台风期间东海内陆架跨陆架沉积物输运及其调控机制

丛帅, 吴晓, 齐富康, 毕乃双, 李云海, 李东义, 王厚杰

丛帅,吴晓,齐富康,等. 台风期间东海内陆架跨陆架沉积物输运及其调控机制[J]. 海洋地质与第四纪地质,2024,44(5): 38-49. DOI: 10.16562/j.cnki.0256-1492.2024070202
引用本文: 丛帅,吴晓,齐富康,等. 台风期间东海内陆架跨陆架沉积物输运及其调控机制[J]. 海洋地质与第四纪地质,2024,44(5): 38-49. DOI: 10.16562/j.cnki.0256-1492.2024070202
CONG Shuai,WU Xiao,QI Fukang,et al. Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events[J]. Marine Geology & Quaternary Geology,2024,44(5):38-49. DOI: 10.16562/j.cnki.0256-1492.2024070202
Citation: CONG Shuai,WU Xiao,QI Fukang,et al. Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events[J]. Marine Geology & Quaternary Geology,2024,44(5):38-49. DOI: 10.16562/j.cnki.0256-1492.2024070202

台风期间东海内陆架跨陆架沉积物输运及其调控机制

基金项目: 国家自然科学基金“不同路径台风对东海内陆架沉积动力过程的差异性影响及其机制研究”(42306082);中国博士后科学基金“东海内陆架沉积物输运格局对不同路径台风的差异性响应研究”(2023M743319);福建省海洋物理与地质过程重点实验室开放基金“不同路径台风对东海内陆架沉积物搬运、沉积的差异性影响研究”(KLMPG-23-03)
详细信息
    作者简介:

    丛帅(1994—),男,博士后,主要从事海洋沉积动力方面的研究工作, E-mail:congshuai@ouc.edu.cn

    通讯作者:

    王厚杰(1972—),男,博士,教授,主要从事海洋沉积动力方面的研究工作,E-mail:hjwang@ouc.edu.cn

  • 中图分类号: P736

Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events

  • 摘要:

    跨陆架沉积物输运不仅是陆海相互作用的重要组成,而且是陆源沉积物“源-汇”过程的关键环节。作为一种天气尺度事件性过程,台风能够对陆架海洋沉积动力过程以及跨陆架沉积物输运格局产生不可忽视的影响。然而,受限于台风期间现场观测数据的稀缺性以及卫星资料的有效性,有关台风期间跨陆架沉积物输运仍然缺乏系统的研究。本文基于高分辨率FVCOM数值模型,对2015年超强台风“灿鸿”过境期间东海内陆架的跨陆架沉积物输运过程及其调控机制进行了研究。结果显示,台风能够引起东海内陆架海洋沉积动力过程的强烈响应,并产生显著的跨陆架离岸输运现象,悬沙通量较正常天气增加了2~3个数量级。该过程主要受控于两种因素:首先,台风期间持续性的水位堆积在近岸引起正压效应,产生经向上均一的跨陆架离岸输运,这是台风对沉积物跨陆架输运的间接影响;其次,旋转风场所激发的“齿轮效应”在台风路径两侧产生顺风向沉积物输运模式,左侧表现为离岸方向,右侧为向岸方向,此为台风对沉积物跨陆架输运的直接影响。两种机制叠加后共同控制着台风期间东海内陆架沉积物的跨陆架输运过程。

    Abstract:

    The cross-shelf sediment transport is important in land-sea interactions and in terrigenous sediment source-to-sink cycle, which is significantly impacted by typhoons. However, despite the scarcity of in-situ observation and satellite data during typhoons, research on cross-shelf sediment transport during these synoptic weather events remains limited. Utilizing a high-resolution FVCOM model, we analyzed the cross-shelf sediment transport and its mechanisms on the inner shelf of the East China Sea (ECS) during Typhoon Chan-hom (2015). Results indicate that typhoons can cause intense responses in marine sediment dynamics and produce significant cross-shelf offshore sediment transport, with suspended sediment flux increase by 2~3 orders of magnitude compared to that under normal weather conditions. The transport is mainly controlled by two mechanisms: (1) the barotropic effect caused by continuous water level accumulation during typhoons, inducing uniform meridional offshore sediment transport, representing an indirect typhoon influence; (2) the "Ratchet Effect" triggered by the rotating wind field, resulting in a downwind sediment transport pattern on both side of the typhoon path, with offshore and onshore transport on the left and right sides, respectively, reflecting a direct typhoon influence. The combined effects of these two mechanisms orchestrate the cross-shelf sediment transport on the inner shelf of the ECS during typhoons.

  • 热带气旋是一系列生成于热带或亚热带海域(5°~20°N、5°~20°S)、具有组织性对流及气旋性环流的非锋面涡旋的统称[1],在西北太平洋地区又被称之为台风。就其影响程度和频率而言,热带气旋是全球最具破坏性的自然灾害之一,给沿海地区带来了严重的社会和经济风险[2-4]。作为一种天气尺度事件性过程,热带气旋能够对陆架海洋环境产生短暂却不可忽视的影响。其强烈的海-气相互作用可以快速改变上层海洋结构和区域环流,扰动海底沉积物再悬浮、再搬运及再分配,同时也会对营养盐的富集与扩散等生态过程产生显著影响[5-9]。近年来研究发现,随着全球气候变暖,热带气旋的强度呈现增加的趋势,同时路径发生明显的极向和陆向迁移[2, 10-13]。西北太平洋地区是全球受热带气旋影响最为显著的区域之一[14]。过去40年里影响该区域的台风强度增加了12%~15%,并且这一趋势仍在持续加剧[15]

    东海内陆架位于西北太平洋边缘, 接受长江及周边河流的细颗粒沉积物供给,自全新世高海平面(7 kaBP)以来逐渐发育形成了沿岸分布的楔形泥质沉积体——东海内陆架泥质区[16-18]。因其沉积厚度大、沉积连续以及沉积速率高的特点[19-20],已成为研究沉积物“源-汇”过程与陆海相互作用的热点区域[21-23]。此外,东海内陆架也是研究台风对陆架沉积动力过程影响的天然实验室。长期记录显示,平均每年约有4~5次台风影响东海海域[24]。频繁的极端台风事件能够间歇性地改变陆架沉积动力过程,并在泥质沉积中心的外缘保存了一系列台风沉积信号[8, 25-29]。如何正确地提取与解译这些台风信号已成为现代海洋地质学研究的热点问题,而忽视台风过境期间沉积物输运过程研究可能会导致沉积记录反演的不确定性与多解性[30]

    受季风与复杂环流体系的控制,东海内陆架沉积动力过程具有明显的季节性变化特征,陆源沉积物呈现出“夏储冬输”的沉积格局,在锋面的屏障作用下绝大部分沉积于内陆架泥质区[31-35]。然而,近年来许多研究在外陆架乃至冲绳海槽均发现了陆源细颗粒物质,表明东海内陆架可能存在着跨陆架的水体交换与沉积物输运过程[36-39]。遥感资料分析显示,1998—2007年间东海内陆架出现过近40次尺度超过100 km的跨陆架输运过程,最远可延伸至大陆架边缘的黑潮海域[40]。以往研究针对该区域跨陆架输运的机制提出了诸多假设,包括由“埃克曼”效应引发的近岸下降流[41-42]、密跃层沿等深线的潜在不稳定性[43],以及季风风向的瞬时转变[44]等。此外,最新研究表明极端台风事件能够在短时间尺度内引起东海内陆架输运格局的快速调整,同样会引起显著的跨陆架沉积物输运[8, 27]。然而,针对台风期间东海内陆架跨陆架沉积物输运过程及其调控机制,目前仍然缺乏系统的研究。

    鉴于台风期间现场观测数据的稀缺性以及卫星资料的有效性[45-47],本研究基于高分辨率波浪-海流-沉积物多过程耦合数值模型FVCOM,针对2015年超强台风“灿鸿”过境期间东海内陆架的海洋沉积动力过程进行了系统研究,揭示了台风期间跨陆架沉积物输运过程,并通过EOF方法分析探讨了其背后的调控机制。本研究不仅可以为台风沉积记录解读提供关键的动力学依据,有助于理解陆架现代沉积过程以及泥质区的形成演化,而且对深入认识陆架沉积物的“源-汇”过程也具有重要意义。

    东海平均水深370 m,以50~60 m等深线为界划分为内陆架和外陆架[48-49]图1)。受东亚季风和海陆分布的影响,东海气候季节性变化明显,属于典型的亚热带季风气候[24]。在常态天气下,该区域沉积动力过程主要受控于以黑潮、台湾暖流为主的外海流系和以长江冲淡水、浙闽沿岸流为主的近岸流系。冬季,再悬浮泥沙在浙闽沿岸流的携带下沿岸向南输运,其外侧为北向流动的台湾暖流,两者之间的锋面过程阻挡着沉积物的跨陆架输运,使其绝大部分沉积于内陆架;而在夏季,南向的浙闽沿岸流随着季风的转变逐渐减弱甚至转向东北[32-35]

    图  1  研究区地理位置及水深分布
    a: 模型网格范围及“灿鸿”台风路径,b: 区域环流系统及东海内陆架泥质区位置。
    Figure  1.  Geographical location and water depth of the study area
    a: Model grid and the path of Typhoon Chan-hom, b: regional circulation system and the location of the inner shelf of the East China Sea.

    东海内陆架泥质区形成于全新世高海平面以来,长江是其主要物质来源[16-18]。泥质区自长江口向南一直延伸至台湾海峡西南部,呈带状平行于等深线分布(图1b)。泥质区沉积厚度由岸向海逐渐减薄,在20~30 m等深线附近厚约40 m,至80~90 m等深线处仅有1~2 m[17-18, 48]。泥质区底质类型主要由黏土质粉砂和粉砂质黏土组成,含水量高,平均粒径7~8 Φ[50-51]。东海内陆架泥质区近百年来的沉积速率为0.79~3.34 cm/a,平均值为1.97 cm/a,沉积速率自北向南、自西向东递减[19, 50]

    此外,东海也是全球范围内最易受台风侵袭的区域之一。据统计,仅2002—2011年间便有近35次台风活动过境东海,对该区域海洋环境造成显著影响[46]。2015年第9号超强台风“灿鸿”于6月30日20时形成于西北太平洋洋面,7月3日02时强度增加为台风级,随后由于中心重组强度减弱,转向西北方向前进;至7日02时再度增强为台风并快速向东中国海移动[52]。7月9日14时“灿鸿”强度上升至强台风级,10日发展为超强台风,随后进入东海。7月11日16:40,台风“灿鸿”在浙江省舟山市朱家尖镇登陆,登陆时最大风速45 m/s,为强台风级(图1)。随后“灿鸿”继续向北移动进入南黄海,7月12日17时强度减弱为热带风暴,并于23:50在朝鲜半岛北部再次登陆,随后逐渐消散。该台风具有“强度高、生命周期长、体积庞大”的特点,最大风速可达55 m/s,移动距离超过6000 km,活动时长大于300 h[53]。据报道,“灿鸿”台风导致中国东部近390万人受灾,造成的经济损失约15.8亿美元[54]

    FVCOM(Finite Volume Community Ocean Model)是由美国麻省州立大学(UMASSD)陈长胜教授团队与伍兹霍尔海洋研究所(WHOI)联合开发的非结构网格架构、有限体积、自由表面、三维原始方程海洋数值模型[55-56],目前已被广泛应用于全球不同尺度的海洋过程研究中,并在中国东部陆架海多过程耦合模拟中得到了充分验证[8, 27, 57-60]。模型采用的有限体积法综合了有限元法和有限差分法的优点,在保证计算精度的同时又能提高其运算效率。FVCOM在水平方向采用非结构三角网格进行空间离散,能够解决复杂的岸线和边界问题;垂向上使用地形跟踪坐标,可以更好地模拟不规则的海底地形。模型计算采用的内外模分裂算法可以大大提高运算效率,缩短模拟时间。

    本研究所构建的模型范围涵盖了渤黄东海,并在东海内陆架对网格进行了加密处理(图1)。整个区域内包含三角形单元68866个,节点37186个,水平分辨率由近岸的1~3 km过渡至开边界附近的10~20 km。垂向采用σ坐标,等间距划分为20层。模拟时间自2014年1月1日至2016年1月1日。模型中潮汐强迫考虑了8个主要分潮(M2、S2、N2、K2、K1、O1、P1、Q1)的影响,各分潮调和常数取自全球潮汐模型TPXO8(https://www.tpxo.net/global),空间分辨率1/30°[61]。初始场及开边界强迫数据来自于欧洲哥白尼海洋环境监测系统(CMEMS, https://marine.copernicus.eu)全球物理海洋再分析产品(GLORYS12V1),数据垂向共50层,水平分辨率1/12°,时间分辨率为1天[62-63]。为了捕捉海洋对事件性天气过程的响应,模型中大气强迫选用时间分辨率为1 h的美国环境预报中心气候预报系统再分析资料(NCEP-CFSv2, https://rda.ucar.edu),数据空间分辨率为0.2°[64]。沉积物模块中共设置了砂、粉砂、黏土三种典型泥沙组分(图2),通过交换辐射应力、表面应力、底床参数以及底边界层信息实现波浪-海流-沉积物的相互耦合[65]

    图  2  中国东部陆架海沉积物中砂、粉砂、黏土的组分含量[51]
    Figure  2.  Composition of sand, silt, and clay in sediments of the East China Continental Shelf Sea[51]

    为了确保模拟结果的可靠性,本研究采用多个观测数据集对其进行验证(表1),特别是针对“灿鸿”台风过境期间的近底层海流及悬沙浓度(SSC)进行了细致的对比评估[8, 26-27]图3)。总体而言,模型结果与来自不同来源的观测数据具有良好的一致性。其中,对于潮汐与波浪的模拟表现最优,相关系数>0.9,其余变量的相关性也在0.8以上。各变量的均方根误差均在0.7以下,潮位模拟均方根误差仅有0.3。台风期间,模型对海流的模拟要好于泥沙,这与常态天气下的模型表现一致。值得注意的是,台风过境以后模拟SSC并未出现实际情况中的轻微震荡(图3c),这可能是由于模型中忽略了部分岛屿并对海岸线进行了平滑处理[8]。但不管怎样,模型在模拟区域海洋动力过程和沉积物输运方面具有良好的表现,能够精准刻画极端天气影响下的沉积动力过程响应。

    表  1  模拟结果与观测数据对比验证
    Table  1.  Comparison and validation of simulated results against observed data
     潮位流速温度盐度有效波高悬沙浓度
    相关系数0.960.840.870.860.940.85
    标准差1.080.941.070.941.261.25
    均方根误差0.300.560.540.520.460.65
    下载: 导出CSV 
    | 显示表格
    图  3  “灿鸿”台风过境期间近底层海流及悬沙浓度的观测-模拟对比
    近底观测系统的位置见图1[26]
    Figure  3.  Comparison between observed and simulated near-bottom currents and suspended sediment concentrations during the passage of Typhoon Chan-hom
    Location of the tripod refer to Fig.1[26].

    经验正交函数(EOF)是一种多元分析中广泛使用的统计工具。EOF分析方法能够把随时间变化的变量场分解为不随时间变化的空间函数部分(特征向量)和只依赖时间变化的时间函数部分(特征权重)。自20世纪50年代被Lorenz[66]引入地球科学研究以来,EOF分析在河口、陆架乃至海底峡谷等区域的沉积动力过程、地貌形态演化等方面得到了广泛应用[67-69]。本研究中通过EOF将东海内陆架跨陆架悬沙通量(SSF)的时间序列数据分解为具有特定特征向量、特征值和特征权重集的不同正交(独立)模态[70],以探讨台风期间东海内陆架跨陆架沉积物输运的调控机制。具体步骤包括对数据进行距平处理,计算距平数据的协方差矩阵,求解特征值和特征向量并将其投影至原始数据矩阵,得到空间特征向量对应的时间系数。

    观测和模拟结果显示,“灿鸿”台风能够引起东海内陆架海洋沉积动力过程的剧烈响应(图3图4)。台风期间,研究区最大风速超过50 m/s,是正常夏季天气的近10倍,同时这种气旋式风场在相对台风中心的不同象限内存在很大差异(图4a、 d)。台风路径右侧的风应力要远大于其左侧,相应的右侧最大有效波高可达10 m以上,而正常天气下区域有效波高仅有1~2 m。在风应力作用下,海洋中同样形成了逆时针旋转的气旋型涡旋,海流在27.5°~30°N之间沿陆架向西南方向流动,并在涡旋以南转变为离岸流,这也与现场观测结果[26]相一致(图3b、图4e)。在台风过境前,研究区近底层流速变化范围为0.1~0.7 m/s,流向表现为逆时针方向的旋转潮流;随着“灿鸿”台风的临近,近底层流速迅速增加至1.5 m/s,流向转变为西南-东南方向交替变化,一股极强的南向沿岸流出现(图3a、 b)。台风期间,波-流共致底切应力在27.5°~30°N之间的近岸区域同样达到最大值,局部可超过6 N/m2。强烈的底切应力扰动海底沉积物发生再悬浮,“灿鸿”过境期间研究区SSC较正常天气要高一个数量级,SSC高值区大致平行于等深线呈条带状分布(图3c图4c、 f)。作为一种短暂却高度动态的事件性天气,台风能够在陆架海引起空间不对称的沉积动力过程以及齿轮式的沉积物输运格局,以往研究将其概括为“齿轮效应”[8]。简单来讲,台风的不对称风场会在海洋中产生空间差异性响应,高速旋转风场所激发的气旋型涡旋会迅速改变区域环流,导致近岸高能波浪作用下再悬浮的沉积物产生类似于“齿轮旋转”方式的再搬运与再分配,短时间内使陆架沉积格局发生调整[8]

    图  4  正常天气与台风期间东海内陆架风场与波浪场(a、 d)、流场与底切应力(b、 e)、悬沙浓度(c、 f)空间分布
    流场及悬沙浓度为垂向平均值,底切应力代表波-流共致底切应力。
    Figure  4.  Spatial distributions of wind and significant wave height (color image) (a, d), current and total bed shear stress (color image) (b, e), and suspended sediment concentration (c, f) on the inner shelf of the East China Sea during normal summer conditions (left panel) and typhoon periods (right panel)
    The current and suspended sediment concentration are vertical-averaged values.

    为了进一步揭示台风期间东海内陆架跨陆架沉积物输运过程,本研究基于模拟结果针对50 m等深线处跨陆架方向的海流、SSC以及SSF进行了分析。作为东海内、外陆架的边界,50 m等深线处跨陆架流场变化决定了沉积物的输运方向。“灿鸿”台风过境前,海流在28°N以南呈现出周期性的向陆-向海波动,主要受潮汐涨落的调控;而在28°N以北,虽然流速大小的波动性依然存在,但方向整体以离岸输运为主,这可能是由于夏季河口羽状流的影响[71]图5a)。由于常态天气下海洋动力过程相对较弱,水体中SSC含量较低,所以跨陆架SSF在这一阶段并不明显,且整体表现为自南向北逐渐减弱的陆向沉积物输运过程(图5b、 c和表2)。2015年7月11日,随着“灿鸿”台风的临近,东海内陆架50 m等深线处转为强烈的离岸海流,垂向平均流速最大可超过0.2 m/s;伴随着水动力的增强,SSC在台风期间同样显著增加,由原来的<0.02 kg/m3快速增加至0.2 kg/m3左右;水体中大量再悬浮沉积物叠加强离岸流导致跨陆架SSF的提升(图5)。台风期间50 m等深线处跨陆架SSF相较台风前增加了2~3个数量级,在28°~29°N之间最大,这也与区域海洋沉积动力过程响应相一致(图4表2)。值得注意的是,台风期间50 m等深线处的海场并非完全为离岸流,台风路径右侧(29°N以北)反而呈现向岸的海水流动,这与右侧流场的双层结构有关[8],表层较强的向岸流与底层较弱的离岸流平均后便会形成这种陆向垂向平均流速。但由于水体中底层SSC远大于表层,因此垂向SSF的平均值在该区域仍表现为离岸方向,可以看到“灿鸿”过境期间整个东海内陆架50 m等深线处均表现为跨陆架离岸输运,且该过程持续了近1天的时间(图5c)。

    图  5  东海内陆架50 m等深线处跨陆架流速(a)、悬沙浓度(b)及悬沙通量(c)时序变化
    时间起点为2015年7月8日,流速及悬沙通量正值代表向海方向。
    Figure  5.  Temporal variations of cross-shelf current (a), suspended sediment concentration (b) and suspended sediment flux (c) along the 50-m isobath on the inner shelf of the East China Sea
    The starting time is July 8, 2015. The positive values of current speed and suspended sediment flux represent the direction towards the sea.
    表  2  东海内陆架50 m等深线不同时段跨陆架沉积物输运对比
    Table  2.  Comparison of cross-shelf sediment transport at the 50 m isobath on the inner shelf of the East China Sea in different periods
    天气状况跨陆架悬沙通量/(t/d)
    26°N27°N28°N29°N30°N
    正常天气−6.915.1−4.8−0.4−3.0
    台风期间256.6359.41509.01271.8528.8
    下载: 导出CSV 
    | 显示表格

    “灿鸿”台风期间,东海内陆架跨陆架沉积物输运在经向上呈现出一致性;但在台风过境以后,这种离岸输运似乎随台风路径发生北移(图5c)。为了深入探讨台风影响下东海内陆架跨陆架沉积物输运的调控机制,本研究利用EOF方法对50 m等深线处跨陆架SSF数据进行了分析,确定与SSF相关的主要模态及相关因子。

    EOF分析结果显示,SSF前两个模态的贡献度分别占43.9%和26.7%,是控制沉积物跨陆架输运的主要因素(图6)。其中,第一模态所反映的SSF在经向上具有一致性,呈现出台风期间瞬时增强、台风过境以后逐渐减弱的南北同向跨陆架离岸输运(图6a)。显然,该模态所表征的SSF应当是由一种在经向上保持一致的因素所主导,这与台风所引起的空间不对称性沉积动力过程[8]存在明显冲突,但却符合台风过境期间东海内陆架的水位堆积现象(图6b)。台风期间,东海内陆架30 m与50 m等深线之间的水位差快速升高至10 cm左右,随后逐渐减弱恢复至正常状态,这种响应在27°N与29°N之间并没有太大差别。恰恰相反,第二模态所表征的SSF大致以28.5°N为界,表现为台风期间剧增但南北反向的跨陆架输运过程,北部向陆与南部向海的沉积物输运模式与台风过境期间的旋转风场相吻合(图6c、 d),并且,随着“灿鸿”台风路径的北移,北部原本向岸的沉积物输运也逐渐转变为向海方向,与局地风场的转换同样一致。

    图  6  2015年7月8—15日东海内陆架50 m等深线处跨陆架悬沙通量EOF模态及其相应的调控机制
    a: EOF第一模态;b: 台风路径两侧的正压效应,通过27°N、29°N处30 m与50 m等深线之间的水位差表示,其中加粗曲线代表滑动平均的结果;c: EOF第二模态;d: 28°N及29°N风场时序变化。
    Figure  6.  EOF modes of cross-shelf suspended sediment flux at the 50-m isobath on the inner shelf of the East China Sea from July 8 to 15, 2015 and their corresponding regulatory mechanisms
    a: EOF Mode 1; b: barotropic effects along the flanks of the typhoon path, which is represented by the water level differences between 30-m and 50-m isobaths; the bold curve represents the result of running average; c: EOF Mode 2; d: temporal variations of wind at 28°N and 29°N.

    为了进一步验证SSF前两种模态所表征的跨陆架输运过程及其调控机制,本研究还选取了另一种台风路径的模拟结果进行EOF分析(图7)。台风“温妮”于1997年8月在浙江省登陆,其前期移动路径与“灿鸿”台风相似,但随后在东海内陆架并未发生偏转,而是垂直于岸线向西北方向行进[72]图7c)。EOF分析结果显示,“温妮”台风期间东海内陆架跨陆架沉积物输运同样可以划分为两个主要模态,分别贡献了55.1%和23.5%的SSF(图7a、 c)。但与“灿鸿”台风不同的是,“温妮”台风在其稳定的移动路径中,两侧风场及海洋沉积动力格局基本保持不变,第二模态SSF在台风过境期间及其后并未发生转变,持续维持着北部向岸、南部向海的跨陆架沉积物输运模式(图7c、 d)。同时,稳定的风场意味着近岸水位得以持续堆积,正压作用所产生的重力势能在台风登陆以后迅速释放(水位差变化>10 cm),导致第一模态SSF在“温妮”台风过境后方向发生快速倒转(图7a、 b)。尽管如此,“温妮”台风期间的跨陆架沉积物输运仍然呈现出两种显著模式:一是正压作用驱动下经向一致的跨陆架输运,二是风场调控下路径两侧反向的跨陆架输运。

    图  7  1997年8月14—21日东海内陆架50 m等深线处跨陆架悬沙通量EOF模态及其相应的调控机制
    a:EOF第一模态;b: 台风路径两侧的正压效应,通过27°N、29°N处30 m与50 m等深线之间的水位差表示,其中加粗曲线代表滑动平均的结果;c: EOF第二模态;d: 28°N及29°N风场时序变化。
    Figure  7.  EOF modes of cross-shelf suspended sediment flux at the 50-m isobath on the inner shelf of the East China Sea from August 14 to 21, 1997 and their corresponding regulatory mechanisms
    a: EOF Mode 1; b: barotropic effects along the flanks of the typhoon path, which is represented by the water level differences between 30-m and 50-m isobaths, and the bold curve represents the result of running average; c: EOF Mode 2; d: temporal variations of wind at 28°N and 29°N.

    综上所述,台风期间东海内陆架跨陆架沉积物输运的调控机制主要有两个方面:首先,台风在近岸引起的持续性水位堆积能够引起显著的正压过程[73],促使沉积物产生经向一致的跨陆架离岸输运,这是台风对跨陆架沉积物输运的间接影响。其次,台风旋转风场激发的“齿轮效应”直接作用于沉积物输运,在东海内陆架产生空间不对称的沉积动力过程以及齿轮式的泥沙输运模式,在台风路径两侧产生顺风向沉积物输运(左侧离岸输运,右侧向岸输运),此为台风对跨陆架沉积物输运的直接影响。两种调控机制叠加后共同控制着台风期间东海内陆架沉积物的跨陆架输运过程[8]。当然,海底沉积物类型分布以及地形地貌等因素也可能会对台风期间的沉积物输运模式产生一定影响,但相比之下,沉积动力过程的作用更为显著[47, 73-74],相关的研究工作仍有待于进一步深入开展。

    (1)台风能够引起东海内陆架海洋沉积动力过程的剧烈响应,且该响应呈现出明显的空间不对称性。“灿鸿”台风过境期间,区域内有效波高、流速以及悬沙浓度可达正常天气的10倍以上,并伴有显著的跨陆架输运过程,悬沙通量较台风前高2~3个数量级。

    (2)EOF分析结果显示,台风期间的跨陆架沉积物输运主要由两种因素协同调控:① 台风过境伴随着近岸持续性水位堆积,引发显著的正压效应,驱动沉积物产生经向均一的跨陆架离岸输运,这是台风对沉积物跨陆架输运的间接影响;② 台风旋转风场所激发的“齿轮效应”直接作用于沉积物输运,在台风路径两侧产生顺风向沉积物搬运过程,左侧离岸、右侧向岸,此为台风对跨陆架沉积物输运的直接影响。两种调控机制叠加后共同主导了台风期间东海内陆架沉积物的跨陆架输运过程。

  • 图  1   研究区地理位置及水深分布

    a: 模型网格范围及“灿鸿”台风路径,b: 区域环流系统及东海内陆架泥质区位置。

    Figure  1.   Geographical location and water depth of the study area

    a: Model grid and the path of Typhoon Chan-hom, b: regional circulation system and the location of the inner shelf of the East China Sea.

    图  2   中国东部陆架海沉积物中砂、粉砂、黏土的组分含量[51]

    Figure  2.   Composition of sand, silt, and clay in sediments of the East China Continental Shelf Sea[51]

    图  3   “灿鸿”台风过境期间近底层海流及悬沙浓度的观测-模拟对比

    近底观测系统的位置见图1[26]

    Figure  3.   Comparison between observed and simulated near-bottom currents and suspended sediment concentrations during the passage of Typhoon Chan-hom

    Location of the tripod refer to Fig.1[26].

    图  4   正常天气与台风期间东海内陆架风场与波浪场(a、 d)、流场与底切应力(b、 e)、悬沙浓度(c、 f)空间分布

    流场及悬沙浓度为垂向平均值,底切应力代表波-流共致底切应力。

    Figure  4.   Spatial distributions of wind and significant wave height (color image) (a, d), current and total bed shear stress (color image) (b, e), and suspended sediment concentration (c, f) on the inner shelf of the East China Sea during normal summer conditions (left panel) and typhoon periods (right panel)

    The current and suspended sediment concentration are vertical-averaged values.

    图  5   东海内陆架50 m等深线处跨陆架流速(a)、悬沙浓度(b)及悬沙通量(c)时序变化

    时间起点为2015年7月8日,流速及悬沙通量正值代表向海方向。

    Figure  5.   Temporal variations of cross-shelf current (a), suspended sediment concentration (b) and suspended sediment flux (c) along the 50-m isobath on the inner shelf of the East China Sea

    The starting time is July 8, 2015. The positive values of current speed and suspended sediment flux represent the direction towards the sea.

    图  6   2015年7月8—15日东海内陆架50 m等深线处跨陆架悬沙通量EOF模态及其相应的调控机制

    a: EOF第一模态;b: 台风路径两侧的正压效应,通过27°N、29°N处30 m与50 m等深线之间的水位差表示,其中加粗曲线代表滑动平均的结果;c: EOF第二模态;d: 28°N及29°N风场时序变化。

    Figure  6.   EOF modes of cross-shelf suspended sediment flux at the 50-m isobath on the inner shelf of the East China Sea from July 8 to 15, 2015 and their corresponding regulatory mechanisms

    a: EOF Mode 1; b: barotropic effects along the flanks of the typhoon path, which is represented by the water level differences between 30-m and 50-m isobaths; the bold curve represents the result of running average; c: EOF Mode 2; d: temporal variations of wind at 28°N and 29°N.

    图  7   1997年8月14—21日东海内陆架50 m等深线处跨陆架悬沙通量EOF模态及其相应的调控机制

    a:EOF第一模态;b: 台风路径两侧的正压效应,通过27°N、29°N处30 m与50 m等深线之间的水位差表示,其中加粗曲线代表滑动平均的结果;c: EOF第二模态;d: 28°N及29°N风场时序变化。

    Figure  7.   EOF modes of cross-shelf suspended sediment flux at the 50-m isobath on the inner shelf of the East China Sea from August 14 to 21, 1997 and their corresponding regulatory mechanisms

    a: EOF Mode 1; b: barotropic effects along the flanks of the typhoon path, which is represented by the water level differences between 30-m and 50-m isobaths, and the bold curve represents the result of running average; c: EOF Mode 2; d: temporal variations of wind at 28°N and 29°N.

    表  1   模拟结果与观测数据对比验证

    Table  1   Comparison and validation of simulated results against observed data

     潮位流速温度盐度有效波高悬沙浓度
    相关系数0.960.840.870.860.940.85
    标准差1.080.941.070.941.261.25
    均方根误差0.300.560.540.520.460.65
    下载: 导出CSV

    表  2   东海内陆架50 m等深线不同时段跨陆架沉积物输运对比

    Table  2   Comparison of cross-shelf sediment transport at the 50 m isobath on the inner shelf of the East China Sea in different periods

    天气状况跨陆架悬沙通量/(t/d)
    26°N27°N28°N29°N30°N
    正常天气−6.915.1−4.8−0.4−3.0
    台风期间256.6359.41509.01271.8528.8
    下载: 导出CSV
  • [1]

    Holland G J. The global guide to tropical cyclone forecasting[R]. Geneva: World Meteorological Organization, 1993.

    [2]

    Wang S, Toumi R. Recent migration of tropical cyclones toward coasts[J]. Science, 2021, 371(6528):514-517. doi: 10.1126/science.abb9038

    [3]

    Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4):289-294. doi: 10.1038/nclimate1410

    [4]

    Geiger T, Gütschow J, Bresch D N, et al. Double benefit of limiting global warming for tropical cyclone exposure[J]. Nature Climate Change, 2021, 11(10):861-866. doi: 10.1038/s41558-021-01157-9

    [5]

    Price J F. Upper Ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2):153-175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2

    [6]

    Wu X, Wang H J, Bi N S, et al. Bio-physical changes in the coastal ocean triggered by typhoon: a case of Typhoon Meari in summer 2011[J]. Estuarine, Coastal and Shelf Science, 2016, 183:413-421. doi: 10.1016/j.ecss.2016.04.014

    [7]

    Milliman J D, Lin S W, Kao S J, et al. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: typhoon Mindulle, Taiwan, July 2004[J]. Geology, 2007, 35(9):779-782. doi: 10.1130/G23760A.1

    [8]

    Cong S, Wu X, Ge J Z, et al. Impact of Typhoon Chan-hom on sediment dynamics and morphological changes on the East China Sea inner shelf[J]. Marine Geology, 2021, 440:106578. doi: 10.1016/j.margeo.2021.106578

    [9]

    Goñi M A, Gordon E S, Monacci N M, et al. The effect of Hurricane Lili on the distribution of organic matter along the inner Louisiana shelf (Gulf of Mexico, USA)[J]. Continental Shelf Research, 2006, 26(17-18):2260-2280. doi: 10.1016/j.csr.2006.07.017

    [10]

    Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051):686-688. doi: 10.1038/nature03906

    [11]

    Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742):1844-1846. doi: 10.1126/science.1116448

    [12]

    Kossin J P, Emanuel K A, Vecchi G A. The poleward migration of the location of tropical cyclone maximum intensity[J]. Nature, 2014, 509(7500):349-352. doi: 10.1038/nature13278

    [13]

    Wang G H, Wu L W, Mei W, et al. Ocean currents show global intensification of weak tropical cyclones[J]. Nature, 2022, 611(7936):496-500. doi: 10.1038/s41586-022-05326-4

    [14]

    Mendelsohn R, Emanuel K, Chonabayashi S, et al. The impact of climate change on global tropical cyclone damage[J]. Nature Climate Change, 2012, 2(3):205-209. doi: 10.1038/nclimate1357

    [15]

    Mei W, Xie S P. Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10):753-757. doi: 10.1038/ngeo2792

    [16]

    Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 2001, 41(2-3):219-231. doi: 10.1016/S0169-555X(01)00118-0

    [17]

    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18):2141-2156. doi: 10.1016/j.csr.2006.07.013

    [18]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023

    [19]

    Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu[J]. Marine Geology, 1999, 160(1-2):183-196. doi: 10.1016/S0025-3227(99)00020-1

    [20]

    Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390:270-281. doi: 10.1016/j.margeo.2017.06.004

    [21]

    Yang S Y, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 2016, 429(1):137-152. doi: 10.1144/SP429.6

    [22]

    Gao J H, Shi Y, Sheng H, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414:1-17. doi: 10.1016/j.margeo.2019.05.003

    [23] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727 doi: 10.11693/hyhz20200500145

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):705-727.] doi: 10.11693/hyhz20200500145

    [24] 苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2005

    SU Jilan. The Oceanography in the Chinese Margin Sea[M]. Beijing: China Ocean Press, 2005.]

    [25]

    Li Y H, Wang A J, Qiao L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang-Fujian coast, China[J]. Continental Shelf Research, 2012, 37:92-100. doi: 10.1016/j.csr.2012.02.020

    [26]

    Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: in-situ seafloor observations[J]. Marine Geology, 2018, 406:72-83. doi: 10.1016/j.margeo.2018.09.009

    [27]

    Cong S, Wu X, Ge J Z, et al. Intermittent migration of mixing front driven by typhoon events on the inner shelf of the East China Sea: a FVCOM modeling study[J]. Marine Geology, 2023, 465:107161. doi: 10.1016/j.margeo.2023.107161

    [28]

    Tian Y, Fan D J, Zhang X L, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410:109-121. doi: 10.1016/j.margeo.2018.12.010

    [29]

    Yang Y, Piper D J W, Xu M, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications, 2022, 13(1):1712. doi: 10.1038/s41467-022-29386-2

    [30] 高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10):141-160 doi: 10.3969/j.issn.0253-4193.2019.10.010

    GAO Shu, JIA Jianjun, YANG Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao, 2019, 41(10):141-160.] doi: 10.3969/j.issn.0253-4193.2019.10.010

    [31]

    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741

    [32]

    Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1-2):37-45. doi: 10.1016/0278-4343(85)90020-2

    [33] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2):81-90

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. The Macroscopic pattern of suspended sediment transport from the Yellow Sea and East China Sea to the eastern Deep-Sea Region[J]. Acta Oceanologica Sinica, 1992, 14(2):81-90.]

    [34]

    Wu H, Deng B, Yuan R, et al. Detiding measurement on transport of the Changjiang-derived buoyant coastal current[J]. Journal of Physical Oceanography, 2013, 43(11):2388-2399. doi: 10.1175/JPO-D-12-0158.1

    [35]

    Qiao L L, Liu S D, Xue W J, et al. Spatiotemporal variations in suspended sediments over the inner shelf of the East China Sea with the effect of oceanic fronts[J]. Estuarine, Coastal and Shelf Science, 2020, 234:106600. doi: 10.1016/j.ecss.2020.106600

    [36] 边昌伟. 中国近岸泥沙在渤海、黄海和东海的输运[D]. 中国海洋大学博士学位论文, 2012

    BIAN Changwei. Chinese coastal sediment transport in the Bohai Sea, Yellow Sea and East China Sea[D]. Doctor Dissertation of Ocean University of China, 2012.]

    [37]

    Liu X, Li G X, Ma Y Y, et al. Distribution and diffusion of surface suspended matter off the East China Shore, 2010[J]. Geological Journal, 2016, 51(S1):49-59. doi: 10.1002/gj.2814

    [38] 乔璐璐, 王震, 刘世东, 等. 从陆架海到西太平洋: 黄、东海悬浮体跨陆架输运通道与机制[J]. 地学前缘, 2017, 24(4):134-140

    QIAO Lulu, WANG Zhen, LIU Shidong, et al. From continental shelf seas to the western Pacific: the path and mechanism of cross-shelf suspended sediment transport in the Yellow Sea and East China Sea[J]. Earth Science Frontiers, 2017, 24(4):134-140.]

    [39]

    Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf[J]. Sedimentary Geology, 2019, 384:50-59. doi: 10.1016/j.sedgeo.2019.03.006

    [40]

    He L, Li Y, Zhou H, et al. Variability of cross-shelf penetrating fronts in the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19-20):1820-1826. doi: 10.1016/j.dsr2.2010.04.008

    [41]

    Liu S D, Qiao L L, Li G X, et al. Distribution and cross-front transport of suspended particulate matter over the inner shelf of the East China Sea[J]. Continental Shelf Research, 2015, 107:92-102. doi: 10.1016/j.csr.2015.07.013

    [42]

    Liu S D, Qiao L L, Li G X, et al. Variation in the current shear front and its potential effect on sediment transport over the inner shelf of the East China Sea in winter[J]. Journal of Geophysical Research: Oceans, 2018, 123(11):8264-8283. doi: 10.1029/2018JC014241

    [43]

    Wu H. Cross-shelf penetrating fronts: a response of buoyant coastal water to ambient pycnocline undulation[J]. Journal of Geophysical Research: Oceans, 2015, 120(7):5101-5119. doi: 10.1002/2014JC010686

    [44]

    Ren J L, Xuan J L, Wang Z W, et al. Cross-shelf transport of terrestrial Al enhanced by the transition of northeasterly to southwesterly monsoon wind over the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(7):5054-5073. doi: 10.1002/2014JC010655

    [45]

    Lapetina A, Sheng Y P. Simulating complex storm surge dynamics: three-dimensionality, vegetation effect, and onshore sediment transport[J]. Journal of Geophysical Research: Oceans, 2015, 120(11):7363-7380. doi: 10.1002/2015JC010824

    [46]

    Chen D X, He L, Liu F F, et al. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2017, 194:229-239. doi: 10.1016/j.ecss.2017.06.026

    [47]

    Zang Z C, Xue Z G, Bao S W, et al. Numerical study of sediment dynamics during hurricane Gustav[J]. Ocean Modelling, 2018, 126:29-42. doi: 10.1016/j.ocemod.2018.04.002

    [48] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea[M]. Beijing: Science Press, 1987.]

    [49] 郭炳火, 黄振宗, 李培英, 等. 中国近海及邻近海域海洋环境[M]. 北京: 海洋出版社, 2004

    GUO Binghuo, HUANG Zhenzong, LI Peiying, et al. Marine Environment in China’s Offshore and Adjacent Seas[M]. Beijing: China Ocean Press, 2004.]

    [50] 石学法, 刘升发, 乔淑卿, 等. 东海闽浙沿岸泥质区沉积特征与古环境记录[J]. 海洋地质与第四纪地质, 2010, 30(4):19-30

    SHI Xuefa, LIU Shengfa, QIAO Shuqing, et al. Depositional features and palaeoenvironmental records of the mud deposits in Min-Zhe coastal mud area, East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4):19-30.]

    [51]

    Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139:390-405. doi: 10.1016/j.earscirev.2014.09.007

    [52] 江丽俐, 钱卓蕾, 张建海. 台风“灿鸿”的路径和降水特征诊断分析[J]. 浙江气象, 2016, 37(4):11-16

    JIANG Lili, QIAN Zhuolei, ZHANG Jianhai. The path and precipitation characteristics diagnosis analysis of Typhoon "Chan-hom"[J]. Journal of Zhejiang Meteorology, 2016, 37(4):11-16.]

    [53] 冀承振, 葛勇, 李健, 等. 黄海海洋对台风“灿鸿”外围过程响应的观测研究[J]. 海洋学报, 2020, 42(1):46-53 doi: 10.3969/j.issn.0253-4193.2020.01.006

    JI Chengzhen, GE Yong, LI Jian, et al. Study of the Yellow Sea responses to peripheral processes of Typhoon Chan-hom[J]. Haiyang Xuebao, 2020, 42(1):46-53.] doi: 10.3969/j.issn.0253-4193.2020.01.006

    [54]

    Shen F F, Xu D M, Li H, et al. Assimilation of GPM Microwave Imager Radiance data with the WRF hybrid 3DEnVar system for the prediction of Typhoon Chan-hom (2015)[J]. Atmospheric Research, 2021, 251:105422. doi: 10.1016/j.atmosres.2020.105422

    [55]

    Chen C S, Liu H D, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1):159-186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2

    [56]

    Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system[J]. Oceanography, 2006, 19(1):78-89. doi: 10.5670/oceanog.2006.92

    [57]

    Beardsley R C, Chen C S, Xu Q C. Coastal flooding in Scituate (MA): a FVCOM study of the 27 December 2010 nor’easter[J]. Journal of Geophysical Research: Oceans, 2013, 118(11):6030-6045. doi: 10.1002/2013JC008862

    [58]

    Ge J Z, Ding P X, Chen C S, et al. An integrated East China Sea-Changjiang Estuary model system with aim at resolving multi-scale regional-shelf-estuarine dynamics[J]. Ocean Dynamics, 2013, 63(8):881-900. doi: 10.1007/s10236-013-0631-3

    [59]

    Zhong Y, Qiao L L, Song D H, et al. Impact of cold water mass on suspended sediment transport in the South Yellow Sea[J]. Marine Geology, 2020, 428:106244. doi: 10.1016/j.margeo.2020.106244

    [60]

    Ge J Z, Yi J X, Zhang J T, et al. Impact of vegetation on lateral exchanges in a salt marsh-tidal creek system[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(8):e2020JF005856. doi: 10.1029/2020JF005856

    [61]

    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2):183-204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

    [62]

    Lellouche J M, Greiner E, Le Galloudec O, et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system[J]. Ocean Science, 2018, 14(5):1093-1126. doi: 10.5194/os-14-1093-2018

    [63]

    Dossa A N, Silva A C, Chaigneau A, et al. Near-surface western boundary circulation off Northeast Brazil[J]. Progress in Oceanography, 2021, 190:102475. doi: 10.1016/j.pocean.2020.102475

    [64]

    Saha S, Moorthi S, Wu X R, et al. The NCEP climate forecast system version 2[J]. Journal of Climate, 2014, 27(6):2185-2208. doi: 10.1175/JCLI-D-12-00823.1

    [65] 吴伦宇. 基于FVCOM的浪、流、泥沙模型耦合及应用[D]. 中国海洋大学博士学位论文, 2010

    WU Lunyu. FVCOM-based Wave-Current-Sediment model coupling and its application[D]. Doctor Dissertation of Ocean University of China, 2010.]

    [66]

    Lorenz E N. Empirical orthogonal functions and statistical weather prediction[R]. Cambridge: Massachusetts Institute of Technology Department of Meteorology, 1956.

    [67]

    Tang J P, Wang Y P, Zhu Q G, et al. Winter storms induced high suspended sediment concentration along the north offshore seabed of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science, 2019, 228:106351. doi: 10.1016/j.ecss.2019.106351

    [68]

    Liu J T, Lee J, Yang R J, et al. Coupling between physical processes and biogeochemistry of suspended particles over the inner shelf mud in the East China Sea[J]. Marine Geology, 2021, 442:106657. doi: 10.1016/j.margeo.2021.106657

    [69]

    Du X Q, Liu J T, Lee J, et al. Influence of sediment sources, water mass, and physical processes on the dynamics of flocs at a location between the mouth of a river and the head of a submarine canyon[J]. Marine Geology, 2022, 445:106736. doi: 10.1016/j.margeo.2022.106736

    [70] 齐富康. 山东半岛泥质区海底边界层沉积动力过程[D]. 南方科技大学博士学位论文, 2023

    QI Fukang. Sedimentary dynamic processes in the bottom boundary layer of the muddy deposit off the Shandong Peninsula[D]. Doctor Dissertation of Southern University of Science and Technology, 2023.]

    [71]

    Zhang Z W, Wu H, Yin X Q, et al. Dynamical response of Changjiang River plume to a severe typhoon with the surface wave-induced mixing[J]. Journal of Geophysical Research: Oceans, 2018, 123(12):9369-9388. doi: 10.1029/2018JC014266

    [72]

    Chu D D, Zhang J C, Wu Y S, et al. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2019, 231:106460. doi: 10.1016/j.ecss.2019.106460

    [73]

    Liu Y H, Wang H J, Cong S, et al. Rapid oscillation of sediment transport between the Bohai Sea and the Yellow Sea induced by Typhoon Lekima (2019)[J]. Marine Geology, 2023, 465:107160. doi: 10.1016/j.margeo.2023.107160

    [74]

    Miles T, Seroka G, Kohut J, et al. Glider observations and modeling of sediment transport in Hurricane Sandy[J]. Journal of Geophysical Research: Oceans, 2015, 120(3):1771-1791. doi: 10.1002/2014JC010474

  • 期刊类型引用(1)

    1. 马瑞琦,曹运诚,何雯,郑子涵,朱志伟,陈多福. 南海北部东沙海域GMGS2-16站位25 ka以来水合物稳定带和流体超压变化. 海洋地质前沿. 2025(01): 21-30 . 百度学术

    其他类型引用(0)

图(7)  /  表(2)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  25
  • PDF下载量:  68
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-07-23
  • 录用日期:  2024-07-23
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回