Cross-shelf sediment transport and its regulatory mechanisms on the inner shelf of the East China Sea during typhoon events
-
摘要:
跨陆架沉积物输运不仅是陆海相互作用的重要组成,而且是陆源沉积物“源-汇”过程的关键环节。作为一种天气尺度事件性过程,台风能够对陆架海洋沉积动力过程以及跨陆架沉积物输运格局产生不可忽视的影响。然而,受限于台风期间现场观测数据的稀缺性以及卫星资料的有效性,有关台风期间跨陆架沉积物输运仍然缺乏系统的研究。本文基于高分辨率FVCOM数值模型,对2015年超强台风“灿鸿”过境期间东海内陆架的跨陆架沉积物输运过程及其调控机制进行了研究。结果显示,台风能够引起东海内陆架海洋沉积动力过程的强烈响应,并产生显著的跨陆架离岸输运现象,悬沙通量较正常天气增加了2~3个数量级。该过程主要受控于两种因素:首先,台风期间持续性的水位堆积在近岸引起正压效应,产生经向上均一的跨陆架离岸输运,这是台风对沉积物跨陆架输运的间接影响;其次,旋转风场所激发的“齿轮效应”在台风路径两侧产生顺风向沉积物输运模式,左侧表现为离岸方向,右侧为向岸方向,此为台风对沉积物跨陆架输运的直接影响。两种机制叠加后共同控制着台风期间东海内陆架沉积物的跨陆架输运过程。
Abstract:The cross-shelf sediment transport is important in land-sea interactions and in terrigenous sediment source-to-sink cycle, which is significantly impacted by typhoons. However, despite the scarcity of in-situ observation and satellite data during typhoons, research on cross-shelf sediment transport during these synoptic weather events remains limited. Utilizing a high-resolution FVCOM model, we analyzed the cross-shelf sediment transport and its mechanisms on the inner shelf of the East China Sea (ECS) during Typhoon Chan-hom (2015). Results indicate that typhoons can cause intense responses in marine sediment dynamics and produce significant cross-shelf offshore sediment transport, with suspended sediment flux increase by 2~3 orders of magnitude compared to that under normal weather conditions. The transport is mainly controlled by two mechanisms: (1) the barotropic effect caused by continuous water level accumulation during typhoons, inducing uniform meridional offshore sediment transport, representing an indirect typhoon influence; (2) the "Ratchet Effect" triggered by the rotating wind field, resulting in a downwind sediment transport pattern on both side of the typhoon path, with offshore and onshore transport on the left and right sides, respectively, reflecting a direct typhoon influence. The combined effects of these two mechanisms orchestrate the cross-shelf sediment transport on the inner shelf of the ECS during typhoons.
-
-
图 4 正常天气与台风期间东海内陆架风场与波浪场(a、 d)、流场与底切应力(b、 e)、悬沙浓度(c、 f)空间分布
流场及悬沙浓度为垂向平均值,底切应力代表波-流共致底切应力。
Figure 4. Spatial distributions of wind and significant wave height (color image) (a, d), current and total bed shear stress (color image) (b, e), and suspended sediment concentration (c, f) on the inner shelf of the East China Sea during normal summer conditions (left panel) and typhoon periods (right panel)
The current and suspended sediment concentration are vertical-averaged values.
图 5 东海内陆架50 m等深线处跨陆架流速(a)、悬沙浓度(b)及悬沙通量(c)时序变化
时间起点为2015年7月8日,流速及悬沙通量正值代表向海方向。
Figure 5. Temporal variations of cross-shelf current (a), suspended sediment concentration (b) and suspended sediment flux (c) along the 50-m isobath on the inner shelf of the East China Sea
The starting time is July 8, 2015. The positive values of current speed and suspended sediment flux represent the direction towards the sea.
图 6 2015年7月8—15日东海内陆架50 m等深线处跨陆架悬沙通量EOF模态及其相应的调控机制
a: EOF第一模态;b: 台风路径两侧的正压效应,通过27°N、29°N处30 m与50 m等深线之间的水位差表示,其中加粗曲线代表滑动平均的结果;c: EOF第二模态;d: 28°N及29°N风场时序变化。
Figure 6. EOF modes of cross-shelf suspended sediment flux at the 50-m isobath on the inner shelf of the East China Sea from July 8 to 15, 2015 and their corresponding regulatory mechanisms
a: EOF Mode 1; b: barotropic effects along the flanks of the typhoon path, which is represented by the water level differences between 30-m and 50-m isobaths; the bold curve represents the result of running average; c: EOF Mode 2; d: temporal variations of wind at 28°N and 29°N.
图 7 1997年8月14—21日东海内陆架50 m等深线处跨陆架悬沙通量EOF模态及其相应的调控机制
a:EOF第一模态;b: 台风路径两侧的正压效应,通过27°N、29°N处30 m与50 m等深线之间的水位差表示,其中加粗曲线代表滑动平均的结果;c: EOF第二模态;d: 28°N及29°N风场时序变化。
Figure 7. EOF modes of cross-shelf suspended sediment flux at the 50-m isobath on the inner shelf of the East China Sea from August 14 to 21, 1997 and their corresponding regulatory mechanisms
a: EOF Mode 1; b: barotropic effects along the flanks of the typhoon path, which is represented by the water level differences between 30-m and 50-m isobaths, and the bold curve represents the result of running average; c: EOF Mode 2; d: temporal variations of wind at 28°N and 29°N.
表 1 模拟结果与观测数据对比验证
Table 1 Comparison and validation of simulated results against observed data
潮位 流速 温度 盐度 有效波高 悬沙浓度 相关系数 0.96 0.84 0.87 0.86 0.94 0.85 标准差 1.08 0.94 1.07 0.94 1.26 1.25 均方根误差 0.30 0.56 0.54 0.52 0.46 0.65 表 2 东海内陆架50 m等深线不同时段跨陆架沉积物输运对比
Table 2 Comparison of cross-shelf sediment transport at the 50 m isobath on the inner shelf of the East China Sea in different periods
天气状况 跨陆架悬沙通量/(t/d) 26°N 27°N 28°N 29°N 30°N 正常天气 −6.9 15.1 −4.8 −0.4 −3.0 台风期间 256.6 359.4 1509.0 1271.8 528.8 -
[1] Holland G J. The global guide to tropical cyclone forecasting[R]. Geneva: World Meteorological Organization, 1993.
[2] Wang S, Toumi R. Recent migration of tropical cyclones toward coasts[J]. Science, 2021, 371(6528):514-517. doi: 10.1126/science.abb9038
[3] Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4):289-294. doi: 10.1038/nclimate1410
[4] Geiger T, Gütschow J, Bresch D N, et al. Double benefit of limiting global warming for tropical cyclone exposure[J]. Nature Climate Change, 2021, 11(10):861-866. doi: 10.1038/s41558-021-01157-9
[5] Price J F. Upper Ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2):153-175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
[6] Wu X, Wang H J, Bi N S, et al. Bio-physical changes in the coastal ocean triggered by typhoon: a case of Typhoon Meari in summer 2011[J]. Estuarine, Coastal and Shelf Science, 2016, 183:413-421. doi: 10.1016/j.ecss.2016.04.014
[7] Milliman J D, Lin S W, Kao S J, et al. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: typhoon Mindulle, Taiwan, July 2004[J]. Geology, 2007, 35(9):779-782. doi: 10.1130/G23760A.1
[8] Cong S, Wu X, Ge J Z, et al. Impact of Typhoon Chan-hom on sediment dynamics and morphological changes on the East China Sea inner shelf[J]. Marine Geology, 2021, 440:106578. doi: 10.1016/j.margeo.2021.106578
[9] Goñi M A, Gordon E S, Monacci N M, et al. The effect of Hurricane Lili on the distribution of organic matter along the inner Louisiana shelf (Gulf of Mexico, USA)[J]. Continental Shelf Research, 2006, 26(17-18):2260-2280. doi: 10.1016/j.csr.2006.07.017
[10] Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051):686-688. doi: 10.1038/nature03906
[11] Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742):1844-1846. doi: 10.1126/science.1116448
[12] Kossin J P, Emanuel K A, Vecchi G A. The poleward migration of the location of tropical cyclone maximum intensity[J]. Nature, 2014, 509(7500):349-352. doi: 10.1038/nature13278
[13] Wang G H, Wu L W, Mei W, et al. Ocean currents show global intensification of weak tropical cyclones[J]. Nature, 2022, 611(7936):496-500. doi: 10.1038/s41586-022-05326-4
[14] Mendelsohn R, Emanuel K, Chonabayashi S, et al. The impact of climate change on global tropical cyclone damage[J]. Nature Climate Change, 2012, 2(3):205-209. doi: 10.1038/nclimate1357
[15] Mei W, Xie S P. Intensification of landfalling typhoons over the Northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10):753-757. doi: 10.1038/ngeo2792
[16] Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 2001, 41(2-3):219-231. doi: 10.1016/S0169-555X(01)00118-0
[17] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18):2141-2156. doi: 10.1016/j.csr.2006.07.013
[18] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023
[19] Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu[J]. Marine Geology, 1999, 160(1-2):183-196. doi: 10.1016/S0025-3227(99)00020-1
[20] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390:270-281. doi: 10.1016/j.margeo.2017.06.004
[21] Yang S Y, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 2016, 429(1):137-152. doi: 10.1144/SP429.6
[22] Gao J H, Shi Y, Sheng H, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414:1-17. doi: 10.1016/j.margeo.2019.05.003
[23] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727 doi: 10.11693/hyhz20200500145 LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):705-727.] doi: 10.11693/hyhz20200500145
[24] 苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2005 SU Jilan. The Oceanography in the Chinese Margin Sea[M]. Beijing: China Ocean Press, 2005.]
[25] Li Y H, Wang A J, Qiao L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang-Fujian coast, China[J]. Continental Shelf Research, 2012, 37:92-100. doi: 10.1016/j.csr.2012.02.020
[26] Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: in-situ seafloor observations[J]. Marine Geology, 2018, 406:72-83. doi: 10.1016/j.margeo.2018.09.009
[27] Cong S, Wu X, Ge J Z, et al. Intermittent migration of mixing front driven by typhoon events on the inner shelf of the East China Sea: a FVCOM modeling study[J]. Marine Geology, 2023, 465:107161. doi: 10.1016/j.margeo.2023.107161
[28] Tian Y, Fan D J, Zhang X L, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410:109-121. doi: 10.1016/j.margeo.2018.12.010
[29] Yang Y, Piper D J W, Xu M, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications, 2022, 13(1):1712. doi: 10.1038/s41467-022-29386-2
[30] 高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10):141-160 doi: 10.3969/j.issn.0253-4193.2019.10.010 GAO Shu, JIA Jianjun, YANG Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao, 2019, 41(10):141-160.] doi: 10.3969/j.issn.0253-4193.2019.10.010
[31] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741
[32] Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1-2):37-45. doi: 10.1016/0278-4343(85)90020-2
[33] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2):81-90 YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. The Macroscopic pattern of suspended sediment transport from the Yellow Sea and East China Sea to the eastern Deep-Sea Region[J]. Acta Oceanologica Sinica, 1992, 14(2):81-90.]
[34] Wu H, Deng B, Yuan R, et al. Detiding measurement on transport of the Changjiang-derived buoyant coastal current[J]. Journal of Physical Oceanography, 2013, 43(11):2388-2399. doi: 10.1175/JPO-D-12-0158.1
[35] Qiao L L, Liu S D, Xue W J, et al. Spatiotemporal variations in suspended sediments over the inner shelf of the East China Sea with the effect of oceanic fronts[J]. Estuarine, Coastal and Shelf Science, 2020, 234:106600. doi: 10.1016/j.ecss.2020.106600
[36] 边昌伟. 中国近岸泥沙在渤海、黄海和东海的输运[D]. 中国海洋大学博士学位论文, 2012 BIAN Changwei. Chinese coastal sediment transport in the Bohai Sea, Yellow Sea and East China Sea[D]. Doctor Dissertation of Ocean University of China, 2012.]
[37] Liu X, Li G X, Ma Y Y, et al. Distribution and diffusion of surface suspended matter off the East China Shore, 2010[J]. Geological Journal, 2016, 51(S1):49-59. doi: 10.1002/gj.2814
[38] 乔璐璐, 王震, 刘世东, 等. 从陆架海到西太平洋: 黄、东海悬浮体跨陆架输运通道与机制[J]. 地学前缘, 2017, 24(4):134-140 QIAO Lulu, WANG Zhen, LIU Shidong, et al. From continental shelf seas to the western Pacific: the path and mechanism of cross-shelf suspended sediment transport in the Yellow Sea and East China Sea[J]. Earth Science Frontiers, 2017, 24(4):134-140.]
[39] Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf[J]. Sedimentary Geology, 2019, 384:50-59. doi: 10.1016/j.sedgeo.2019.03.006
[40] He L, Li Y, Zhou H, et al. Variability of cross-shelf penetrating fronts in the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19-20):1820-1826. doi: 10.1016/j.dsr2.2010.04.008
[41] Liu S D, Qiao L L, Li G X, et al. Distribution and cross-front transport of suspended particulate matter over the inner shelf of the East China Sea[J]. Continental Shelf Research, 2015, 107:92-102. doi: 10.1016/j.csr.2015.07.013
[42] Liu S D, Qiao L L, Li G X, et al. Variation in the current shear front and its potential effect on sediment transport over the inner shelf of the East China Sea in winter[J]. Journal of Geophysical Research: Oceans, 2018, 123(11):8264-8283. doi: 10.1029/2018JC014241
[43] Wu H. Cross-shelf penetrating fronts: a response of buoyant coastal water to ambient pycnocline undulation[J]. Journal of Geophysical Research: Oceans, 2015, 120(7):5101-5119. doi: 10.1002/2014JC010686
[44] Ren J L, Xuan J L, Wang Z W, et al. Cross-shelf transport of terrestrial Al enhanced by the transition of northeasterly to southwesterly monsoon wind over the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(7):5054-5073. doi: 10.1002/2014JC010655
[45] Lapetina A, Sheng Y P. Simulating complex storm surge dynamics: three-dimensionality, vegetation effect, and onshore sediment transport[J]. Journal of Geophysical Research: Oceans, 2015, 120(11):7363-7380. doi: 10.1002/2015JC010824
[46] Chen D X, He L, Liu F F, et al. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2017, 194:229-239. doi: 10.1016/j.ecss.2017.06.026
[47] Zang Z C, Xue Z G, Bao S W, et al. Numerical study of sediment dynamics during hurricane Gustav[J]. Ocean Modelling, 2018, 126:29-42. doi: 10.1016/j.ocemod.2018.04.002
[48] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987 QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea[M]. Beijing: Science Press, 1987.]
[49] 郭炳火, 黄振宗, 李培英, 等. 中国近海及邻近海域海洋环境[M]. 北京: 海洋出版社, 2004 GUO Binghuo, HUANG Zhenzong, LI Peiying, et al. Marine Environment in China’s Offshore and Adjacent Seas[M]. Beijing: China Ocean Press, 2004.]
[50] 石学法, 刘升发, 乔淑卿, 等. 东海闽浙沿岸泥质区沉积特征与古环境记录[J]. 海洋地质与第四纪地质, 2010, 30(4):19-30 SHI Xuefa, LIU Shengfa, QIAO Shuqing, et al. Depositional features and palaeoenvironmental records of the mud deposits in Min-Zhe coastal mud area, East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4):19-30.]
[51] Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139:390-405. doi: 10.1016/j.earscirev.2014.09.007
[52] 江丽俐, 钱卓蕾, 张建海. 台风“灿鸿”的路径和降水特征诊断分析[J]. 浙江气象, 2016, 37(4):11-16 JIANG Lili, QIAN Zhuolei, ZHANG Jianhai. The path and precipitation characteristics diagnosis analysis of Typhoon "Chan-hom"[J]. Journal of Zhejiang Meteorology, 2016, 37(4):11-16.]
[53] 冀承振, 葛勇, 李健, 等. 黄海海洋对台风“灿鸿”外围过程响应的观测研究[J]. 海洋学报, 2020, 42(1):46-53 doi: 10.3969/j.issn.0253-4193.2020.01.006 JI Chengzhen, GE Yong, LI Jian, et al. Study of the Yellow Sea responses to peripheral processes of Typhoon Chan-hom[J]. Haiyang Xuebao, 2020, 42(1):46-53.] doi: 10.3969/j.issn.0253-4193.2020.01.006
[54] Shen F F, Xu D M, Li H, et al. Assimilation of GPM Microwave Imager Radiance data with the WRF hybrid 3DEnVar system for the prediction of Typhoon Chan-hom (2015)[J]. Atmospheric Research, 2021, 251:105422. doi: 10.1016/j.atmosres.2020.105422
[55] Chen C S, Liu H D, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1):159-186. doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
[56] Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system[J]. Oceanography, 2006, 19(1):78-89. doi: 10.5670/oceanog.2006.92
[57] Beardsley R C, Chen C S, Xu Q C. Coastal flooding in Scituate (MA): a FVCOM study of the 27 December 2010 nor’easter[J]. Journal of Geophysical Research: Oceans, 2013, 118(11):6030-6045. doi: 10.1002/2013JC008862
[58] Ge J Z, Ding P X, Chen C S, et al. An integrated East China Sea-Changjiang Estuary model system with aim at resolving multi-scale regional-shelf-estuarine dynamics[J]. Ocean Dynamics, 2013, 63(8):881-900. doi: 10.1007/s10236-013-0631-3
[59] Zhong Y, Qiao L L, Song D H, et al. Impact of cold water mass on suspended sediment transport in the South Yellow Sea[J]. Marine Geology, 2020, 428:106244. doi: 10.1016/j.margeo.2020.106244
[60] Ge J Z, Yi J X, Zhang J T, et al. Impact of vegetation on lateral exchanges in a salt marsh-tidal creek system[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(8):e2020JF005856. doi: 10.1029/2020JF005856
[61] Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2):183-204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
[62] Lellouche J M, Greiner E, Le Galloudec O, et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system[J]. Ocean Science, 2018, 14(5):1093-1126. doi: 10.5194/os-14-1093-2018
[63] Dossa A N, Silva A C, Chaigneau A, et al. Near-surface western boundary circulation off Northeast Brazil[J]. Progress in Oceanography, 2021, 190:102475. doi: 10.1016/j.pocean.2020.102475
[64] Saha S, Moorthi S, Wu X R, et al. The NCEP climate forecast system version 2[J]. Journal of Climate, 2014, 27(6):2185-2208. doi: 10.1175/JCLI-D-12-00823.1
[65] 吴伦宇. 基于FVCOM的浪、流、泥沙模型耦合及应用[D]. 中国海洋大学博士学位论文, 2010 WU Lunyu. FVCOM-based Wave-Current-Sediment model coupling and its application[D]. Doctor Dissertation of Ocean University of China, 2010.]
[66] Lorenz E N. Empirical orthogonal functions and statistical weather prediction[R]. Cambridge: Massachusetts Institute of Technology Department of Meteorology, 1956.
[67] Tang J P, Wang Y P, Zhu Q G, et al. Winter storms induced high suspended sediment concentration along the north offshore seabed of the Changjiang estuary[J]. Estuarine, Coastal and Shelf Science, 2019, 228:106351. doi: 10.1016/j.ecss.2019.106351
[68] Liu J T, Lee J, Yang R J, et al. Coupling between physical processes and biogeochemistry of suspended particles over the inner shelf mud in the East China Sea[J]. Marine Geology, 2021, 442:106657. doi: 10.1016/j.margeo.2021.106657
[69] Du X Q, Liu J T, Lee J, et al. Influence of sediment sources, water mass, and physical processes on the dynamics of flocs at a location between the mouth of a river and the head of a submarine canyon[J]. Marine Geology, 2022, 445:106736. doi: 10.1016/j.margeo.2022.106736
[70] 齐富康. 山东半岛泥质区海底边界层沉积动力过程[D]. 南方科技大学博士学位论文, 2023 QI Fukang. Sedimentary dynamic processes in the bottom boundary layer of the muddy deposit off the Shandong Peninsula[D]. Doctor Dissertation of Southern University of Science and Technology, 2023.]
[71] Zhang Z W, Wu H, Yin X Q, et al. Dynamical response of Changjiang River plume to a severe typhoon with the surface wave-induced mixing[J]. Journal of Geophysical Research: Oceans, 2018, 123(12):9369-9388. doi: 10.1029/2018JC014266
[72] Chu D D, Zhang J C, Wu Y S, et al. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2019, 231:106460. doi: 10.1016/j.ecss.2019.106460
[73] Liu Y H, Wang H J, Cong S, et al. Rapid oscillation of sediment transport between the Bohai Sea and the Yellow Sea induced by Typhoon Lekima (2019)[J]. Marine Geology, 2023, 465:107160. doi: 10.1016/j.margeo.2023.107160
[74] Miles T, Seroka G, Kohut J, et al. Glider observations and modeling of sediment transport in Hurricane Sandy[J]. Journal of Geophysical Research: Oceans, 2015, 120(3):1771-1791. doi: 10.1002/2014JC010474