渐新世-中新世东南亚干湿气候格局演变及驱动机制

胡建雄, 黄恩清, 田军

胡建雄,黄恩清,田军. 渐新世-中新世东南亚干湿气候格局演变及驱动机制[J]. 海洋地质与第四纪地质,2024,44(4): 16-31. DOI: 10.16562/j.cnki.0256-1492.2024062802
引用本文: 胡建雄,黄恩清,田军. 渐新世-中新世东南亚干湿气候格局演变及驱动机制[J]. 海洋地质与第四纪地质,2024,44(4): 16-31. DOI: 10.16562/j.cnki.0256-1492.2024062802
HU Jianxiong,HUANG Enqing,TIAN Jun. Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms[J]. Marine Geology & Quaternary Geology,2024,44(4):16-31. DOI: 10.16562/j.cnki.0256-1492.2024062802
Citation: HU Jianxiong,HUANG Enqing,TIAN Jun. Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms[J]. Marine Geology & Quaternary Geology,2024,44(4):16-31. DOI: 10.16562/j.cnki.0256-1492.2024062802

渐新世-中新世东南亚干湿气候格局演变及驱动机制

基金项目: 国家重点研发计划“新近纪晚期印太暖池地区海道关闭与高纬冰盖演变的耦合机制研究”(2023YFF0803902)
详细信息
    作者简介:

    胡建雄(1998—),男,博士研究生,海洋地质学专业,E-mail:jianxionghu@tongji.edu.cn

    通讯作者:

    黄恩清(1984—),男,博士,教授,从事海洋地质研究,E-mail:ehuang@tongji.edu.cn

  • 中图分类号: P736.22

Preliminary study on Oligo-Miocene hydrological changes in Southeast Asia and their driving mechanisms

  • 摘要:

    新生代印尼海道的启闭对印度-太平洋暖池演化和大气环流模式变迁有重大影响。然而,受限于构造和古环境重建资料的缺乏,这三者之间的逻辑关系和驱动机制还缺乏清晰的图景。本文梳理了孢粉记录、煤层沉积、浅海碳酸盐沉积和生物地理演化等方面的证据,提出东南亚水文气候在渐新世与中新世之交发生重大调整的认识,即从渐新世的相对干旱条件转型为贯穿整个中新世的持续湿润状态。结合最近的模拟研究,认为东南亚水文气候演变同时受到全球因素和区域构造要素的影响。渐新世与中新世之交和中中新世晚期至晚中新世早期,印尼海道的持续关闭可以通过限制太平洋-印度洋次表层水的交换,进而扩大太平洋一侧的温跃层深度以及经纬向的海表温度梯度,进一步增强沃克环流,最终可能促使东南亚在渐新世与中新世之交发生了干湿格局的转换,并抵消了中中新世晚期至晚中新世全球降温对区域水文气候的影响。目前的研究仍存在不确定性,未来亟需更多的地质记录和模拟研究来准确厘定海道关闭-暖池演化-大气环流之间的联系。

    Abstract:

    The closure of the Indonesian Seaway played a key role in the evolution of the Indo-Pacific Warm Pool and associated atmospheric circulation during the Cenozoic. However, the relationship between the closure of the seaway, the evolution of the warm pool, and the shift in atmospheric circulation remains unclear due to poor constraints in tectonic and paleoenvironmental reconstructions. This study reviews the historical literature, including evidence from pollen records, coal deposits, shallow marine carbonate deposits, and biogeographic evolution. The results show that the hydroclimate in Southeast Asia underwent significant changes during the Oligo-Miocene transition, shifting from relatively dry conditions in the Oligocene to persistently wet conditions throughout the Miocene. Combined with recent simulation studies, it was concluded that the hydrological changes in Southeast Asia were influenced by both global and regional factors. The narrowing and closure of the seaway may have increased the gradient between the east-west thermocline depth and the east-west sea surface temperature in the Pacific Ocean, limiting the exchange of subsurface water between the Pacific and Indian Oceans. This in turn led to a strengthening of the Walker Circulation, which subsequently induced hydrological changes in Southeast Asia after the Oligo-Miocene boundary and mitigated the effects of global cooling over the Late Miocene. Uncertainties remain in current studies, and more geological records and simulation studies in the future would help to accurately characterize the relationship between seaway closure, warm pool evolution, and atmospheric circulation in the Oligo–Miocene.

  • 图  1   印太暖池现代海流与本文研究所引用的站位资料

    a:印太暖池分布范围及其表层洋流,其中橙色实线代表暖流,蓝色实线代表寒流,绿色实线代表季风淡水输入(修改自文献[3738]);b:东南亚代表性钻井孢粉剖面(黑色圆点, 修改自文献[3943])和主要含煤盆地分布(陆上褐色区域, 修改自文献[4445]),华莱士生物区及其界限(白色虚线, 修改自文献[46])。

    Figure  1.   Modern oceanography in the Indo-Pacific Warm Pool and sites cited in this study

    a: Distribution of the Indo-Pacific Warm Pool (black lines) and surface oceanic circulation in the region. Warm currents (orange lines), cold currents (blue lines), and monsoonal freshwater plumes (green lines) are presented (modified after references [3738]); b: location of palynological profiles from representative wells (black dots, modified after references [3943]) and main coal-bearing basins of Southeast Asia (brown patches on land, modified after references [4445]), the Wallace’s zoogeographical region and its boundaries are denoted (white dashed lines, modified after reference [46]).

    图  2   全球气候变化和印尼海道构造演变

    a:全球深海底栖有孔虫δ18O[30];b:全球平均地表温度相对变化[31];c:全球海平面相对变化[32];d:大气CO2浓度[31];e:基于TEX86重建的全球SST,红色代表中低纬度地区,蓝色代表高纬地区[33];f:印尼海道构造演变重建(修改自文献[34,38])。

    Figure  2.   Global climate change and tectonic evolution of the Indonesian Seaway

    a: Global deep-sea benthic foraminiferal δ18O[30]; b: variation in global mean surface temperature relative to the present estimated from benthic δ18O[31]; c: variation of sea level relative to the present estimated from benthic δ18O[32]; d: atmospheric CO2 estimate[31]; e: global SST estimated from TEX86, where red line represents middle-low latitude region and blue line represents high latitude region[33]; f: tectonic reconstruction of the Indonesian Seaway (modified after references [34,38]).

    图  3   渐新世至中新世东南亚代表性钻井的孢粉组合剖面

    修改自文献[3943]。

    Figure  3.   Profiles of palynological assemblages of representative wells in the Oligocene–Miocene in Southeast Asia

    Modified after references [3943].

    图  4   渐新世至中新世东南亚主要含煤盆地的煤层发育时段

    修改自文献[4445]。

    Figure  4.   Main periods of coal development in major Oligocene–Miocene coal-bearing basins in Southeast Asia

    Modified after references [4445].

    图  5   渐新世至中新世东南亚煤质特征

    a:灰分含量和硫分含量,b:显微组分占比,c:凝胶化指数(GI)。数据来自文献[54,6375]。

    Figure  5.   Characteristics of the Oligocene–Miocene coals in Southeast Asia

    a: Ash and sulfur content, b: maceral composition, c: gelification index (GI). Data are cited from references [54, 6375].

    图  6   渐新世至中新世东南亚水文气候变化与浅海碳酸盐沉积发育情况对比

    a:基于孢粉组合重建的水文气候变化,b:赤道不同碳酸盐生物相的相对面积,c:赤道不同碳酸盐生物相相对面积的相对比例,d:碳酸盐台地数量,e:碳酸盐浅滩和建隆数量,f:格架礁的发育情况(修改自文献[47,84])。

    Figure  6.   Comparison of hydrological changes in the Oligocene to Miocene with the development of shallow-marine carbonate formations in Southeast Asia

    a: Reconstructed hydrological changes based on palynological assemblages, b: the relative areas of equatorial carbonate of different carbonate biofacies, c: the relative proportion of the relative areas of equatorial carbonate to different carbonate biofacies, d: numbers of carbonate platforms, e: numbers of carbonate shoals/buildups, f: development of framework reefs(modified after Refs. [47,84]).

    图  7   渐新世至中新世东南亚与其他区域的水文气候对比

    a:基于孢粉组合[84]和模拟[46]重建的东南亚水文气候变化;b:印尼海道演变历史[38,34];c:全球深海底栖有孔虫δ18O[30];d:全球平均地表温度相对变化[31]和海平面相对变化[32];e:大气CO2浓度[31];f:基于TEX86重建的全球SST,红色为中低纬地区,蓝色为高纬地区[33];g:巴基斯坦大型食草哺乳动物牙釉质δ18O和δ13C[48];h:亚洲内陆旱生植物占比,其中绿色散点为Ephedra + Nitraria + Chenopodiaceae + Artemisia之和[49,108],橙色柱状为干草甸和沙漠景观植被占比之和[50];i:非洲叶蜡烷烃δ13C[5152];j:全球晚中新世C4植被扩张开始时间[51];k:澳大利亚西北部IODP U1464钾元素含量,大于0.3为湿润,小于0.2为干旱[53]

    Figure  7.   Comparison of hydrological changes in the Oligocene to Miocene in Southeast Asia with other regions

    a: Reconstructed hydrological changes based on the palynological assemblages[84]and model stimulation[46]; b: the evolution history of the Indonesian Seaway[38,34]; c: global deep-sea benthic foraminiferal δ18O[30]; d: global mean surface temperature[31] and sea level change[32] relative to the present estimated from benthic δ18O; e: atmospheric CO2 estimate[31]; f: global SST estimated from TEX86, where red line represents middle-low latitude region and blue line represents high latitude region[33]; g: δ18O and δ13C of tooth enamel bioapatite for large herbivorous mammal in Pakistan[48]; h: xerophytic vegetation changes in Central Asia, where green dots represent the sum of Ephedra + Nitraria + Chenopodiaceae + Artemisia[49,108], and orange bars represent the sum of steppe and desert vegetation[50]; i: compilation of δ13C for plant wax n-alkanes in Africa[5152]; j: the onset of C4 vegetation expansion in the Late Miocene across the globe[51]; k: potassium content of the IODP U1464 located in the northwestern Australia, with wet and dry conditions being represented by >0.3 and <0.2, respectively[53].

    图  8   推测的早渐新世(a)和早中新世(b)的印尼海道、印太暖池和沃克环流关系示意图

    Figure  8.   Evolution phases and correlation among the Indonesian Seaway, Indo-Pacific Warm Pool, and Walker Circulation.

    a: Early Oligocene, b: Early Miocene.

    表  1   主要引用资料基本信息

    Table  1   Basic information of main references cited for this study

    站位名称 地点 替代性指标 气候指示意义 覆盖时间 地层方法 参考文献
    Well C 东南亚越南南部 孢粉组合相对丰度 植被类型干湿变化 24.2~28.2 Ma 生物地层 [42]
    Well E 东南亚越南南部 孢粉组合相对丰度 植被类型干湿变化 20.9~23.4 Ma 生物地层 [42]
    Belut-3 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 33.7~34.8 Ma 生物地层 [39]
    Kambing-1 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 27.5~29.4 Ma 生物地层 [39]
    Kambing-1? 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 23.8~27.5 Ma 生物地层 [39]
    Kadal-1 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 21.2~23.8 Ma 生物地层 [39]
    Bergading Deep-3 东南亚马来半岛东部 孢粉组合相对丰度 植被类型干湿变化 7.7~16.9 Ma 生物地层 [43]
    Dengkis-1 东南亚婆罗洲北部 孢粉组合相对丰度 植被类型干湿变化 6.6~14.2 Ma 生物地层 [43]
    Kuda Laut-1 东南亚婆罗洲北部 孢粉组合相对丰度 植被类型干湿变化 3.5~23.1 Ma 生物地层 [43]
    Bukoh-1 东南亚婆罗洲北部 孢粉组合相对丰度 植被类型干湿变化 20.2~28.2 Ma 生物地层 [43]
    Well A 东南亚婆罗洲东部 孢粉组合相对丰度 植被类型干湿变化 0~8.5 Ma 生物地层 [40]
    Well B 东南亚婆罗洲东部 孢粉组合相对丰度 植被类型干湿变化 0~9.4 Ma 生物地层 [40]
    Well X 东南亚爪哇海东部 孢粉组合相对丰度 植被类型干湿变化 23~30 Ma 生物地层 [41]
    Well Y 东南亚爪哇海东部 孢粉组合相对丰度 植被类型干湿变化 23~30 Ma 生物地层 [41]
    东南亚 煤层分布 降雨强度干湿变化 新生代 [4445]
    东南亚 浅海碳酸盐生物相相对面积 降雨强度干湿变化 新生代 [47]
    东南亚 浅海碳酸盐生物相面积相对占比 降雨强度干湿变化 新生代 [47]
    东南亚 浅海碳酸盐台地数量 降雨强度干湿变化 新生代 [47]
    东南亚 浅海碳酸盐浅滩/建隆数量 降雨强度干湿变化 新生代 [47]
    东南亚 浅海碳酸盐格架礁分布 降雨强度干湿变化 新生代 [47]
    东南亚 降水量数值模拟 降雨强度干湿变化 0~30 Ma [46]
    巴基斯坦 食草动物牙釉质碳同位素 植被类型干湿变化 0~33 Ma [48]
    巴基斯坦 食草动物牙釉质氧同位素 降雨强度干湿变化 0~33 Ma [48]
    中国西北 孢粉组合相对丰度 植被类型干湿变化 0~45 Ma [49]
    中国西北 孢粉组合相对丰度 植被类型干湿变化 0~39 Ma [50]
    非洲东西沿海 有机质叶蜡烷烃碳同位素 植被类型干湿变化 0~23 Ma [51]
    非洲埃塞俄比亚 有机质叶蜡烷烃碳同位素 植被类型干湿变化 渐新世-早中新世 [52]
    IODP U1464 澳大利亚西北 沉积物钾元素含量 降雨强度干湿变化 5~15 Ma 生物地层 [53]
    全球 底栖有孔虫氧同位素 全球冰量底层海水温度 新生代 [30]
    全球 底栖有孔虫氧同位素 全球平均温度 新生代 [31]
    全球 多指标(例如浮游植物长链不饱和酮类
    碳同位素、硼同位素等)
    大气CO2浓度 新生代 [31]
    全球 底栖有孔虫氧同位素 全球海平面 0~40 Ma [32]
    全球 有机质TEX86 SST 新生代 [33]
    下载: 导出CSV
  • [1]

    De Deckker P. The Indo-Pacific Warm Pool: critical to world oceanography and world climate[J]. Geoscience Letters, 2016, 3(1):20. doi: 10.1186/s40562-016-0054-3

    [2]

    Webster P J. The role of hydrological processes in ocean‐atmosphere interactions[J]. Reviews of Geophysics, 1994, 32(4):427-476. doi: 10.1029/94RG01873

    [3]

    Oppo D W, Rosenthal Y. The great Indo-Pacific communicator[J]. Science, 2010, 328(5985):1492-1494. doi: 10.1126/science.1187273

    [4]

    Rodgers K B, Latif M, Legutke S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow[J]. Geophysical Research Letters, 2000, 27(18):2941-2944. doi: 10.1029/1999GL002372

    [5]

    Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago[J]. Nature, 2001, 411(6834):157-162. doi: 10.1038/35075500

    [6]

    Karas C, Nürnberg D, Gupta A K, et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6):434-438. doi: 10.1038/ngeo520

    [7]

    Karas C, Nürnberg D, Tiedemann R, et al. Pliocene climate change of the Southwest Pacific and the impact of ocean gateways[J]. Earth and Planetary Science Letters, 2011, 301(1-2):117-124. doi: 10.1016/j.jpgl.2010.10.028

    [8]

    Bali H, Gupta A K, Mohan K, et al. Evolution of the oligotrophic West Pacific Warm Pool during the Pliocene‐Pleistocene boundary[J]. Paleoceanography and Paleoclimatology, 2020, 35(11):e2020PA003875. doi: 10.1029/2020PA003875

    [9]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4):353-431. doi: 10.1016/S1367-9120(01)00069-4

    [10]

    Kuhnt W, Holbourn A, Hall R, et al. Neogene history of the Indonesian Throughflow[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 2004: 299-320.

    [11]

    Li Q Y, Jian Z M, Su X. Late Oligocene rapid transformations in the South China Sea[J]. Marine Micropaleontology, 2005, 54(1-2):5-25. doi: 10.1016/j.marmicro.2004.09.008

    [12]

    Woodruff F, Savin S M. Miocene deepwater oceanography[J]. Paleoceanography, 1989, 4(1):87-140. doi: 10.1029/PA004i001p00087

    [13]

    Von Der Heydt A S, Dijkstra H A. The impact of ocean gateways on ENSO variability in the Miocene[M]//Hall R, Cottam M A, Wilson M E J. The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. London: Geological Society of London, 2011: 305-318.

    [14]

    Li Q Y, Li B H, Zhong G F, et al. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4):465-482. doi: 10.1016/j.palaeo.2005.12.019

    [15]

    Jian Z M, Yu Y Q, Li B H, et al. Phased evolution of the south–north hydrographic gradient in the South China Sea since the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 230(3-4):251-263. doi: 10.1016/j.palaeo.2005.07.018

    [16]

    Nathan S A, Leckie R M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(3-4):140-159. doi: 10.1016/j.palaeo.2009.01.007

    [17]

    Gourlan A T, Meynadier L, Allègre C J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence[J]. Earth and Planetary Science Letters, 2008, 267(1-2):353-364. doi: 10.1016/j.jpgl.2007.11.054

    [18]

    Sosdian S M, Lear C H. Initiation of the western Pacific warm pool at the middle Miocene climate transition?[J]. Paleoceanography and Paleoclimatology, 2020, 35(12):e2020PA003920. doi: 10.1029/2020PA003920

    [19]

    Sato K, Oda M, Chiyonobu S, et al. Establishment of the western Pacific warm pool during the Pliocene: evidence from planktic foraminifera, oxygen isotopes, and Mg/Ca ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):140-147. doi: 10.1016/j.palaeo.2008.05.003

    [20]

    Auer G, De Vleeschouwer D, Smith R A, et al. Timing and pacing of Indonesian Throughflow restriction and its connection to Late Pliocene Climate Shifts[J]. Paleoceanography and Paleoclimatology, 2019, 34(4):635-657. doi: 10.1029/2018PA003512

    [21] 周祖翼, 金性春, 王嘹亮, 等. 印尼海道的两度关闭与西太平洋暖池的形成和兴衰[J]. 海洋地质与第四纪地质, 2004, 24(1):7-14

    ZHOU Zuyi, JIN Xinchun, WANG Liaoliang, et al. Two closures of the Indonesian seaway and its relationship to the formation and evolution of the western Pacific warm pool[J]. Marine Geology & Quaternary Geology, 2004, 24(1):7-14.]

    [22]

    Bayon G, Patriat M, Godderis Y, et al. Accelerated mafic weathering in Southeast Asia linked to late Neogene cooling[J]. Science Advances, 2023, 9(13):eadf3141. doi: 10.1126/sciadv.adf3141

    [23]

    Tan N, Li H, Zhang Z S, et al. Closure of tropical seaways favors the climate and vegetation in tropical Africa and South America approaching their present conditions[J]. Global and Planetary Change, 2024, 233:104351. doi: 10.1016/j.gloplacha.2023.104351

    [24]

    Brierley C M, Fedorov A V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution[J]. Paleoceanography, 2010, 25(2):PA2214.

    [25]

    Fedorov A V, Burls N J, Lawrence K T, et al. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years[J]. Nature Geoscience, 2015, 8(12):975-980. doi: 10.1038/ngeo2577

    [26]

    Su Q D, Nie J S, Meng Q Q, et al. Central Asian drying at 3.3 Ma linked to tropical forcing?[J]. Geophysical Research Letters, 2019, 46(17-18):10561-10567. doi: 10.1029/2019GL084648

    [27] 谭宁, 张仲石, 郭正堂, 等. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5):310-321

    TAN Ning, ZHANG Zhongshi, GUO Zhengtang, et al. Modeling study of the impact of tropical seaway changes on East Asian climate[J]. Earth Science Frontiers, 2022, 29(5):310-321.]

    [28]

    Krebs U, Park W, Schneider B. Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1-2):111-117. doi: 10.1016/j.palaeo.2011.06.002

    [29]

    Christensen B A, Renema W, Henderiks J, et al. Indonesian throughflow drove Australian climate from humid Pliocene to arid Pleistocene[J]. Geophysical Research Letters, 2017, 44(13):6914-6925. doi: 10.1002/2017GL072977

    [30]

    Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509):1383-1387. doi: 10.1126/science.aba6853

    [31]

    The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium. Toward a Cenozoic history of atmospheric CO2[J]. Science, 2023, 382(6675):eadi5177.

    [32]

    Rohling E J, Yu J M, Heslop D, et al. Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years[J]. Science Advances, 2021, 7(26):eabf5326. doi: 10.1126/sciadv.abf5326

    [33]

    Auderset A, Moretti S, Taphorn B, et al. Enhanced ocean oxygenation during Cenozoic warm periods[J]. Nature, 2022, 609(7925):77-82. doi: 10.1038/s41586-022-05017-0

    [34]

    Hall R. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570-571:1-41. doi: 10.1016/j.tecto.2012.04.021

    [35]

    Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins[J]. Earth-Science Reviews, 2007, 83(3-4):177-203. doi: 10.1016/j.earscirev.2007.04.004

    [36]

    Hall R. Australia–SE Asia collision: plate tectonics and crustal flow[M]//Hall R, Cottam M A, Wilson M E J. The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. London: Geological Society of London, 2011: 75-109.

    [37]

    Petrick B, Martínez-García A, Auer G, et al. Glacial Indonesian throughflow weakening across the mid-Pleistocene climatic transition[J]. Scientific Reports, 2019, 9(1):16995. doi: 10.1038/s41598-019-53382-0

    [38]

    Gallagher S J, Auer G, Brierley C M, et al. Cenozoic history of the Indonesian gateway[J]. Annual Review of Earth and Planetary Sciences, 2024, 52:581-604. doi: 10.1146/annurev-earth-040722-111322

    [39]

    Morley R J, Morley H P, Restrepo-Pace P. Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo-derived Mid Tertiary climate changes[C]//Proceedings of the 29th Annual Convention Proceedings. AAPG, 2003: 1-24.

    [40]

    Morley R J, Morley H P. Neogene climate history of the Makassar Straits, with emphasis on the Attaka Region, East Kalimantan, Indonesia[C]//Proceedings of the 34th Annual Convention Proceedings. AAPG, 2010.

    [41]

    Lelono E B, Morley R J. Oligocene palynological zonation scheme from East Java Sea[J]. Scientific Contributions Oil & Gas, 2011, 34(2):95-104.

    [42]

    Morley R J, Dung B V, Tung N T, et al. High-resolution Palaeogene sequence stratigraphic framework for the Cuu Long Basin, offshore Vietnam, driven by climate change and tectonics, established from sequence biostratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 530:113-135. doi: 10.1016/j.palaeo.2019.05.010

    [43]

    Morley R J, Hasan S S, Morley H P, et al. Sequence biostratigraphic framework for the Oligocene to Pliocene of Malaysia: high-frequency depositional cycles driven by polar glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561:110058. doi: 10.1016/j.palaeo.2020.110058

    [44]

    Davis R C, Noon S W, Harrington J. The petroleum potential of Tertiary coals from Western Indonesia: relationship to mire type and sequence stratigraphic setting[J]. International Journal of Coal Geology, 2007, 70(1-3):35-52. doi: 10.1016/j.coal.2006.02.008

    [45]

    Friederich M C, Moore T A, Flores R M. A regional review and new insights into SE Asian Cenozoic coal-bearing sediments: why does Indonesia have such extensive coal deposits?[J]. International Journal of Coal Geology, 2016, 166:2-35. doi: 10.1016/j.coal.2016.06.013

    [46]

    Skeels A, Boschman L M, Mcfadden I R, et al. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace’s Line[J]. Science, 2023, 381(6653):86-92. doi: 10.1126/science.adf7122

    [47]

    Wilson M E J. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(3-4):262-274. doi: 10.1016/j.palaeo.2008.05.012

    [48]

    Martin C, Bentaleb I, Antoine P O. Pakistan mammal tooth stable isotopes show paleoclimatic and paleoenvironmental changes since the early Oligocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311(1-2):19-29. doi: 10.1016/j.palaeo.2011.07.010

    [49]

    Barbolini N, Woutersen A, Dupont-Nivet G, et al. Cenozoic evolution of the steppe-desert biome in Central Asia[J]. Science Advances, 2020, 6(41):eabb8227. doi: 10.1126/sciadv.abb8227

    [50]

    Jia Y X, Wu H B, Zhu S Y, et al. Cenozoic aridification in Northwest China evidenced by paleovegetation evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 557:109907. doi: 10.1016/j.palaeo.2020.109907

    [51]

    Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification[J]. Nature Geoscience, 2019, 12(8):657-660. doi: 10.1038/s41561-019-0399-2

    [52]

    Krawielicki J. Coupled climate, ecosystem and landscape development in the Afro-Mediterranean region since the Oligocene[D]. Doctor Dissertation of ETH Zürich, 2019.

    [53]

    Groeneveld J, Henderiks J, Renema W, et al. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies[J]. Science Advances, 2017, 3(5):e1602567. doi: 10.1126/sciadv.1602567

    [54]

    Sia S G, Abdullah W H, Konjing Z, et al. The age, palaeoclimate, palaeovegetation, coal seam architecture/mire types, paleodepositional environments and thermal maturity of syn-collision paralic coal from Mukah, Sarawak, Malaysia[J]. Journal of Asian Earth Sciences, 2014, 81:1-19. doi: 10.1016/j.jseaes.2013.11.014

    [55]

    Sia S G, Abdullah W H, Konjing Z, et al. Floristic and climatic changes at the Balingian Province of the Sarawak Basin, Malaysia, in response to Neogene global cooling, aridification and grassland expansion[J]. CATENA, 2019, 173:445-455. doi: 10.1016/j.catena.2018.10.044

    [56]

    Konjing Z, Abd Rahman A H, Ismail M S, et al. Late Oligocene-Early Miocene palynological succession from marginal marine deposits, Nyalau Formation, Bintulu Sarawak: palynostratigraphy, paleovegetation and paleoclimate significance[J]. Bulletin of the Geological Society of Malaysia, 2022, 74:17-41. doi: 10.7186/bgsm74202202

    [57]

    Lelono E B. Pollen records from the Oligocene of western Indonesia as the evidences of climate changes[J]. Scientific Contributions Oil & Gas, 2017, 40(3):107-115.

    [58]

    Bao X J, Hu Y Y, Scotese C R, et al. Quantifying climate conditions for the formation of coals and evaporites[J]. National Science Review, 2023, 10(6):nwad051. doi: 10.1093/nsr/nwad051

    [59]

    Flores R M. Origin of coal as gas source and reservoir rocks[M]//Flores R M. Coal and Coalbed Gas. Amsterdam: Elsevier, 2014: 97-165.

    [60] 陈槐, 吴宁, 王艳芬, 等. 泥炭沼泽湿地研究的若干基本问题与研究简史[J]. 中国科学: 地球科学, 2021, 51(1):15-26 doi: 10.1360/SSTe-2020-0073

    CHEN Huai, WU Ning, WANG Yanfen, et al. A historical overview about basic issues and studies of mires[J]. Scientia Sinica Terrae, 2021, 51(1):15-26.] doi: 10.1360/SSTe-2020-0073

    [61]

    Stock A T, Littke R, Lücke A, et al. Miocene depositional environment and climate in western Europe: the lignite deposits of the Lower Rhine Basin, Germany[J]. International Journal of Coal Geology, 2016, 157:2-18. doi: 10.1016/j.coal.2015.06.009

    [62]

    Guo Q L, Littke R, Zieger L. Petrographical and geochemical characterization of sub-bituminous coals from mines in the Cesar-Ranchería Basin, Colombia[J]. International Journal of Coal Geology, 2018, 191:66-79. doi: 10.1016/j.coal.2018.03.008

    [63]

    Petersen H I, Andersen C, Anh P H, et al. Petroleum potential of Oligocene lacustrine mudstones and coals at Dong Ho, Vietnam: an outcrop analogue to terrestrial source rocks in the greater Song Hong Basin[J]. Journal of Asian Earth Sciences, 2001, 19(1-2):135-154. doi: 10.1016/S1367-9120(00)00022-5

    [64]

    Susilawati R. Minerals and inorganic matter in coals of the Bukit Asam Coalfield, South Sumatra Basin, Indonesia[D]. Master Dissertation of University of New South Wales, 2004.

    [65]

    Petersen H I, Foopatthanakamol A, Ratanasthien B. Petroleum potential, thermal maturity and the oil window of oil shales and coals in Cenozoic rift basins, central and Northern Thailand[J]. Journal of Petroleum Geology, 2006, 29(4):337-360. doi: 10.1111/j.1747-5457.2006.00337.x

    [66]

    Petersen H I, Lindström S, Nytoft H P, et al. Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: relationship to variations in the petroleum generation potential (Hydrogen Index)[J]. International Journal of Coal Geology, 2009, 78(2):119-134. doi: 10.1016/j.coal.2008.11.003

    [67]

    Singh P K, Singh M P, Singh A K, et al. Petrographic characteristics of coal from the Lati Formation, Tarakan basin, East Kalimantan, Indonesia[J]. International Journal of Coal Geology, 2010, 81(2):109-116. doi: 10.1016/j.coal.2009.11.006

    [68]

    Widodo S, Oschmann W, Bechtel A, et al. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): implications for paleoenvironmental conditions[J]. International Journal of Coal Geology, 2010, 81(3):151-162. doi: 10.1016/j.coal.2009.12.003

    [69]

    Alias F L, Abdullah W H, Hakimi M H, et al. Organic geochemical characteristics and depositional environment of the Tertiary Tanjong Formation coals in the Pinangah area, onshore Sabah, Malaysia[J]. International Journal of Coal Geology, 2012, 104:9-21. doi: 10.1016/j.coal.2012.09.005

    [70]

    Hakimi M H, Abdullah W H, Alias F L, et al. Organic petrographic characteristics of Tertiary (Oligocene–Miocene) coals from eastern Malaysia: rank and evidence for petroleum generation[J]. International Journal of Coal Geology, 2013, 120:71-81. doi: 10.1016/j.coal.2013.10.003

    [71]

    Chaiseanwang P, Chenrai P. Organic geochemical characteristics of Mae Teep coal deposits, Thailand[J]. ScienceAsia, 2020, 46S:102-109. doi: 10.2306/scienceasia1513-1874.2020.S015

    [72]

    Sattraburut T, Ratanasthien B, Thasod Y. Palaeovegetation and palaeoclimate of tertiary sediments from Hongsa Coalfield, Xayabouly province, Lao PDR: implication from palynofloras[J]. Songklanakarin Journal of Science and Technology, 2021, 43(3):648-659.

    [73]

    Fikri H N, Sachsenhofer R F, Bechtel A, et al. Organic geochemistry and petrography in Miocene coals in the Barito Basin (Tutupan Mine, Indonesia): evidence for astronomic forcing in kerapah type peats[J]. International Journal of Coal Geology, 2022, 256:103997. doi: 10.1016/j.coal.2022.103997

    [74]

    Petersen H I, Fyhn M B W, Nytoft H P, et al. Miocene coals in the Hanoi Trough, onshore northern Vietnam: depositional environment, vegetation, maturity, and source rock quality[J]. International Journal of Coal Geology, 2022, 253:103953. doi: 10.1016/j.coal.2022.103953

    [75]

    Patria A A, Suhendra R, Anggara F, et al. Association and textural-compositional evolution of pyrite-organic matter in coals of the Tarakan, Barito, and Pasir Basins, Kalimantan, Indonesia[J]. International Journal of Coal Geology, 2024, 282:104442. doi: 10.1016/j.coal.2023.104442

    [76]

    Dai S F, Bechtel A, Eble C F, et al. Recognition of peat depositional environments in coal: a review[J]. International Journal of Coal Geology, 2020, 219:103383. doi: 10.1016/j.coal.2019.103383

    [77]

    Sun Y Z. Review and update on the applications of inertinite macerals in coal geology, paleoclimatology, and paleoecology[J]. Palaeoworld, 2024.

    [78]

    Ruan Y, Mohtadi M, Dupont L M, et al. Interaction of fire, vegetation, and climate in tropical ecosystems: a multiproxy study over the past 22, 000 years[J]. Global Biogeochemical Cycles, 2020, 34(11):e2020GB006677. doi: 10.1029/2020GB006677

    [79]

    Sen S, Naskar S, Das S. Discussion on the concepts in paleoenvironmental reconstruction from coal macerals and petrographic indices[J]. Marine and Petroleum Geology, 2016, 73:371-391. doi: 10.1016/j.marpetgeo.2016.03.015

    [80]

    Wilson M E J, Vecsei A. The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development[J]. Earth-Science Reviews, 2005, 69(1-2):133-168. doi: 10.1016/j.earscirev.2004.08.003

    [81]

    Wilson M E J. Equatorial carbonates: an earth systems approach[J]. Sedimentology, 2012, 59(1):1-31. doi: 10.1111/j.1365-3091.2011.01293.x

    [82]

    Reijmer J J G. Marine carbonate factories: review and update[J]. Sedimentology, 2021, 68(5):1729-1796. doi: 10.1111/sed.12878

    [83]

    Wilson M E J. Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development[J]. Sedimentary Geology, 2002, 147(3-4):295-428. doi: 10.1016/S0037-0738(01)00228-7

    [84]

    Morley R J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change[J]. Journal of Tropical Ecology, 2018, 34(4):209-234. doi: 10.1017/S0266467418000202

    [85]

    Morley R J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests[M]//Bush M, Flenley J, Gosling W. Tropical Rainforest Responses to Climatic Change. Berlin: Springer, 2011: 1-34.

    [86]

    Bansal M, Morley R J, Nagaraju S, et al. Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange[J]. Science, 2022, 375(6579):455-460. doi: 10.1126/science.abk2177

    [87]

    Klaus S, Morley R J, Plath M, et al. Biotic interchange between the Indian subcontinent and mainland Asia through time[J]. Nature Communications, 2016, 7(1):12132. doi: 10.1038/ncomms12132

    [88]

    Joyce E M, Thiele K R, Slik J W F, et al. Plants will cross the lines: climate and available land mass are the major determinants of phytogeographical patterns in the Sunda–Sahul Convergence Zone[J]. Biological Journal of the Linnean Society, 2021, 132(2):374-387. doi: 10.1093/biolinnean/blaa194

    [89]

    Li J T, Li Y, Klaus S, et al. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3441-3446.

    [90]

    Chen J M, Prendini E, Wu Y H, et al. An integrative phylogenomic approach illuminates the evolutionary history of Old World tree frogs (Anura: Rhacophoridae)[J]. Molecular Phylogenetics and Evolution, 2020, 145:106724. doi: 10.1016/j.ympev.2019.106724

    [91]

    Yuan L M, Deng X L, Jiang D C, et al. Geographical range evolution of the genus Polypedates (Anura: Rhacophoridae) from the Oligocene to present[J]. Zoological Research, 2021, 42(1):116-123. doi: 10.24272/j.issn.2095-8137.2020.246

    [92]

    Zhu R X, Wang H J, Wang H J, et al. Multi-spherical interactions and mechanisms of hydrocarbon enrichment in the Southeast Asian archipelagic tectonic system[J]. Science China Earth Sciences, 2024, 67(2):566-583. doi: 10.1007/s11430-023-1254-4

    [93]

    Sun X J, Wang P X. How old is the Asian monsoon system? palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4):181-222. doi: 10.1016/j.palaeo.2005.03.005

    [94]

    Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 2008, 4(3):153-174. doi: 10.5194/cp-4-153-2008

    [95]

    Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4688):721-725. doi: 10.1126/science.227.4688.721

    [96]

    Rea D K, Snoeckx H, Joseph L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3):215-224. doi: 10.1029/98PA00123

    [97]

    Dupont L M, Rommerskirchen F, Mollenhauer G, et al. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants[J]. Earth and Planetary Science Letters, 2013, 375:408-417. doi: 10.1016/j.jpgl.2013.06.005

    [98]

    Polissar P J, Uno K T, Phelps S R, et al. Hydrologic changes drove the Late Miocene expansion of C4 grasslands on the Northern Indian subcontinent[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004108. doi: 10.1029/2020PA004108

    [99]

    Shen X Y, Wan S M, Colin C, et al. Increased seasonality and aridity drove the C4 plant expansion in Central Asia since the Miocene–Pliocene boundary[J]. Earth and Planetary Science Letters, 2018, 502:74-83. doi: 10.1016/j.jpgl.2018.08.056

    [100]

    Li M J, Wan S M, Colin C, et al. Expansion of C4 plants in South China and evolution of East Asian monsoon since 35 Ma: black carbon records in the northern South China Sea[J]. Global and Planetary Change, 2023, 223:104079. doi: 10.1016/j.gloplacha.2023.104079

    [101]

    Carrapa B, Clementz M, Feng R. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20):9747-9752.

    [102]

    Latorre C, Quade J, McIntosh W C. The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas[J]. Earth and Planetary Science Letters, 1997, 146(1-2):83-96. doi: 10.1016/S0012-821X(96)00231-2

    [103]

    Hyland E G, Sheldon N D, Smith S Y, et al. Late Miocene rise and fall of C4 grasses in the western United States linked to aridification and uplift[J]. GSA Bulletin, 2019, 131(1-2):224-234. doi: 10.1130/B32009.1

    [104]

    Andrae J W, McInerney F A, Polissar P J, et al. Initial expansion of C4 vegetation in Australia during the Late Pliocene[J]. Geophysical Research Letters, 2018, 45(10):4831-4840. doi: 10.1029/2018GL077833

    [105]

    Zhang R, Liu Z H, Jiang D B, et al. Cenozoic Indo-Pacific warm pool controlled by both atmospheric CO2 and paleogeography[J]. Science Bulletin, 2024, 69(9):1323-1331. doi: 10.1016/j.scib.2024.02.028

    [106]

    Scotese C R. Atlas of Earth History: Volume 1, Paleogeography[M]. Arlington: PALEOMAP Project, 2001.

    [107]

    Yan Q, Korty R, Zhang Z S, et al. Large shift of the Pacific Walker Circulation across the Cenozoic[J]. National Science Review, 2021, 8(5):nwaa101. doi: 10.1093/nsr/nwaa101

    [108]

    Wu F, Fang X M, Yang Y B, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10):684-700.

    [109]

    Matsui H, Nishi H, Kuroyanagi A, et al. Vertical thermal gradient history in the eastern equatorial Pacific during the early to middle Miocene: implications for the equatorial thermocline development[J]. Paleoceanography, 2017, 32(7):729-743. doi: 10.1002/2016PA003058

    [110]

    Dayem K E, Noone D C, Molnar P. Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D6):D06101.

    [111]

    Molnar P, Cronin T W. Growth of the Maritime Continent and its possible contribution to recurring Ice Ages[J]. Paleoceanography, 2015, 30(3):196-225. doi: 10.1002/2014PA002752

图(8)  /  表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  5
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-07-19
  • 录用日期:  2024-07-19
  • 刊出日期:  2024-08-25

目录

    /

    返回文章
    返回