沉积成因Sr/Ba指示的福建潮控海湾全新世沉积环境及海平面意义

陈能, 邱彬焕, 张杰, 余欢, 刘演, ElSaid Shetaia, 孙千里, 于俊杰, 陈静

陈能,邱彬焕,张杰,等. 沉积成因Sr/Ba指示的福建潮控海湾全新世沉积环境及海平面意义[J]. 海洋地质与第四纪地质,2024,44(5): 95-106. DOI: 10.16562/j.cnki.0256-1492.2024062803
引用本文: 陈能,邱彬焕,张杰,等. 沉积成因Sr/Ba指示的福建潮控海湾全新世沉积环境及海平面意义[J]. 海洋地质与第四纪地质,2024,44(5): 95-106. DOI: 10.16562/j.cnki.0256-1492.2024062803
CHEN Neng,QIU Binhuan,ZHANG Jie,et al. Holocene sedimentary environment and sea level significance of sedimentogenic Sr/Ba in Fujian tidal bays[J]. Marine Geology & Quaternary Geology,2024,44(5):95-106. DOI: 10.16562/j.cnki.0256-1492.2024062803
Citation: CHEN Neng,QIU Binhuan,ZHANG Jie,et al. Holocene sedimentary environment and sea level significance of sedimentogenic Sr/Ba in Fujian tidal bays[J]. Marine Geology & Quaternary Geology,2024,44(5):95-106. DOI: 10.16562/j.cnki.0256-1492.2024062803

沉积成因Sr/Ba指示的福建潮控海湾全新世沉积环境及海平面意义

基金项目: 上海市“一带一路国际联合实验室”(21230750600);中国地质调查局项目“宁德海岸带陆海统筹综合地质调查”(DD20189505)
详细信息
    作者简介:

    陈能(1999—),男,硕士研究生,自然地理学专业,E-mail:51253904007@stu.ecnu.edu.cn

    通讯作者:

    陈静(1977—),女,研究员,主要从事河口海岸环境演变、河口海岸泥沙物源方向研究,E-mail:jchen@geo.ecnu.edu.cn

  • 中图分类号: P736

Holocene sedimentary environment and sea level significance of sedimentogenic Sr/Ba in Fujian tidal bays

  • 摘要:

    福建沿海多发育潮控型海湾,潮滩平坦宽广,海湾水深较浅,有孔虫等微体生物较为匮乏,且其化石在地层中保存相对较差,致使沉积微相辨识存在一定难度,从而限制了深入理解该区全新世海平面变化过程及沉积环境响应。本研究拟利用不受保存环境限制的沉积成因Sr/Ba指标,探索其在福建宁德三沙湾地区沉积微相的辨识潜力,并结合AMS 14C年龄,探讨该区全新世以来的沉积环境演化及区域海平面变化。结果表明:① 沉积成因Sr/Ba在三沙湾潮滩和海湾表层沉积物中平均值分别为9.06和20.43,具有显著差异。潮滩沉积物中的Sr/Ba明显高于长江等大河口地区(1~3),这是该区淡水输入量较少、潮滩盐度较高所致,这说明该指标辨识海陆过渡沉积相时需要考虑区域水文特点。② 晚第四纪NDGK2钻孔沉积物Sr/Ba自下而上可分为3层(Ⅰ—Ⅲ):层Ⅰ为杂色硬黏土,Sr/Ba比值全孔最低(均值5.29),但也高于淡水环境,推测为前期海相沉积物的暴露改造;层Ⅱ—Ⅲ均为深灰色黏土,其中层Ⅱ均值为10.77,接近潮滩相;层Ⅲ均值为全孔最高(13.44),接近海湾相。结合AMS 14C年龄可知,NDGK2钻孔的河漫滩-潮滩-海湾沉积相演化受控于全新世海平面上升过程,潮滩相形成于约8.9 cal.kaBP,当时该区海平面大约在−21.0±2.5 m,最大海泛面出现于约8.2 cal.kaBP,之后出现了长达6 ka的低沉积速率时期,直至约2.2 cal.kaBP海湾内加速沉积。③ 该区15个钻孔全新统底部Sr/Ba均显现出明显的潮滩相特征,这为重建区域全新世相对海平面提供了可行性。

    Abstract:

    Tidal bays along the Fujian coast lack microorganisms (e.g., foraminifera) and poor fossil preservation, resulting from wide tidal flats and shallow waters. This makes it difficult to rely on the fossils to understand the Holocene sea-level variation course and the sedimentary environment responses in this region. Therefore, this study aims to use the sedimentogenic Sr/Ba ratio index to identify the sedimentary facies in the Sansha Bay, Ningde, Fujian. In addition, AMS 14C dating was done to explore the sedimentary environment evolution and regional sea-level change since the Holocene. The findings revealed that: 1) The mean value of sedimentogenic Sr/Ba ratio in the tidal flats sediments (9.06) is obviously lower than the surface sediments of Sansha Bay (20.43). However, the sedimentogenic Sr/Ba ratio in tidal flat sediments is significantly higher than those of large estuaries such as the Yangtze River estuary (1~3) where lower freshwater input and higher salinity in the tidal flat, suggesting that the regional hydrological characteristics shall be considered when applying the ratio index for examining the sedimentary facies in sea-land transition zones. 2) The sedimentogenic Sr/Ba ratio of Core NDGK2 sediment of the Late Quaternary could be divided into three layers (Ⅰ-Ⅲ). From the bottom, Layer Ⅰ is variegated hard clay, has a Sr/Ba mean value of 5.29, which is still greater than typical freshwater environments, indicating exposure and alteration of older sediments. Layers Ⅱ and Ⅲ consist of dark gray clay, of which Layer Ⅱ has a mean value of 10.77, similar to the tidal flats facies, while Layer Ⅲ has the greatest mean value of the entire core for 13.44, indicating the bay facies. The AMS 14C dates indicate the evolution of the fluvial-tidal flat-bay sedimentary facies in Core NDGK2 was controlled by the Holocene sea-level rise. The tidal flat facies was formed at ~8.9 cal.kaBP when the sea level was at 21.0±2.5 m. The maximum flooding surface appeared at ~8.2 cal.kaBP, followed by a long period of low sedimentation rate for 6 ka, and the sedimentation rate in the bay was accelerated again at ~2.2 cal.kaBP. 3) The sedimentogenic Sr/Ba ratios in all 15 cores at Pleistocene-Holocene boundary in the region show obvious tidal flat facies characteristics, indicating the applicability of sedimentogenic Sr/Ba ratio for reconstructing the Holocene relative sea-level change in the region.

  • 海水悬浮体(SPM)主要由非生物(矿物)和生物(浮游植物、碎屑、部分浮游细菌、孢子)颗粒构成[1]。在海洋环境中,SPM不仅是陆架和洋盆沉积的主要物质来源,同时也作为主要的反应物质或催化剂参与生物地球化学过程[1]。海水中SPM含量受水动力条件、物理化学过程、生物过程等控制,是进行海洋沉积过程、物质循环研究的可靠材料[2-3]

    北冰洋拥有巨大的河水径流流量[4],河流将风化产生的颗粒和溶解物质转移到海洋[5],使得大量SPM汇入北冰洋。前人对北冰洋陆架区域的SPM进行了大量的研究,取得了丰硕的成果。在楚科奇海南部SPM以硅藻为主,其分布受到经白令海峡西侧流入的富营养盐的阿纳德尔流影响[6],反映出SPM中颗粒组分的分布与河流、洋流有着密切的联系。在喀拉海中部和西部的SPM浓度最低,鄂毕河和叶尼塞河河口SPM浓度最高,且鄂毕河口SPM浓度高于叶尼塞河,大多数侵蚀物质被困在20 km的近岸海域,SPM主要向东传播[7]。无冰期的拉普捷夫海SPM浓度分别由南至北、由东至西减小[8],而且汇入的三条河流中SPM的Sr浓度分布差别很大[9]

    本文以2019年中俄北极联合考察(AMK78航次)期间所获取的喀拉海、拉普捷夫海、东西伯利亚海表层海水SPM为素材,开展了SPM的浓度、颗粒组成、岩石磁学研究,通过分析SPM在空间上的分布差异探讨其在各海域的分布规律,并围绕洋流、径流、海岸侵蚀等多种因素对海域表层海水SPM分布特征的影响,探究SPM分布的控制因素。该研究成果对该海域现代沉积过程具有重要意义。

    喀拉海、拉普捷夫海、东西伯利亚海是位于俄罗斯北部的北冰洋边缘海(图1a),分布在西伯利亚大陆架上。喀拉海接收了整个欧亚北极地区约50%的河流径流,大部分流量由鄂毕河(Ob)和叶尼塞河(Yenisei)贡献[7],两者流量表现出强烈的季节和年际变化。在6月观察到两条河流最大的排放速率,大约有45%~65%的年淡水径流和80%的年SPM被释放[10]。拉普捷夫海被5个向北和西北方向的海底通道切割,是保持北冰洋淡水和冰态平衡的关键区域[11]。勒那河(Lena)流入拉普捷夫海东部,春季的淡水和河流泥沙输入最高[8]。东西伯利亚海具有世界上最宽阔的大陆架,海底冻土广泛发育。流入东西伯利亚海最大的两条河流是因迪吉尔卡河(Indigirka)和科雷马河(Kolyma)。汇入拉普捷夫海的勒那河虽没有直接注入东西伯利亚海,但由于其巨大的径流量与输沙量,在西伯利亚沿岸流的影响下,可以向东西伯利亚海西部供应沉积物[12]

    图  1  北极西伯利亚陆架概况和主要洋流[13-18](a)及采样站位(b)
    Figure  1.  Environment setting of Siberian Arctic Shelf and the schematically major currents[13-18] (a) and the sampling sites (b)

    巴伦支海分流(Barents Sea Branch,BSB)由北大西洋水经淡水输入、海冰融化和净降水等过程改造而来[13],一部分沿海岸进入新地岛以南的喀拉海,另一部分沿新地岛北部向东与西斯匹次卑尔根洋流在喀拉海北部合并[14-15]图1a)。西伯利亚沿岸流(Siberian Coastal Current,SCC)发源于东西伯利亚海西部,受到风力和浮力的驱动,向东通过德米特里拉普捷夫海峡(图1a)。拉普捷夫海海水与勒那河河水交汇流入德米特里拉普捷夫海峡,与东西伯利亚海的因迪吉尔卡河、科雷马河河水合并沿陆架向东穿过朗格海峡流至楚科奇海[16]

    中俄北极联合考察AMK78航次于2019年在喀拉海、拉普捷夫海、东西伯利亚海的海区共进行了50个站位的悬浮体调查。采样站位分别为P1—P46站位以及6489、6495、6498、6500站位(图1b)。各站位表层海水样品由船上表层海水温室气体实时分析的采水系统采集。水样选用提前称量至恒重的直径47 mm、孔径0.45 µm的Millipore醋酸纤维滤膜进行抽滤,过滤后的滤膜放置在−20 ℃的环境中保存。由于P38站位在采集时见大量暗色碎屑,可能为管路堵塞后的沉渣,不能表示该站位SPM的特征,故本研究中将该站位样品予以剔除。

    为了测量SPM质量浓度,在过滤前后分别使用Sartorius电子天平(精度为0.01 mg)称量冷冻干燥后的滤膜。海水中SPM浓度(ρ,单位mg/L):

    $$ \rho=\frac{M_{\rm p}-M_{\rm s}}{V} $$

    式中Mp为滤后膜重的平均值(mg);Ms为滤前膜重的平均值(mg);V为过滤水样的体积(L)。

    为了观察SPM的形貌特征,在自然资源部第三海洋研究所使用FEI Quanta 450型环境扫描电镜(scanning electron microscope,SEM)对滤膜上SPM的形态特征进行图像扫描。

    磁学实验在中国地质大学(北京)古地磁与环境磁学实验室及中国地震局岩石磁学实验室完成。将空白滤膜和带有SPM的滤膜置于已完成磁化率测试的8 cm3无磁性的塑料方盒中。用MFK1-FA卡帕桥磁化率仪分别进行低频(976 Hz)磁化率与高频(15616 Hz)磁化率测试,扣除样品盒体积磁化率以及空白滤膜体积磁化率后,分别获得SPM的低频体积磁化率(κlf)与高频体积磁化率(κhf)。对体积磁化率进行质量浓度归一化后获得低频和高频质量磁化率(χlfχhf),并计算获得SPM的频率磁化率百分比(χfd%=(χlfχhf)/χlf×100%)。使用配套有CS-3温度控制系统的KLY-4S卡帕桥磁化率仪测定SPM磁化率随温度变化(κ-T)曲线,温度变化为–195 ℃至室温,升温速度为5 ℃/min。

    SPM样品的天然剩磁(natural remanent magnetization,NRM)在磁屏蔽室(<300 nT)内用755-4K低温超导磁力仪测量获得。使用MicroMag 3900变梯度振动磁力仪测试SPM的磁滞回线(Loop)、等温剩磁(isothermal remanent magnetization,IRM)获得曲线及反向场退磁曲线,最大外加磁场为1 T。从Loop测试数据中读取样品矫顽力(coercivity,Bc)、饱和磁化强度(saturation magnetization,Ms)以及饱和剩余磁化强度(saturation remanent magnetization,Mrs)参数。剩磁矫顽力(coercivity of remanence,Bcr)参数从反向场退磁曲线中读取。

    AMK78航次各站位表层海水SPM浓度为0.18~32.25 mg/L(图2)。浓度高值主要分布在两个区域,分别是位于新西伯利亚群岛与西伯利亚大陆之间的德米特里拉普捷夫海峡和位于喀拉海的叶尼塞河和鄂毕河河口。其中在德米特里拉普捷夫海峡SPM浓度自西向东逐渐增加,在其东部的P15站位达到最高值32.25 mg/L。从拉普捷夫海勒那河三角洲向大陆架北部延伸SPM浓度逐渐降低,直到P31站位达到最低值0.22 mg/L。新西伯利亚群岛以北、泰梅尔半岛以西、亚马尔半岛以西SPM浓度均为低值。

    图  2  SPM浓度空间分布特征
    Figure  2.  Spatial distribution characteristics of SPM concentration

    对不同区域采集的悬浮体滤膜进行扫描电镜分析发现,SPM由陆源碎屑颗粒和硅质生物碎屑(硅藻和鞭毛藻)(图3)组成。在远离岸线的海域,如P1和P10站位,滤膜上的SPM零散分布,硅质生物碎屑在SPM中的占比高(图3a—d)。在近岸和海峡海域,SPM含量高,完全覆盖滤膜,SPM中硅质生物碎屑的占比相对较低,SPM以陆源碎屑颗粒为主。以位于德米特里拉普捷夫海峡东侧的P15站位为例,其SPM多为不同粒径的片状矿物,硅质生物碎屑含量极少(图3e)。位于叶尼塞河河口北侧的P39站位,其SPM也以陆源碎屑颗粒为主,硅质生物碎屑含量少于15%(图3f、g)。位于鄂毕河口北侧的P42站位,仍以陆源碎屑矿物为主,但硅藻含量较叶尼塞河口外侧多(图3h、i)。

    图  3  典型SPM颗粒组分扫描电镜照片
    a、 b. P1站位,c、 d. P10站位,e. P15站位,f、 g. P39站位,h、i. P42站位。
    Figure  3.  The SEM images of representative SPM compositions in sites P1(a, b), P10 (c, d), P15 (e), P39 (f, g), and P42 (h, i)

    磁化率随温度变化曲线可以根据磁性矿物特有的相变温度来鉴别磁性矿物类型[19]。本文对悬浮体进行了低温κ-T测试(图4),结果显示从−192℃开始温度上升磁化率值急剧下降,在−150℃左右出现一个高值,之后磁化率值保持稳定。在−150~−149℃(120~124 K)时,磁铁矿晶体结构中电子热能减小使得铁离子被冻结在各自的位置上,导致整个晶体不再对称,变为单斜结构,这个温度点称为Verwey转换温度(Tv[20]。低温κ-T测试表明样品中存在磁铁矿。

    图  4  P17站位低温κ-T曲线
    蓝色线:磁化率随温度变化曲线,橙色线:求导曲线。
    Figure  4.  Low temperature κ-T curve at site P17
    Blue line: magnetic susceptibility curve with temperature, Orange line: derivative curve.

    Loop形态及其相关的磁滞参数可以用来判别样品磁性矿物颗粒的类型和粒径大小[21]。图5显示,顺磁矫正前样品显示了顺磁性矿物(图5中P17、P42站位)和抗磁性矿物(图5中P5、P33站位)的不同影响,其中抗磁性主要受醋酸纤维材质滤膜的影响。顺磁矫正后的Loop形态基本一致,在400 mT时曲线均趋于闭合,整体呈现为中间宽而两头窄的“粗腰型”形态。样品的Bcr在34~43 mT范围内,表明样品中磁性矿物矫顽力较低,存在单畴的磁铁矿。

    图  5  SPM代表性样品Loop曲线
    蓝色线:顺磁矫正前,粉色线:顺磁矫正后。
    Figure  5.  Loop curves of representative samples of SPM
    Blue line: before paramagnetic correction, pink line: after paramagnetic correction.

    Day图可以指示磁性矿物的磁畴状态[22]。将获得的磁滞参数Mrs/MsBcr/Bc两组比值投到Day图上[23-24],结果表明表层海水SPM中磁性矿物的磁畴状态为单畴(single domain,SD)、多畴(multidomain,MD)混合(图6)。

    图  6  磁性矿物Day图
    SD:单畴,MD:多畴,SP:超顺磁,PSD:假单畴。
    Figure  6.  The Day plot of magnetic minerals
    SD: single domain, MD: multidomain,SP: superparamagnetic, PSD: pseudo-single domain.

    磁化率的大小主要取决于磁性矿物含量的多少[25]。表层海水SPM的χlf值为−4.21×10−6~4.87×10−6 m3/kg(图7)。磁化率高值区域位于泰梅尔半岛以西,其中P41站位磁化率最高,为4.87×10−6 m3/kg。磁化率低值区域位于勒那河三角洲和新西伯利亚群岛以东,拉普捷夫海大部分海域及亚马尔半岛以西悬浮体磁化率值介于中间。SPM磁化率的空间分布反映了从喀拉海到拉普捷夫海再到东西伯利亚海悬浮体中磁性矿物含量呈减少趋势。频率磁化率反映从单畴到超顺磁磁铁矿的存在,指示样品中较细磁性矿物的含量[26]。表层海水SPM的χfd%值为(–3.25×106~2.47×105)%(图8),位于德米特里拉普捷夫海峡的P19站位值最低,位于拉普捷夫海大陆架边缘的P30站位次之,整体分布均匀,说明超顺磁矿物含量变化不明显。

    图  7  SPM磁化率空间分布特征
    Figure  7.  Spatial distribution characteristics of SPM magnetic susceptibility
    图  8  SPM频率磁化率空间分布特征
    Figure  8.  Spatial distribution characteristics of SPM frequency magnetic susceptibility

    NRM的数值反映了样品中亚铁磁性矿物的含量。表层悬浮体的NRM为4.60×10−6~1.32×10−3 A/m(图9),最高值在P26站位,位于拉普捷夫海中部,位于鄂毕河口的P41站位次之,最低值在更靠近河口的P42站位,更靠近河口。在其他海域NRM数值均较低。表示亚铁磁性矿物主要集中于拉普捷夫海中部。

    图  9  SPM天然剩磁空间分布特征
    Figure  9.  Spatial distribution characteristics of SPM natural remanence

    喀拉海SPM含量在河口区域较高,磁性矿物含量较多,磁性矿物粒径较细。在鄂毕河河口的P41站位SPM含量最高,亚铁磁性矿物含量最多,SPM中以陆源碎屑颗粒为主。P41站位相较于叶尼塞河河口的P39站位硅藻含量多,可能是由于P39站位距离河口较远,营养盐较少导致生物碎屑少。而距离鄂毕河河口较近的P42站位SPM含量低于P41站位,亚铁磁性矿物含量最低,推测该处河流流速较快,河水径流将陆源物质继续向海水里输送。喀拉海东部和西部海域陆源输入较少,SPM含量普遍较少。

    拉普捷夫海SPM含量普遍低,亚铁磁性矿物在中部聚集,磁性矿物粒径较细,但在外陆架P31站位甲烷渗漏区粒径较粗。SPM含量从勒那河河口向中部海域逐渐降低,亚铁磁性矿物集中在中部海域的P26站位,北部海域含量最低。北部海域的SPM中硅质生物碎屑占比较高,与其离岸远有关。沿勒那河河口向东部海域SPM含量逐渐升高,磁性矿物含量降低,磁性矿物粒径逐渐变粗。

    东西伯利亚海西部的SPM含量,最高值位于德米特里拉普捷夫海峡的东部P15站位,SPM以陆源碎屑颗粒为主,硅质生物碎屑的占比极低,磁性矿物含量在海峡附近较高,粒径较粗。在其他海域,SPM含量相对较低,磁性矿物含量相对较少,粒径相对较粗,P10站位由于距离海岸远SPM中硅质碎屑占比较高。

    喀拉海SPM含量在河口区域P41站位较高,这是由于在河口河流流速降低,淡水与盐水混合(盐度2~10),细颗粒SPM在絮凝作用下发生快速积累(沉淀),大多数河流SPM被困在河口[10]。叶尼塞河的SPM来自于普托拉纳地块广泛分布的三叠纪高原玄武岩和凝灰岩沉积物;而鄂毕河的SPM来源于西伯利亚低地,相比于叶尼塞河,磁化率值非常低[10]。但由于叶尼塞河口的P39站位和P40站位距离河口较远,SPM困在河口较近的区域,与海水混合后SPM含量较P41站位低。随着与河口距离的增加,SPM中陆源碎屑颗粒也随之减少,而河口丰富的营养盐会使得站位中的生物碎屑相对较多。

    晚全新世以来,勒那河三角洲逐渐突出河口向东偏转[27],勒那河河口向东至德米特里拉普捷夫海峡SPM含量逐渐增加,但勒那河河口外侧SPM含量整体较低。德米特里拉普捷夫海峡SPM磁性矿物的粒径较粗,反映出德米特里拉普捷夫海峡及其东侧的高浓度SPM是海岸侵蚀作用形成的,而非来自勒那河搬运入海的颗粒物。

    受BSB影响,维利基茨基海峡西部SPM磁性矿物的含量与BSB方向一致,随洋流运移呈现出不断递减的趋势。由于海峡全年浮冰覆盖,自西向东的BSB表层洋流流速变缓,SPM在此聚集导致含量较高,亚铁磁性矿物含量较多。

    从勒那河河口向东至德米特里拉普捷夫海峡SPM含量逐渐增加,磁性矿物粒径也较粗,是由于该处受到了强烈的SCC对海岸的侵蚀。

    (1)SPM中组分主要来自陆源碎屑及硅质浮游生物。SPM含量由南向北逐渐递减,由陆向海扩散。陆源碎屑集中分布在近岸和河流入海口附近海域,离海岸和河口较远海域SPM中硅质生物碎屑的占比升高。

    (2)SPM中磁性矿物为单畴、多畴磁铁矿,磁性矿物与流域内岩石类型有关,通过河流输送至海洋中。

    (3)SPM分布受控于河水径流、沿岸流等因素,河口处浓度高、磁性矿物多,磁性矿物集中在表层流流速缓慢的区域,粒径普遍较细,主要受到SCC的影响。粒径较粗的磁性矿物分布在沿岸地区,可能与海岸侵蚀有关。

    致谢:感谢2019年中俄北极联合考察的全体科考队员。

  • 图  1   研究区域概况(a)、钻孔与海湾表层沉积物样品点位(b)及潮滩表层沉积物样品点位(c-d)

    洋流体系据Chen 等[27]修改。

    Figure  1.   Geographic background of the study area (a), core and bay surface sediment sampling location (b), and tidal flat surface sediment sampling location (c-d)

    The ocean current system is modified from Chen et al.[27].

    图  2   宁德三沙湾NDGK2钻孔年代地层与沉积特征

    Figure  2.   Chrono-stratigraphy and depositional characteristics of Core NDGK2 in Sansha Bay, Ningde

    图  3   宁德三沙湾NDGK2钻孔沉积成因Sr、Ba元素特征

    岩性柱图例同图2。

    Figure  3.   Characteristics of sedimentogenic Sr and Ba in the Core NDGK2 in Sansha Bay, Ningde

    Legends are the same as Fig. 2.

    图  4   宁德钻孔全新统底部沉积成因Sr、Ba元素特征

    Figure  4.   Characteristics of sedimentogenic Sr and Ba in the cores at the Pleistocene-Holocene boundary in Ningde region

    图  5   宁德三沙湾表层沉积物沉积成因Sr/Ba及影响因素

    Figure  5.   Sedimentogenic Sr/Ba ratio of surface sediments in Sansha Bay, Ningde, and the influencing factors

    图  6   沉积成因Sr/Ba指示的NDGK2钻孔全新世沉积环境演化

    岩性柱图例同图2。

    Figure  6.   Holocene sedimentary environment evolution of Core NDGK2 indicated by sedimentogenic Sr/Ba ratio

    Legends are the same as in Fig. 2.

    图  7   沉积成因Sr/Ba揭示的宁德三沙湾全新统底部潮滩相

    灰色阴影表示现代潮滩参考范围。

    Figure  7.   Tidal flat facies during the Early Holocene in Sansha Bay, Ningde, revealed by sedimentogenic Sr/Ba ratio

    Gray shading indicates modern tidal flats reference range.

    表  1   宁德三沙湾钻孔信息与实验样品统计

    Table  1   Core information and experimental sample statistics of Sansha Bay, Ningde

    钻孔编号 位置 孔口高程/m 终孔深度/m 全新统底界深度/m 元素分析样品数量 AMS 14C测年样品数量
    NDGK1 26.60°N、119.62°E 5.515 85.75 25.65 10
    NDGK2 26.61°N、119.64°E 4.94 95.9 25.8 43 13
    NDGK3 26.59°N、119.61°E 4.456 104 25 9
    NDGK6 26.59°N、119.62°E 4.67 78.3 17.3 5
    NDGK7 26.60°N、119.63°E 5.244 75.2 27.6 7
    NDGK9 26.65°N、119.61°E 4.536 37 21.2 8
    NDGK10 26.66°N、119.61°E 4.526 35.2 13.2 10
    NDGK14 26.65°N、119.60°E 4.506 49 18.8 9
    NDGK15 26.73°N、119.62°E 4.856 63.7 9.2 10
    NDGK17 26.73°N、119.63°E 4.032 69.6 7.6 7
    NDGK20 26.74°N、119.63°E 4.819 73.7 24.7 10
    NDGK25 26.76°N、119.57°E 1.306 43.3 12 9
    NDGK28 26.66°N、119.58°E 3.539 49.54 22 9
    NDQK3 26.67°N、119.54°E 4.881 78 11.35 10
    NDQK7 26.73°N、119.57°E 1.305 20 5.35 7
    注:“−”表示暂未取得AMS 14C测年样品。
    下载: 导出CSV

    表  2   宁德三沙湾NDGK2钻孔AMS 14C测年结果

    Table  2   AMS 14C dating results of Core NDGK2 in Sansha Bay, Ningde

    序号 样品编号 测年材料 取样深度/m 14C年龄/aBP (1σ) Calib Rev 8.1.0校正年龄/cal.aBP (2σ)
    1 NDGK2 14C-1 植物残体 8.0 580±20 586±46
    2 NDGK2-6 碳化植物残体 9.9 1096±13 1006±50
    3 NDGK2-12 碳化植物残体 12.8 2689±13 2801±45*
    4 NDGK2-14 碳化植物残体 14.3 2264±13 2260±80*
    5 NDGK2 14C-2 完整螺壳 14.7 4580±20 4676±179*
    6 NDGK2-21 碳化植物残体 18.6 1976±13 1906±38
    7 NDGK2 14C-3 碳化植物残体 20.9 2230±20 2241±88
    8 NDGK2-27 完整螺壳 22.8 7874±17 8226±158
    9 NDGK2 14C-4 片状贝壳碎屑 24.9 8195±25 8606±206
    10 NDGK2 14C-5 贝壳碎屑 25.75 8225±25 8650±217
    11 NDGK2 14C-5-2 碳化植物残体 25.75 7995±25 8879±119
    12 NDGK2-40 植物残体 25.8 12751±41 15203±144
    13 NDGK2 14C-6 碳化植物残体 31.85 14450±35 17623±208
    注:序号1、5、7、9—11、13的14C年龄数据引自于俊杰等[22],*代表年龄倒置,计算年龄所用14C半衰期为5568年。
    下载: 导出CSV

    表  3   宁德三沙湾现代表层沉积物沉积成因Sr、Ba元素特征

    Table  3   Characteristics of sedimentogenic Sr and Ba elements of modern surface sediments in Sansha Bay, Ningde

    样品位置 统计特征 Sr/(μg/g) Ba/(μg/g) Sr/Ba
    潮滩 最小值 10.74 0.87 7.37
    最大值 34.39 4.07 12.38
    平均值 28.42 3.20 9.06
    变异系数 0.20 0.24 0.10
    海湾 最小值 26.95 1.57 10.35
    最大值 57.82 2.71 33.62
    平均值 39.01 2.02 20.43
    变异系数 0.29 0.21 0.41
    下载: 导出CSV
  • [1]

    Intergovernmental Panel on Climate Change(IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. 2021.

    [2]

    Nicholls R J, Cazenave A. Sea-level rise and its impact on coastal zones[J]. Science, 2010, 328(5985):1517-1520. doi: 10.1126/science.1185782

    [3]

    Scott C D, Mary R, J Emmett D, et al. Climate Change Impacts on Marine Ecosystems[J]. Annual Review of Marine Science, 2012, 4(1):11-37. doi: 10.1146/annurev-marine-041911-111611

    [4]

    Stephane H, Colin G, Robert J N, et al. Future flood losses in major coastal cities[J]. Nature Climate Change, 2013, 3(9):802-806. doi: 10.1038/nclimate1979

    [5]

    Linsley B K. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150000 years[J]. Nature, 1996, 380(6571):234-237. doi: 10.1038/380234a0

    [6]

    Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43):15296-15303.

    [7] 林景星. 福建沿海全新世海进的初步认识[J]. 科学通报, 1979, 24(11):517-520 doi: 10.1360/csb1979-24-11-517

    LIN Jingxing. A preliminary understanding of the Holocene marine advance of Fujian[J]. Chinese Science Bulletin, 1979, 24(11):517-520.] doi: 10.1360/csb1979-24-11-517

    [8] 汪品先, 闵秋宝, 卞云华, 等. 我国东部第四纪海侵地层的初步研究[J]. 地质学报, 1981, 1(1):13

    WANG Pinxian, MIN Qiubao, BIAN Yunhua, et al. A preliminary study of Quaternary marine intrusion stratigraphy in eastern China[J]. Acta Geologica Sinica, 1981, 1(1):13.]

    [9] 王绍鸿, 杨建明, 孙亨伦, 等. 闽江下游及邻近地区冰后期海平面变动[J]. 海洋学报, 1990, 12(1):64-74

    WANG Shaohong, YANG Jianming, SUN Henglun, et al. Postal glacial sea level change in the lower reach of Minjiang River and adjacent area[J]. Haiyang Xuebao, 1990, 12(1):64-74.]

    [10] 王绍鸿, 吴学忠. 福建沿海全新世高温期的气候与海面变化[J]. 台湾海峡, 1992, 11(4):345-352

    WANG Shaohong, WU Xuezhong. Climate and sea level changes during Holocene high temperature period along Fujian coast[J]. Journal of Oceanography in Taiwan Strait, 1992, 11(4):345-352.]

    [11] 曾从盛. 闽东北沿海晚第四纪海侵与海面变动[J]. 福建师范大学学报: 自然科学版, 1997, 13(4):94-101

    ZENG Congsheng. Transgressions and sea level changes along the northeast coast of Fujian during the late Quaternary[J]. Journal of Fujian Teachers University (Natural Science), 1997, 13(4):94-101.]

    [12]

    Zong Y. Mid-Holocene sea-level highstand along the southeast coast of China[J]. Quaternary International, 2004, 117(1):55-67. doi: 10.1016/S1040-6182(03)00116-2

    [13] 李永飞, 徐柳园, 许斌. 福建沿海40000年以来的海面变化[J]. 内江师范学院学报, 2016, 31(6):46-55,61

    LI Yongfei, XU Liuyuan, XU Bin. Changes of sea-level in Fujian coast during the past 40 000 years[J]. Journal of Neijiang Normal University, 2016, 31(6):46-55,61.]

    [14] 王龙, 王张华, 李翠玉. 福建沿海全新世相对海平面变化: 地质记录与“冰川−水均衡调整”模拟对比[J]. 海洋学报, 2022, 44(9):109-123 doi: 10.12284/j.issn.0253-4193.2022.9.hyxb202209010

    WANG Long, WANG Zhanghua, LI Cuiyu. Holocene relative sea-level change of Fujian coast, southeastern China: Geological records and comparison with glacio-hydro isostatic adjustment modelling[J]. Haiyang Xuebao, 2022, 44(9):109-123.] doi: 10.12284/j.issn.0253-4193.2022.9.hyxb202209010

    [15]

    Yu F, Li N, Tian G, et al. A re-evaluation of Holocene relative sea-level change along the Fujian coast, southeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 622:111577. doi: 10.1016/j.palaeo.2023.111577

    [16]

    Törnqvist T E, van Ree M H M, van't Veer R, et al. Improving methodology for high-resolution reconstruction of sea-level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peats[J]. Quaternary Research, 1998, 49(1):72-85. doi: 10.1006/qres.1997.1938

    [17] 韩书华, 张静. 福州市马尾地区第四纪地层划分及海相层分析[J]. 海洋地质与第四纪地质, 1992, 12(1):85-95

    HAN Shuhua, ZHANG Jing. Delineation of Quaternary stratigraphy and analysis of marine stratigraphy in Mawei area, Fuzhou City, China[J]. Marine Geology & Quaternary Geology, 1992, 12(1):85-95.]

    [18] 张璞. 福建漳州晚第四纪以来的环境演变[D]. 中国地质大学博士学位论文, 2005

    ZHANG Pu. Environmental evolution since the Late Quaternary in Zhangzhou, Fujian, China[D]. Doctor Dissertation of China University of Geosciences, 2005.]

    [19] 陈慧娴, 骆美美, 王建华, 等. 福建九龙江河口第四纪沉积物特征及沉积环境演变[J]. 古地理学报, 2014, 16(2):263-273 doi: 10.7605/gdlxb.2014.02.024

    CHEN Huixian, LUO Meimei, WANG Jianhua, et al. Characterization of Quaternary sediments and evolution of depositional environments in the Jiulong River estuary, Fujian, China[J]. Journal of Palaeogeography, 2014, 16(2):263-273.] doi: 10.7605/gdlxb.2014.02.024

    [20]

    Charrieau L M, Filipsson H L, Ljung K, et al. The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region[J]. Marine Micropaleontology, 2018, 139:42-56. doi: 10.1016/j.marmicro.2017.11.004

    [21] 孙丹丹, 刘平, 张杰, 等. 基于沉积成因地化元素指标的闽北海湾晚更新世海侵地层辨识及其意义[J]. 古地理学报, 2022, 24(1):139-151 doi: 10.7605/gdlxb.2022.01.011

    SUN Dandan, LIU Ping, ZHANG Jie, et al. Identification and significance of the Late Pleistocene Transgressive strata in the bays of northern Fujian province based on geochemical element indicators of sedimentary origin[J]. Journal of Palaeography, 2022, 24(1):139-151.] doi: 10.7605/gdlxb.2022.01.011

    [22] 于俊杰, 彭博, 兰佑, 等. 孢粉证据揭示MIS 5a以来福建东北沿海地区人类活动、海平面及气候变化[J]. 地球科学, 2021, 46(1):281-292

    YU Junjie, PENG Bo, LAN You, et al. Palynological records revealed anthropogenic deforestation, sea level and climate changes since marine isotope stage 5a in the northeastern coast of Fujian Province[J]. Earth Science, 2021, 46(1):281-292.]

    [23] 江硕. 福建主要河流及福州城市内河水污染特征研究[D]. 福建农林大学硕士学位论文, 2012

    JIANG Shuo. Characterization of Water Pollution in Major Rivers in Fujian and Urban Inland Rivers in Fuzhou, China[D]. Master Dissertation of Fujian Agriculture and Forestry University, 2012.]

    [24] 郑华峰. 霍童溪流域梯级水电站水库群洪水调度研究与实践[J]. 中国防汛抗旱, 2014, 24(3):21-23,40 doi: 10.3969/j.issn.1673-9264.2014.03.008

    ZHENG Huafeng. Study and practice of flood scheduling for a group of reservoirs of terraced hydropower stations in the Huotong River Basin[J]. China flood control and drought relief., 2014, 24(3):21-23,40.] doi: 10.3969/j.issn.1673-9264.2014.03.008

    [25] 宁德市人民政府. 河流[EB/OL]. (2021-10-26). https://www.ningde.gov.cn/zjnd/ndgk/202110/t20211026_1540341.htm

    People's Government of Ningde. River[EB/OL]. (2021-10-26). https://www.ningde.gov.cn/zjnd/ndgk/202110/t20211026_1540341.htm.]

    [26]

    Yang D, Yin B, Liu Z, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5):1-20.

    [27]

    Chen J, Ma J, Xu K, et al. Provenance discrimination of the clay sediment in the western Taiwan Strait and its implication for coastal current variability during the late-Holocene[J]. The Holocene, 2017, 27(1):110-121. doi: 10.1177/0959683616652706

    [28] 林航. 福建三沙湾的潮汐特征[J]. 福建水产, 2014, 36(4): 306-314

    LIN Hang. Tidal characteristics of Sansha Bay, Fujian[J], Fujian Fisheries, 2014, 36(4): 306-314.]

    [29] 王继龙, 林丰增, 彭博, 等. 福建宁德地区第四纪年代地层时空特征及对海平面变化的指示[J/OL]. 中国地质, 1-19. https://kns.cnki.net/kcms/detail/11.1167.P.20220314.1914.008.html

    WANG Jilong, LIN Fengzeng, PENG Bo, et al. Temporal and spatial characteristics of Quaternary stratigraphy in Ningde Area, Fujian Province and its indication of sea level changes[J/OL]. Geology in China, 1-19. https://kns.cnki.net/kcms/detail/11.1167.P.20220314.1914.008.html.]

    [30] 江甘兴. 福建海区的潮汐和潮流[J]. 台湾海峡, 1992, 11(2):89-94

    JIANG Ganxing. Tides and currents in the Fujian Sea Area[J]. Taiwan Strait, 1992, 11(2):89-94.]

    [31] 严肃庄, 曹沛奎. 三沙湾表层沉积物中矿物特征及其泥沙来源[J]. 台湾海峡, 1997, 16(2):128-134

    YAN Suzhuang, CAO Peikui. Characterization of minerals in surface sediments of Sansha Bay and their sediment sources[J]. Taiwan Strait, 1997, 16(2):128-134.]

    [32]

    Dai L, Li S, Yu J, et al. Palynological evidence indicates the paleoclimate evolution in southeast China since late marine isotope stage 5[J]. Quaternary Science Reviews, 2021, 266:106964. doi: 10.1016/j.quascirev.2021.106964

    [33]

    Liu P, Zhang J, Wang J, et al. Tectonic subsidence of the southeast China coast: New evidence from Late Pleistocene transgression in Ningde bay[J]. Palaeogeography, Palaeoclimatology, Palaeoecology., 2022, 605(2022):111226.

    [34]

    Heaton T J, Köhler P, Butzin M, et al. Marine 20—the marine radiocarbon age calibration curve (0–55000 cal. BP)[J]. Radiocarbon, 2020, 62(4):779-820. doi: 10.1017/RDC.2020.68

    [35]

    Reimer P J, Austin W E N, Bard E, et al. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal. kaBP). Radiocarbon, 2020, 62 (4): 725–757.

    [36]

    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35:215-230. doi: 10.1017/S0033822200013904

    [37] 王爱华, 叶思源, 刘建坤, 等. 不同选择性提取方法锶钡比的海陆相沉积环境判别探讨——以现代黄河三角洲为例[J]. 沉积学报, 2020, 38(6):1226-1238

    WANG Aihua, YE Siyuan, LIU Jiankun, et al. Discrimination between marine and terrestrial sedimentary environments by the selectively extracted Sr/Ba ratio: A case of sediments in the Yellow River delta[J]. Acta Sedimentologica Sinica, 2020, 38(6):1226-1238.]

    [38]

    Wang A, Wang Z, Liu J, et al. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical geology, 2021, 559:119923. doi: 10.1016/j.chemgeo.2020.119923

    [39] 蓝先洪, 马道修, 徐明广, 等. 珠江三角洲若干地球化学标志及指相意义[J]. 海洋地质与第四纪地质, 1987, 7(1):39-49

    LAN Xianhong, MA Daoxiu, XU Mingguang, et al. Selected geochemical signatures and their significance in the Pearl River Delta Region[J]. Marine Geology & Quaternary Geology, 1987, 7(1):39-49.]

    [40] 王爱华. 不同形态锶钡比的沉积环境判别效果比较[J]. 沉积学报, 1996, 14(4):168-173

    WANG Aihua. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms[J]. Acta Sedimentologica Sinica, 1996, 14(4):168-173.]

    [41]

    Chen Z, Song B, Wang Z, et al. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation[J]. Marine Geology, 2000, 162(2):423-441.

    [42]

    Jaraula C M B, Siringan F P, Klingel R, et al. Records and causes of Holocene salinity shifts in Laguna de Bay, Philippines[J]. Quaternary International, 2014, 349:207-220. doi: 10.1016/j.quaint.2014.08.048

    [43]

    Wei W, Algeo T J, Lu Y, et al. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China[J]. International Journal of Coal Geology, 2018, 200:1-17. doi: 10.1016/j.coal.2018.10.001

    [44]

    Ge L, Jinag S Y, Swennen R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry[J]. Mar. Geol, 2010, 277:21-30. doi: 10.1016/j.margeo.2010.08.008

    [45] 陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177-183

    CHEN Linying, LI Chongying, CHEN Duofu, Progress of Analytical Method of rare Earth elements of Carbonate Minerals in Carbonate Rock[J]. Bulletin of Mineralogy, Petrology and Geochemistry. 2012, 31(2): 177-183.]

    [46]

    Davidson C M, Thomas R P, Mcvey S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments[J]. Anal. Chim. Acta, 1994, 291:277-286. doi: 10.1016/0003-2670(94)80023-5

    [47] 徐岱璐, 殷勇, 时连强, 等. 长江口外扬子浅滩YZ05孔沉积序列及晚更新世以来的环境演化[J]. 海洋地质与第四纪地质, 2020, 40(6):22-38

    XU Dailu, YIN Yong, SHI Lianqiang, et al. Sedimentary sequence of Hole YZ05 and environmental evolution since the Late Pleistocene in the Yangzi Shoal off the Yangtze River estuary[J]. Marine Geology & Quaternary Geology, 2020, 40(6):22-38.]

    [48] 王爱华, 刘建坤, 许乃岑, 等. 陆源碎屑沉积物中沉积成因锶钡的选择性提取新技术[J]. 中国地质, 2019, 46(3):670-671 doi: 10.12029/gc20190320

    WANG Aihua, LIU Jiankun, XU Niancen, et al. A new technology for selective extraction of sedimentogenic Strontium and Barium from terrigenous clastic sediments[J]. Geology in China, 2019, 46(3):670-671.] doi: 10.12029/gc20190320

    [49] 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社, 1980: 13-89

    LIU Baojun. Sedimentary Petrology[M]. Beijing: Geological Press, 1980: 13-89.]

    [50] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984: 283-372

    LIU Yingjun, CAO Liming, LI Zhaolin, et al. Element Geochemistry[M]. Beijing: Science Press, 1984: 283-372.]

    [51] 秦蕴珊, 赵松龄. 晚更新世以来长江水下三角洲的沉积结构与环境变迁[J]. 沉积学报, 1987, 5(3):105-112

    QIN Yunshan, ZHAO Songling. Sedimentary structure and environmental evolution of submerged delta of Changjiang River since Late Pleistocene[J]. Acta Sedimentologica Sinica, 1987, 5(3):105-112.]

    [52] 蓝先洪. 珠江三角洲晚第四纪沉积特征[J]. 沉积学报, 1996, 14(2):157-164

    LAN Xianhong. Late Quaternary Sedimentary Characteristics of the Pearl River Delta[J]. Acta Sedimentologica Sinica, 1996, 14(2):157-164.]

    [53]

    Xiong H, Zong Y, Qian P, et al. Holocene Sea-level history of the northern coast of South China Sea[J]. Quat. Sci. Rev, 2018, 194:12-26. doi: 10.1016/j.quascirev.2018.06.022

    [54] 贾宝岩, 彭博, 王继龙, 等. 中全新世福建沿海地区海平面波动: 基于NDQK5岩芯介形类化石记录[J]. 地质学报, 2024, 98(2):333-345

    JIA Baoyan, PENG Bo, WANG Jilong, et al. Mid-Holocene sea-level fluctuation in the Fujian coastal area: Evidence from the ostracod records of the core NDQK5[J]. Acta Geologica Sinica, 2024, 98(2):333-345.]

图(7)  /  表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  21
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-07-22
  • 录用日期:  2024-07-22
  • 网络出版日期:  2024-08-29
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回