (Huanghe)[J]. Journal of Hydrology, 2019, 568:972-984. doi: 10.1016/j.jhydrol.2018.11.039
[19] Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108:68-80. doi: 10.1016/j.jseaes.2015.04.028
[20] Wang H J, Bi N S, Saito Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3-4):302-313. doi: 10.1016/j.jhydrol.2010.07.030
[21] Wang N, Li G X, Xu J S, et al. The marine dynamics and changing trend off the modern Yellow River Mouth[J]. Journal of Ocean University of China, 2015, 14(3):433-445. doi: 10.1007/s11802-015-2764-0
[22] 王永刚, 魏泽勋, 方国洪, 等. 黄河口及其邻近海域水深和岸线变化对M2分潮影响的数值研究[J]. 海洋科学进展, 2014, 32(2):141-147 doi: 10.3969/j.issn.1671-6647.2014.02.003 WANG Yonggang, WEI Zexun, Fang Guohong, et al. A numerical study on the effect of changes in water depth and coastline on M2 tidal component near the Yellow River Estuary[J]. Advances in Marine Science, 2014, 32(2):141-147.] doi: 10.3969/j.issn.1671-6647.2014.02.003
[23] Zhu L H, Hu R J, Zhu H J, et al. Modeling studies of tidal dynamics and the associated responses to coastline changes in the Bohai Sea, China[J]. Ocean Dynamics, 2018, 68:1625-1648. doi: 10.1007/s10236-018-1212-2
[24] Rafael J B, Alejandro L, Miguel O. Implications of delta retreat on wave propagation and longshore sediment transport - Guadalfeo case study (southern Spain)[J]. Marine Geology, 2016, 382:1-16. doi: 10.1016/j.margeo.2016.09.011
[25] 卢昱岑, 沈永明, 张明. 地形演变对黄河口切变锋位置及盐度分布的影响[J]. 水动力学研究与进展, 2012, 27(3):348-358 LU Yucen, SHEN Yongming, ZHANG Ming. Influence of topography evolution on position of tidal shear front and distribution of salinity around Yellow River estuary[J]. Chinese Journal of Hydrodynamics, 2012, 27(3):348-358.]
[26] Wang N, Li G X, Qiao L L, et al. Long-term evolution in the location, propagation, and magnitude of the tidal shear front off the Yellow River Mouth[J]. Continental Shelf Research, 2017, 137:1-12. doi: 10.1016/j.csr.2017.01.020
[27] Wang N, Li K, Song D H, et al. Impact of tidal shear fronts on terrigenous sediment transport in the Yellow River Mouth: Observations and a synthesis[J]. Marine Geology, 2024, 469:107222. doi: 10.1016/j.margeo.2024.107222
[28] 王厚杰, 杨作升, 毕乃双, 等. 2005年黄河调水调沙期间河口入海主流的快速摆动[J]. 科学通报, 2005, 50(23):2656-2662 doi: 10.3321/j.issn:0023-074X.2005.23.016 WANG Houjie, YANG Zuosheng, BI Naishuang, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Chinese Science Bulletin, 2005, 50(23):2656-2662.] doi: 10.3321/j.issn:0023-074X.2005.23.016
[29] 徐丛亮, 谷硕, 刘喆, 等. 黄河调水调沙14a来河口拦门沙形态变化特征[J]. 人民黄河, 2016, 38(10):69-73 doi: 10.3969/j.issn.1000-1379.2016.10.014 XU Congliang, GU Shuo, LIU Zhe, et al. Characteristic of the river mouth bar in the past 14 years of the Yellow River Water-Sediment Regulation[J]. Yellow River, 2016, 38(10):69-73.] doi: 10.3969/j.issn.1000-1379.2016.10.014
[30] 葛春海, 范勇勇, 巴旗, 等. 现行黄河口分汊河道的分流特征及其影响机制[J]. 海洋地质与第四纪地质, 2024, 44(2):131-145 GE Chunhai, FAN Yongyong, BA Qi, et al. Diversion characteristics of the branching channels in the Yellow River mouth and its influencing mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(2):131-145.]
[31] Fan H, Huang H J, Zeng T Q, el al. River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow River) delta, China[J]. Geomorphology, 2006, 74(1):124-136.
[32] 杨卓媛, 夏军强, 周美蓉, 等. 黄河口尾闾河道近期自然出汊过程及其机理探讨[J]. 泥沙研究, 2022, 47(1):65-72 YANG Zhuoyuan, XIA Junqiang, ZHOU Meirong, et al. Study on channel avulsion in the recent tail reach of the Yellow River Estuary[J]. Journal of Sediment Research, 2022, 47(1):65-72.]
[33] 胡春宏, 曹文洪. 黄河口水沙变异与调控Ⅰ——黄河口水沙运动与演变基本规律[J]. 泥沙研究, 2003(5):1-8 doi: 10.3321/j.issn:0468-155X.2003.05.001 HU Chunhong, CAO Wenhong. Variation, Regulation and Control of Flow and Sediment in the Yellow River Estuary I: Mechanism of Flow-Sediment Transport and Evolution[J]. Journal of Sediment Research, 2003(5):1-8.] doi: 10.3321/j.issn:0468-155X.2003.05.001
[34] 侍茂崇, 赵进平. 黄河三角洲半日潮无潮区位置及水文特征分析[J]. 山东海洋学院学报, 1985, 15(1):127-136 SHI Maochong, ZHAO Jinping. The analysis of hydrographical characteristics in the nontidal region M2 near the delta of the Huanghe River[J]. Journal of Shandong College of Oceanology, 1985, 15(1):127-136.]
[35] 姬泓宇. 新入海水沙情势下黄河三角洲地貌动态变化与演变机制[D]. 华东师范大学博士学位论文, 2021 JI Hongyu. Morphological variability of the Yellow River Delta and its dynamic mechanism under the new regime of river delivery[D]. Doctor dissertation of East China Normal University, 2021.]
[36] 王宝灿, 黄仰松. 海岸动力地貌[M]. 上海: 华东师范大学出版社, 1989 WANG Baocan, HUANG Yangsong. Coastal Dynamics[M]. Shanghai: East China Normal University Press, 1989.]
[37] Wang H J, Yang Z S, Li G X, et al. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion[J]. Journal of Coastal Research, 2006, 224(4):906-918.
[38] 藏启运. 黄河三角洲近岸泥沙[M]. 北京: 海洋出版社, 1996: 34-42 ZANG Qiyun, Nearshore Sediment of the Huanghe River and Its Delta[M]. Beijing: China Ocean Press, 1996: 34-42.]
[39] Qiao L L, Bao X W, Wu D X, et al. Numerical study of generation of the tidal shear front off the Yellow River mouth[J]. Continental Shelf Research, 2008, 28(14):1782-1790. doi: 10.1016/j.csr.2008.04.007
[40] Fagherazzi S, Edmonds D A, Nardin W, et al. Dynamics of river mouth deposits[J]. Reviews of Geophysics, 53(3): 642-672.
[41] 刘猛, 毕乃双, 纪金龙, 等. 现行黄河三角洲叶瓣蚀积演化对动力环境的影响[J]. 海洋地质前沿, 2018, 34(6):8-18 LIU Meng, BI Naishuang, JI Jinlong, et al. Evolution of the active deltaic lobe of Huanghe River and its response to hydrodynamics[J]. Marine Geology Frontiers, 2018, 34(6):8-18.]
[42] 凡姚申. 黄河三角洲近岸海床侵蚀过程及其动力机制[D]. 华东师范大学博士学位论文, 2019 FAN Yaoshen. Seabed erosion and its mechanism in the littoral area of Yellow River Delta[D]. Doctor dissertation of East China Normal University, 2019.]
[43] Ji H Y, Pan S Q, Chen S L, et al. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425:106210. doi: 10.1016/j.margeo.2020.106210
[44] 乔璐璐, Le D, 李珏, 等. 超强台风“威马逊”作用下红河三角洲海域水动力环境变化的数值研究[J]. 海洋科学, 2021, 45(4):64-74 doi: 10.11759/hykx20190508002 QIAO Lulu, LE DUC Cuong, LI Yu, et al. Numerical modeling of hydrodynamic changes due to super Typhoon Rammasun in the Red River Delta coastal area[J]. Marine Sciences, 2021, 45(4):64-74.] doi: 10.11759/hykx20190508002
[45] Umgiesser G, Ferrarin C, Bajo M, et al. Hydrodynamic modelling in marginal and coastal seas — The case of the Adriatic Sea as a permanent laboratory for numerical approach[J]. Ocean Modelling, 2022, 179:102123. doi: 10.1016/j.ocemod.2022.102123
[46] Gratiot N, Bildstein A, Anh T T, et al. Sediment flocculation in the Mekong River estuary, Vietnam, an important driver of geomorphological changes[J]. Comptes Rendus Géoscience, 2017, 349(6-7):260-268.
[47] 季有俊. 渤海海域泥沙输运对季节性因素及地形变化响应的数值模拟研究[D]. 中国海洋大学博士学位论文, 2010 JI Youjun. Numerical study on response of suspended sediment transport to the changes of seasonal factors and topography in the Bohai Sea[D]. Doctor dissertation of Ocean University of China, 2010.]
[48] Liu L, Wang H J, Yang Z S, et al. Coarsening of sediments from the Huanghe (Yellow River) delta-coast and its environmental implications[J]. Geomorphology, 401: 108105.
[49] 窦国仁. 河口海岸全沙模型相似理论[J]. 水利水运工程学报, 2001(1):1-12 doi: 10.3969/j.issn.1009-640X.2001.01.001 DOU Guoren. Similarity theory of total sediment transport modeling for estuarine and coastal regions[J]. Hydro-Science and Engineering, 2001(1):1-12.] doi: 10.3969/j.issn.1009-640X.2001.01.001
[50] Zheng S, Wu B S, Wang K R, et al. Evolution of the Yellow River delta, China: Impacts of channel avulsion and progradation[J]. International Journal of Sediment Research, 2017, 32(1):34-44. doi: 10.1016/j.ijsrc.2016.10.001
[51] 刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1):139-152 doi: 10.11821/dlxb202101011 LIU Qinglan, CHEN Junqing, CHEN Shenliang. Spatiotemporal evolution of Yellow River estuarine channel and its influencing factors since the water-sediment regulation scheme[J]. Acta Geographica Sinica, 2021, 76(1):139-152.] doi: 10.11821/dlxb202101011
[52] 董年虎, 王广月. 渤海湾黄河入海口区余流特性分析[J]. 黄渤海海洋, 1997(1):64-69 DONG Nianhu, WANG Guangyue. Residual current analysis of the Yellow River mouth area in Bohai gulf[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1997(1):64-69.]
[53] 王楠. 现代黄河口沉积动力过程与地形演化[D]. 中国海洋大学博士学位论文, 2014 WANG Nan. Sedimentary dynamics process and topographic evolution in the modern Yellow River Mouth[D]. Doctor dissertation of Ocean University of China, 2014.]
[54] Wu G X, Wang K M, Liang B C, et al. Modeling the Morphological Responses of the Yellow River Delta to the Water-Sediment Regulation Scheme: The Role of Impulsive River Floods and Density-Driven Flows. Water Resources Research, 2023, 59(7): e2022WR033003.
[55] 寿玮玮, 宗海波, 丁平兴. 夏季黄河入海径流对黄河口及附近海域环流影响的数值研究[J]. 海洋学报, 2016, 38(7):1-13 doi: 10.3969/j.issn.0253-4193.2016.07.001 SHOU Weiwei, ZONG Haibo, DING Xingping. Numerical study of the circulation influenced by runoff input in the Huanghe (Yellow) River estuary and adjacent waters in summer[J]. Haiyang Xuebao, 2016, 38(7):1-13.] doi: 10.3969/j.issn.0253-4193.2016.07.001
[56] LeBlond P H, Emery W J, Nicol T. A climatic model of runoff-driven coastal circulation[J]. Estuarine, Coastal and Shelf Science, 1986, 23(1):59-79. doi: 10.1016/0272-7714(86)90085-5
[57] Hill D F, Ciavola S J, Etherington L, et al. Estimation of freshwater runoff into Glacier Bay, Alaska and incorporation into a tidal circulation model[J]. Estuarine, Coastal and Shelf Science, 2009, 82(1):95-107. doi: 10.1016/j.ecss.2008.12.019
[58] Chao Shenn-Yu. River-forced estuarine plume[J]. Journal of Physical Oceanography, 1987, 18(1):72-88.
[59] Cléa D, Budgell W P, Toumi R. The Congo River plume: impact of the forcing on the far-field dynamics[J]. Journal of Geographic Research: Oceans, 2013, 118(C2):964-989.
[60] 梁书秀, 孙昭晨, Nakatsuji Keiji, 等. 渤海典型余环流及其影响因素研究[J]. 大连理工大学学报, 2006(1):103-110 doi: 10.3321/j.issn:1000-8608.2006.01.021 LIANG Shuxiu, SUN Zhaochen, NAKATSUJI Keiji, et al. Research on typical residual circulation and its driving factors in the Bohai Sea[J]. Journal of Dalian University of Technology, 2006(1):103-110.] doi: 10.3321/j.issn:1000-8608.2006.01.021
[61] 王悦, 林霄沛. 地形变化下渤海湾M2分潮潮致余流的相应变化及其对污染物输运的影响[J]. 中国海洋大学学报: 自然科学版, 2006, 36(1):1-6 WANG Yue, LIN Xiaopei. The variation of M2 constituent corresponding to the change of topography in Bohai Bay and its effects on the transport of pollutants[J]. Journal of Ocean University of China, 2006, 36(1):1-6.]
[62] Wang H J, Yang Z S, Li Y H, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Continental Shelf Research, 2007, 27:854-871. doi: 10.1016/j.csr.2006.12.002
[63] 王厚杰, 杨作升, 毕乃双. 黄河口泥沙输运三维数值模拟 Ⅰ——黄河口切变锋[J]. 泥沙研究, 2006, 2:1-9 doi: 10.3321/j.issn:0468-155X.2006.03.001 WANG Houjie, YANG Zuosheng, BI Naishuang. 3-D simulation of the suspended sediment transport in the Yellow River mouth Ⅰ: Shear front off the Yellow River mouth[J]. Journal of Sediment Research, 2006, 2:1-9.] doi: 10.3321/j.issn:0468-155X.2006.03.001
[64] Jiang C, Pan S Q, Chen S L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: causes and environmental implications. Geomorphology, 2017, 293: 93-107.
[65] Jiang C, Chen S L, Pan S Q, et al. Geomorphic evolution of the Yellow River Delta: quantification of basin-scale natural and anthropogenic impacts. Catena, 2018, 163: 361-377.
[66] Wu X, Bi N S, Xu J P, et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size[J]. Geomorphology, 2017, 292:115-127. doi: 10.1016/j.geomorph.2017.04.042
[67] Xing G P, Wang H J, Yang Z S, et al. Spatial and temporal variation in erosion and accumulation of the subaqueous Yellow River Delta (1976-2004)[J]. Journal of coastal research, 2016, 74(10074):32-47.
[68] Bi N S, Wang H J, Wu X, et al. Phase change in evolution of the modern Huanghe (Yellow River) Delta: Process, pattern, and mechanisms[J]. Marine Geology, 2021, 437:106516. doi: 10.1016/j.margeo.2021.106516
[69] Pritchard D W. Estuarine Hydrography[J]. Advances in Geophysics, 1952, 1:243-280.
[70] Geyer W R, MacCready P. The Estuarine Circulation[J]. Annual Review of Fluid Mechanics, 2014, 46(46):175-197.
[71] 谢荣耀, 刘锋, 罗向欣, 等. 河控型河口盐度层化对悬沙的捕集机制——以洪季磨刀门河口为例[J]. 海洋学报, 2021, 43(5):38-49 XIE Rongyao, LIU Feng, LUO Xiangxin, et al. Sediment trapping mechanism by salinity stratification in a river-dominated estuary: A case study of the Modaomen Estuary in flood season[J]. Haiyang Xuebao, 2021, 43(5):38-49.]
[72] 龚雪雷, 姬泓宇, 李鹏, 等. 黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应[J]. 海洋学报, 2024, 46(2): 64-78 Response of tidal dynamics to geomorphic evolution and depositional effects in the Huanghe River Delta[J]. Haiyang Xuebao, 2024, 46(2): 64-78.]