初级生产力主导了辽河水系颗粒态有机碳的来源

陈崇昊, 吕纪轩, 王诗珉, 何炽鹏, 汪亚平, 高建华

陈崇昊,吕纪轩,王诗珉,等. 初级生产力主导了辽河水系颗粒态有机碳的来源[J]. 海洋地质与第四纪地质,2024,44(5): 107-118. DOI: 10.16562/j.cnki.0256-1492.2024062101
引用本文: 陈崇昊,吕纪轩,王诗珉,等. 初级生产力主导了辽河水系颗粒态有机碳的来源[J]. 海洋地质与第四纪地质,2024,44(5): 107-118. DOI: 10.16562/j.cnki.0256-1492.2024062101
CHEN Chonghao,LYU Jixuan,WANG Shimin,et al. Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System[J]. Marine Geology & Quaternary Geology,2024,44(5):107-118. DOI: 10.16562/j.cnki.0256-1492.2024062101
Citation: CHEN Chonghao,LYU Jixuan,WANG Shimin,et al. Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System[J]. Marine Geology & Quaternary Geology,2024,44(5):107-118. DOI: 10.16562/j.cnki.0256-1492.2024062101

初级生产力主导了辽河水系颗粒态有机碳的来源

基金项目: 国家自然科学基金项目“环渤海滨海地球关键带结构和格局演变与驱动机制”(42293261),“鸭绿江流域洪水频率-强度变化的海岸带沉积记录”(42276170)
详细信息
    作者简介:

    陈崇昊(2001—),男,硕士研究生,主要从事陆海交互研究,E-mail:191830014@smail.nju.edu.cn

    通讯作者:

    高建华(1973—),男,教授,主要从事海洋沉积动力学研究,E-mail:jhgao@nju.edu.cn

  • 中图分类号: P736

Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System

  • 摘要:

    作为关键陆源物质,河流颗粒态有机碳(POC)的来源、输运及入海通量是当前关注的热点问题。然而,受水库等人类活动影响,河流颗粒碳的组分正在发生变化,这势必给陆地和海洋间碳的源汇过程和生物地球化学循环机制带来深刻影响。围绕上述问题,以辽河水系为研究区,于2023年7月沿河采集14个样品,将生物地球化学指标分析与最新的基因检测技术相结合,分析了POC含量和来源在流域内的变化规律,探讨了初级生产力主导辽河水系POC来源的可能机制,对比和总结了中国典型河流POC来源改变的共同趋势。研究结果显示,初级生产力是当前辽河水系POC的最主要来源,其中共球藻纲和蓝藻门生物是最主要贡献者;动物可能也是POC的重要来源,未来在分析POC来源时需加以重视;水库拦蓄效应可改变河流浮游生物的组成,进而对河流POC的来源产生重要影响;长江、黄河、珠江以及台湾岛和海南岛的诸多河流POC的浮游生物来源比例也在显著增加。上述趋势性变化,可能导致POC在流域-河口-陆架间的源汇格局发生剧烈变化,需要持续关注。

    Abstract:

    As a crucial terrestrial source, the source, transport, and flux of riverine particulate organic carbon (POC) to the ocean are currently of significant interest. However, human activities, such as the construction of reservoirs, are changing the composition of river POC, potentially impacting the source-sink processes between land and sea, as well as biogeochemical cycles. To address this issue, the Liaohe River System was selected for this study, in which 14 samples were collected in July 2023, and the trends in POC content and sources within the drainage basin were analyzed using biogeochemical methods and gene detection technology. The potential mechanisms by which riverine primary production (Rpp) has become a dominant POC source in the Liaohe River System was explored and those in other typical Chinese rivers were compared. Results indicate that the Rpp was the predominant source of POC in the Liaohe River System, and Trebouxiophyceae and Cyanobacteria were the primary contributors. Additionally, animals may also play a significant role as POC sources in rivers, warranting further attention in future analyses. The retention effect in reservoirs could alter the composition of river plankton and thus significantly affect the POC sources. Moreover, the proportions of plankton-derived POC in the Changjiang River, Huanghe River, and Zhujiang River in the continent, and rivers in Taiwan and Hainan islands have also seen notable increases. These changing trends could lead to substantial shifts in the patterns of POC sources and sinks across watersheds, estuaries, and continental shelves, meriting considerable attention.

  • 沉积物粒度组成及其分布模式是沉积物的基本特征,能够揭示沉积物形成的动力条件,是判别沉积环境和沉积物源的重要指标。不同沉积环境形成的沉积物受其搬运方式、动力条件等的约束,可分选出特定的粒级组合,因此粒度分布特征分析具有重要的沉积学意义[1]。沉积物粒度频率分布曲线可以定量反映某一粒径分布含量、次总体类型、分选程度等沉积过程的细节信息[2]。这些信息的提取有助于理解沉积物的来源、成因及形成过程,尤其是粒度分布子体分离法[3]、Weibull分布函数拟合法[4],端元模型法[5]等统计方法的应用,对于研究不同粒度组成端元或者组分的气候环境意义具有重要的推动作用。上述统计学方法重点关注某一沉积类型沉积物形成的动力过程和沉积成因,对于沉积环境复杂、沉积类型多样的沉积区,其沉积物成因相对复杂,如何快速、准确判别沉积物的沉积相显得尤为重要。聚类分析作为数据挖掘领域重要的手段之一,直接比较数据之间的性质差异,将数据性质相同或相近的聚为一类,在沉积物粒度数据分析与处理中具有较好的适用性[6]。然而,常规的聚类分析方法需要预设聚类数量,不能真实地反映根据沉积物粒度分布曲线类型反演出研究区存在的沉积动力类型,而且以往研究应用聚类分析大多以粒度参数表征粒度频率分布曲线作为研究对象,不能精确地表示粒度分布曲线形态以及各粒径分布含量[7]。值得注意的是,AP聚类算法(Affinity Propagation Clustering Algorithm)作为新兴的聚类方法,具有快速、高效、不需要预设聚类数量的优点,对于高维数据聚类效果明显,在图像、文本聚类以及基因表达数据分析等领域应用广泛[8-10],将AP聚类算法方法引入沉积学研究中,对于粒度数据的深度挖掘与分析具有重要的推动作用。

    白洋淀地区分布深厚的第四纪沉积物,沉积环境较为复杂,以冲积、洪积和湖积作用为主,是开展不同沉积环境条件下沉积物粒度分布曲线判别与划分研究的理想区域。区内主要侧重于利用气候环境代用指标进行古环境演化方面的研究,缺乏沉积环境动力条件的研究[11-13]。通过采集研究区内沉积剖面中已知沉积相的沉积物,确定不同沉积环境的沉积物粒度特征,研究AP聚类算法在沉积学研究中的可行性与适用性,尝试建立沉积物粒度特征与沉积动力条件的内在联系。

    研究区位于华北平原白洋淀及其周边区域,是永定河冲积扇与滹沱河冲积扇的前缘低洼区,位置为38.7°~39.2°N、115.6°~116.5°E。研究区属于温带大陆性半湿润半干旱气候,年平均温度为7.3~12.7 ℃,多年平均降水量564 mm,主要集中在6—8月份[14]。区内地势平坦,由西向东地势略有降低。白洋淀有拒马河、府河、唐河等九条河流汇入以及赵王新河、大清河等出淀河流。第四纪以来,该地区不断沉降,并普遍接受沉积,而且区内水文条件的变化对第四纪沉积物的形成也具有重要的影响,逐渐形成了一套以冲洪积和湖积为主的沉积地层[15]

    本研究对白洋淀周边地区露头剖面的沉积地层进行了详细考察,选取其中22个剖面作为研究对象(图1,剖面地层描述见表1),对各剖面典型沉积相层位进行样品采集,共获得85个沉积样品。现代河流漫滩相沉积样品来源于白沟引河,共采集2个沉积样品,沉积物为棕黄色黏土质粉砂,具有典型的二元结构。现代湖泊表层沉积样品来源于白洋淀湖泊,共采集12个沉积样品,沉积物为灰黑色粉砂质黏土、黑色黏土,有机质含量高(图2)。

    图  1  研究区域采样点
    Figure  1.  study area and sampling sites
    表  1  采样点描述
    Table  1.  Description of sampling sites
    采样剖面名称剖面位置剖面描述采样数/个
    新庄窠村38°59′31.56″N,115°50′54.04″E沉积物以灰黄色黏土质粉砂、灰黑色或灰色粉砂质黏土和浅黄色细砂为主,沉积环境主要为湖滨相、湖沼相和河床相3
    段庄村剖面39°03′20.44″N,115°49′30.28″E沉积物为灰黑色粉砂质黏土、灰黄色黏土质粉砂,沉积环境为湖沼相、湖滨相3
    北张村剖面39°04′40.23″N,115°46′32.13″E沉积物以灰黑色、棕黄色粉砂质黏土和灰黄色细砂为主,沉积环境为湖沼相以及河床相4
    向村剖面39°00′05.42″N,115°56′46.51″E沉积物以灰黄色、浅灰色黏土质粉砂、灰褐色粉砂质黏土、灰色细砂以及灰黄色粉砂质中砂为主,沉积环境主要为湖滨相、湖沼相和河床相、洪积相4
    大阳村39°00′18.32"N,115°59′19.28"E沉积物为灰黑色粉砂质黏土、浅黄色黏土质粉砂以及具有水平层理的灰黄色粉砂,沉积环境主要有湖沼相、漫滩相以及河床相3
    李庄头村38°59′33.60"N,116°04′48.67"E沉积物以细砂、中砂为主,沉积环境主要为河流相3
    晾马台村39°04′14.65"N,115°59′05.65"E沉积物具有典型的“二元结构”,沉积环境为漫滩相1
    北剧村09°04′56.42"N,115°58′16.81"E沉积物以浅灰色中砂为主,沉积环境为河床相1
    南文村39°04′19.98"N,115°56′42.30"E沉积物以黄褐色、灰黄色黏土质粉砂以及含有黑色碳屑的灰黄色粉砂质粗砂为主,沉积环境主要有洪积相、湖相4
    马家庄村39°02′53.77"N,115°55′07.67"E沉积物为灰黄色黏土质粉砂,沉积环境为湖滨相2
    胡家台村39°02′25.71"N,116°07′02.92"E沉积物以灰黄色粗粉砂、细砂为主,发育交错层理,沉积环境为漫滩相3
    大步村39°00′31.04"N,116°10′27.99"E沉积物为灰褐色、黑色黏土、褐黄色黏土质粉砂以及浅灰色中细砂,沉积环境为湖沼相、湖滨相、河床相8
    邢岗村39°03′0 8.65"N,116°14′18.92"E沉积物以棕红色、灰黄色粉砂质黏土以及灰色、灰黄色黏土质粉砂为主,沉积环境为湖沼相、湖滨相10
    袁郭村38°51′03.40"N,116°25′15.25"E沉积物以灰黑色粉砂质黏土、浅黄色黏土质粉砂、灰黄色中细砂为主,沉积环境为湖沼相、湖滨相4
    胡屯村38°51′59.62"N,116°22′34.97"E沉积物以灰褐色、灰黑色粉砂质黏土以及灰黄色粉砂为主,沉积环境主要为湖沼相、湖滨相5
    小务村38°51′8.86"N,116°17′39.73"E沉积物以棕黄色亚砂土、细粉砂、灰黑色粉砂质黏土为主,沉积环境为湖滨相、湖沼相6
    双塔村38°45′26.20"N,116°1′44.33"E沉积物以灰黄色细粉砂、灰黑色黏土质粉砂为主,沉积环境为湖滨相、湖沼相4
    东良淀村38°44′5.70"N,
    115°59′7.99"E
    沉积物为棕红色粉砂质黏土,沉积环境为湖相2
    北队村38°46′22.53"N,115°57′27.94"E沉积物为浅灰色细砂土、棕黄色黏土质粉砂,沉积环境为漫滩相、湖滨相3
    韩堡村38°46′23.07"N,115°53′24.07"E沉积物为灰黄色黏土质粉砂,沉积环境为湖滨相2
    东垒头村38°52′16.08"N,115°54′02.73"E沉积物以灰黑色、棕红色粉砂质黏土、灰黄色黏土质粉砂为主,沉积环境为漫滩相、湖滨相、湖沼相7
    董庄村38°49′32.73"N,
    115°46′06.36"E
    棕红色、灰黑色粉砂质黏土,沉积环境为湖沼相3
    下载: 导出CSV 
    | 显示表格
    图  2  大步村剖面及其地层描述
    Figure  2.  Dabu Village section and its stratigraphic description

    粒度测试在中国地质科学院第四纪年代学与水文地质演变重点实验室完成,采用mastersizer2000激光粒度仪进行测试,该仪器的测试范围0.2~2 000 μm。测试前加入足量的10%双氧水并加热,去除有机质。待烧杯中不再冒泡之后,加入足量的10%盐酸,直至不再冒气泡才停止加热,然后加入蒸馏水静止24 h。利用虹吸法抽取上层清液,加入蒸馏水,静止24 h,反复几次直至呈中性。加入10 mL 10%的六偏磷酸钠,用超声波振荡10 min后上机测试。

    邻近传播聚类算法又称AP聚类算法,是B J Frey 和 D Dueck 于 2007 年首次提出的一种新的聚类算法[16]。它是一种不需要预设聚类数,通过数据点之间的“信息传递”来寻找自己的类代表点(exampler),将属于同一类代表性点的样品聚成一类,从而实现聚类过程[17]

    AP聚类算法将所有的样品点都看作为潜在的类代表性点,以数据之间的相似度系数基础,两两之间进行“信息传递”。在信息传递的过程中,利用因子图(图3)中The Max-Sμm algorithm准则进行信息的迭代更新,迭代收敛时,使得公式(1)在约束条件下网络相似度Sc)达到最大。

    图  3  邻近传播因子图
    Figure  3.  Factor GrAPh for affinity propagation
    $$\begin{aligned} &S\left( c \right) = \mathop \sum \nolimits_{i = 1}^N s\left( {i,{c_i}} \right) + \mathop \sum \nolimits_{k = 1}^N {\delta _k}\left( c \right)\\&{\text{约束条件}}:\;\begin{array}{*{20}{l}} {{\delta _k}\left( c \right) = } \end{array}\left\{ {\begin{array}{*{20}{l}} { - \infty ,\;\;\;{\text{当}}{c_k} \ne k{\text{但是}}\exists i:{c_i} = k}\\ {0,{\text{否则}}} \end{array}} \right. \end{aligned}$$ (1)

    式中,c为由类代表性点构成的向量,i为样品点,sici)表示样品点与其对应的类样品点之间的相似度;δkc)是约束条件,表示数据点i选取k作为它的类代表性点,但是数据点k并不是类代表性点,因此使其值为−∞,用于限制没有类代表性点的类簇产生。

    相似性数据矩阵snn)是由n个数据之间的相似度系数构成,对角线上的元素由人为设定的偏向参数所构成,它是用于评价各数据点作为类代表性点可能性的程度。数据之间传递的信息包括:从潜在的类代表性点传递到数据点的归属度和从数据点传递到类代表性点的吸引度[16]。在因子图中,基于The Max-Sμm algorithm准则信息更新的公式:

    $$ r\left( {i,k} \right) = s\left( {i,k} \right) - \mathop {\max }\limits_{k' \ne k} \left( {s\left( {i,k'} \right) + a\left( {i,k'} \right)} \right),\forall i,k $$ (2)
    $$ a\left( {i,k} \right) = \left\{ {\begin{array}{*{20}{l}} {\displaystyle\mathop \sum \nolimits_{i':i' \ne k} \max\left\{ {0,\left( {i',k} \right)} \right\},\forall k = i}\\ {\min \left\{ {0,r\left( {k,k} \right) + \displaystyle\mathop \sum \nolimits_{i':i' \ne i,k} \max\left\{ {0,r\left( {i',k} \right)} \right\}} \right\}},\\\forall k \ne i \end{array}} \right. $$ (3)

    当信息迭代到更新收敛时,点i所对应的类代表点ci

    $$ {c_i} = \arg \max \left\{ {a\left( {i,k} \right) + r\left( {i,k} \right)} \right\},\;\forall i $$ (4)

    基于AP聚类算法的基本思想及其原理,可得算法的基本步骤:

    第1步:根据样品点之间的相关距离,计算相似的矩阵S以及设置各个样品点对应的偏向参数。

    第2步:设置各个样品点的初始归属度$a\left( {i,k} \right) = 0$

    第3步:利用公式(2)、(3)进行信息更新,在更新的过程中,为了防止迭代震荡,引入阻尼因子λ,范围(0,1)。

    第4步:当各个点对应的类代表性点ci在迭代过程中不再发生改变或者迭代次数达到设定的最大值时,迭代终止。将相同类代表性点的样品点归为一个类簇。

    沉积物粒度分布曲线特征是判断沉积作用类型的重要手段之一。通常,研究者采用粒度参数代替粒度频率分布曲线,近似地作为沉积作用类型的代用指标,常常会丢失曲线中蕴含的重要信息并且具有多解性。为了充分描述曲线的分布特征,在−1~11.3Φ(0.4~2 000 μm)范围内按间距0.16Φ划分75个粒级。同时,考虑到某些粒级变量的含量较低并且在不同样品之间存在显著差异,使用对数比转换的数据,可能会掩盖住数据的结构信息,本文选用经过标准化的原始数据[18-20]。采用欧式距离作为沉积物粒度频率分布曲线之间的相似性的度量,则样品xy之间的相似度:

    $$ {d_{ij}} = \sqrt {\sum\limits_{k = 1}^n {{{\left( {{x_{ik}} - {x_{jk}}} \right)}^2}} } $$ (5)

    式中:xikxjk分别表示沉积物样品ij的第$k$项变量含量。

    经过上述数据的前处理程序,AP聚类算法将85个剖面典型沉积相沉积物的粒度频率曲线划分为11簇(图4)。

    图  4  划分的11类簇曲线
    Figure  4.  11-group cluster curves

    11簇聚类结果显示,每一簇的粒度频率分布曲线分布范围比较集中,各粒级所对应的含量之间的差异很小,粒度频率分布曲线相似度较高。根据AP聚类算法的聚类结果采用silhouette函数绘制每一个点的轮廓值。轮廓值作为聚类分析有效性的常用内部指标,它被定义为:

    $$ Sil\left( i \right) = \frac{{b\left( i \right) - a\left( i \right)}}{{\max \left\{ {a\left( i \right),b\left( i \right)} \right\}}} $$ (7)

    式中,ai)是第i个点与同簇的其他点之间的平均距离;b为一个向量,其元素是第i个点与属于不同类的各个点之间的平均距离。轮廓值的取值范围为[−1,1],此值越大说明该点的分类越合理[21]。本文中11簇样品点的轮廓图如图5所示。

    图  5  各簇样品点的轮廓值
    Figure  5.  Sihouette value of the sample points of each cluster

    其中,各簇内样品点的轮廓值大部分大于0.3,仅有5个点的值小于零,最小为−0.08。考虑到划分聚类的数量以及各簇之间数据差异性相对较小,采用AP聚类算法对于沉积物粒度频率分布曲线的聚类划分是合理的,并且聚类效果显著。值得一提的是,AP聚类算法可以通过调整偏向参数能够增加或者减小聚类数量进而改变各簇内数据之间的差异大小,使得根据研究目的获得适合的聚类效果。本文选用数据点相似系数最大值作为偏向系数,以此保证各簇内数据差异很小,进而将动力条件差异不明显的沉积环境形成的粒度样品聚为一类。

    不同沉积类型的粒度分布曲线各粒级对应的百分含量不同,沉积类型对应的动力条件、运输介质等差异越大则粒度分布曲线分布区间、形态差异越明显[22]。当沉积物所受的搬运介质、搬运方式一定,并且介质动力大小稳定时,沉积物粒度组分的总体服从于某种分布的单因子随机事件的集合,在频率分布曲线和概率累计曲线形态上表现为单峰和一段式,否则呈多峰和多段式[23-24]。如前文所述,AP聚类算法将研究区沉积物的粒度频率分布曲线划分为11类簇,各簇内曲线形态、分布范围相近。但是,考虑到沉积物颗粒对于动力条件变化十分灵敏,同一沉积环境条件下粒度频率曲线会随着流体动力条件的波动在曲线形态、分布范围上产生相应的变化。因此,需要对曲线形态相似、分布范围发生轻微变化的曲线进一步归纳分析。

    从11类簇粒度分布曲线可知,每一簇曲线与该簇的类代表性点之间的差异很小,利用类代表性曲线作为每簇曲线的典型样品曲线,并按曲线峰态、分布范围以及搬运方式将11簇曲线进一步划分为4组(图6)。第一组包含Ⅳ、Ⅵ、Ⅸ三簇对应的沉积粒度频率分布曲线,曲线形式表现为单峰、一段式(图46a),峰值分布于5~20 μm,分布范围较为集中,仅存在悬浮搬运方式,表明沉积物形成于动力条件较弱的静水环境;第二组包含Ⅱ、Ⅴ、Ⅷ、Ⅹ、Ⅺ五簇沉积物粒度频率分布曲线,曲线形态为双峰、两段式(图46b),主峰在20~200 μm,次峰在5~20 μm,跳跃和悬浮总体的搬运截点在4Φ左右,各总体的含量有所差异,表明沉积环境较第一组动力强度有所增加,并且水动力相对变化。第三组包括Ⅰ、Ⅶ类簇粒度分布曲线,为双峰、两段式(图46c),主峰在100~500 μm,次峰在10~100 μm,主要为跳跃总体存在,搬运截点变化较大,表明沉积物形成于强动力的沉积环境;第四组为Ⅳ类簇,为双峰、两段式(图46d),跳跃与悬浮总体含量相当,表明沉积物形成于动力条件强并且变化明显的沉积环境。

    图  6  四组代表性样品频率曲线、概率曲线
    Figure  6.  Frequency distribution and probability cumulative curves of four groups of representative samples

    根据上述分析,4类粒度频率分布曲线的组合可能代表了4种较为一致的沉积环境,将各组中代表性样品粒度频率分布曲线与稳定湖相(湖心相)、湖滨相、河流相等典型沉积相粒度频率分布曲线进行对比(图7[23]。图中可以看出聚类结果得到的曲线与已知沉积环境的粒度曲线主次峰位置、曲线形态、分布范围较为一致。结果表明,第一组沉积物形成于稳定湖相,包括动力条件相似的湖心相、湖沼相;第二组沉积物形成于湖滨相或漫滩相;第三组沉积物形成于河流相;第四组为洪水沉积物。由此可见,AP聚类算法确定的4个组合分别代表了4种沉积环境。为了进一步验证上述分析的准确性与可行性,将上述结果与野外判别的4类85个沉积样品的沉积相进行对比发现,AP聚类算法确定的4个组合可以将野外识别的沉积相类别聚集到一起,两者具有较好的一致性。

    图  7  各簇代表性与典型沉积相粒度频率分布曲线对比
    Figure  7.  Comparison of frequency distribution curves of typical sedimentary facies and representative sediments in each cluster

    前人对大量已知沉积相的沉积物粒度参数进行定量描述,建立了多种沉积环境之间沉积物粒度参数判别公式。利用张平等根据典型稳定湖相与典型风成黄土沉积物粒度参数建立了稳定湖相与风成黄土粒度判别式(式8)[25]。本文利用此判别式对采集的所有样品进行沉积环境的判别分析。

    $$\begin{split} F =& 20.363{\rm{Mz}} - 56.371{\rm{Sd}} - 67.922{\rm{SK}} +\\& 23.516{\rm{Ku}} - 55.626 \end{split}$$ (8)

    式中,F表示判别值,若$F>0$为稳定湖相沉积物;Mz、Sd、SK以及Ku分别是利用矩值法计算以$\Phi $为单位的平均值、分选系数、偏态以及峰态。

    其中第Ⅳ、Ⅵ、Ⅸ簇为正值,代表稳定湖相,判别结果与对比法得出的结果一致。

    基于粒度频率分布曲线的邻近传播聚类算法将全部85个粒度样品聚集成4类,并与已知沉积相粒度频率曲线进行对比,确定4类曲线对应的沉积环境分别为稳定湖相、湖滨相或漫滩相、河流相以及洪积相四种沉积相。各类沉积物之间在粒度频率分布曲线形态、分布范围以及组成成分上存在差异,通过定量描述这些差异能够为沉积环境、类型的区分提供依据[26]。粒度频率分布曲线利用粒度参数进行定量描述,粒度参数主要有粒度平均值、分选系数、偏态和峰态。为了更加充分揭示粒度参数对于沉积环境的指示意义,选用物理意义明确的Folk-Ward图解法进行计算(表2[27]表3给出了聚类后类代表性样品的粒度组成成分、粒度参数统计。

    表  2  Folk&Ward 图解法公式
    Table  2.  Formulas of Folk-Ward graphic methods
    粒度参数计算公式
    平均粒径(Mz)${\rm{Mz}} = \frac{{{\Phi _{16}} + {\Phi _{50}} + {\Phi _{84}}}}{3}$
    分选系数(Sd)${\rm{Sd}} = \frac{{{\Phi _{84}} - {\Phi _{16}}}}{4} + \frac{{{\Phi _{95}} - {\Phi _5}}}{{6.6}}$
    偏态(SK)${\rm{SK}} = \frac{1}{2}\left[ {\frac{{{\Phi _{16}} + {\Phi _{84}} + 2{\Phi _{50}}}}{{{\Phi _{84}} - {\Phi _{16}}}}{\rm{ + }}\frac{{{\Phi _5} + {\Phi _{95}} + 2{\Phi _{50}}}}{{{\Phi _{95}} - {\Phi _5}}}} \right]$
    峰态(Ku)${\rm{Ku}} = \frac{1}{{2.44}}\left[ {\frac{{{\Phi _{95}} - {\Phi _5}}}{{{\Phi _{75}} - {\Phi _{25}}}}} \right]$
      式中,粒径为$\Phi $值粒径,$\Phi = - \log _2^d$,$d$为毫米直径;${\Phi _x}$为x%累积含量的$\Phi $值粒径。
    下载: 导出CSV 
    | 显示表格
    表  3  各簇代表性样品粒度组成成分及粒度参数
    Table  3.  The size composition and size parameters of representative samples in each cluster
    簇类类代表性样品沉积相粒度成分/%平均粒径/Φ分选系数偏态峰态
    黏土细粉砂粗粉砂细砂中砂粗砂
    SITE01-01河流相1.273.726.9518.3345.3424.381.4621.1550.3441.584
    SITE03-03湖滨相12.7225.3540.2321.470.20.025.2551.750.320.887
    SITE04-06洪积相2.856.1515.4329.6216.1629.81.5821.9760.3190.908
    SITE12-02湖沼相19.6741.2234.454.330.140.136.2271.7220.0961.066
    SITE13-08漫滩相4.727.8134.2552.540.580.094.2131.5150.4671.561
    SITE13-09湖沼相40.6747.2110.661.46007.5371.3010.0191.158
    SITE14-04河流相2.585.3812.0872.547.4202.9191.1080.3431.797
    SITE17-04漫滩相6.6810.4655.5927.180.080.014.5771.3430.3631.485
    SITE18-01湖心相20.7455.4922.381.4006.8191.3290.1751.123
    SITE21-06湖滨相12.7522.9950.413.710.130.025.5071.7990.3741.014
    SITE18-02湖滨相15.133.3543.327.980.110.125.8411.7450.2090.981
    下载: 导出CSV 
    | 显示表格

    从表3中可以看出聚类结果的11簇样品中,第Ⅱ、Ⅴ、Ⅷ、Ⅹ、Ⅺ簇样品之间粒度参数和组成成分相近,第Ⅳ、Ⅵ、Ⅸ簇样品之间粒度参数和组成成分相近,第Ⅰ、Ⅶ簇样品与第Ⅲ簇样品粒度分布形成于高能环境。4类典型沉积相的粒度组成与粒度参数之间存在显著差异。

    第一类包括Ⅳ、Ⅵ、Ⅸ簇沉积物,粒度组分以细粉砂为主,黏土、细粉砂和粗粉砂三者含量之和占95%以上,平均粒径6.227~7.537Φ,在4类沉积环境中粒度成分最细,分选系数为1.301~1.722,分选差,除Ⅸ簇中部分样品呈正偏外,其余全为近对称分布,峰态变化于1.066~1.158,第Ⅳ 簇呈常峰态,其余全为尖峰态。

    第二类包括Ⅱ、Ⅴ、Ⅷ、Ⅹ、Ⅺ簇沉积物,其中Ⅱ、Ⅷ、Ⅹ、Ⅺ簇沉积物以粗粉砂为主,占40%以上,黏土、细粉砂、细砂含量均大于10%,四者之和占98%以上,平均粒径为5.255~5.841Φ ,第Ⅴ簇沉积物以细砂(52%)为主,粗粉砂(34%)次之,平均粒径为4.213Φ,较Ⅱ、Ⅷ、Ⅹ、Ⅺ簇沉积物颗粒稍粗,表明强度略大于Ⅱ、Ⅷ、Ⅹ、Ⅺ簇沉积物对应的动力环境。该组分选系数为1.343~1.799,分选差,偏态为0.209~0.467,属于正偏、极正偏,峰态为0.887~1.561,第Ⅱ簇沉积物粒度分布曲线呈宽峰态,第Ⅴ、Ⅷ簇粒度分布曲线呈尖峰态或极尖峰态,其余两簇为常峰态。

    第三类包括Ⅰ、Ⅶ簇沉积物,该组粒度组分较粗并且含量差异相对较大。其中,第Ⅰ簇沉积物以中砂(45%)为主,细砂(18%)、粗砂(22%)次之,平均粒径为1.462,样品分选差,呈极正偏,为尖峰态,代表强动力沉积环境;第Ⅶ簇沉积物中细砂含量占70%以上,平均粒径为2.919Φ,颗粒较第Ⅰ簇沉积物偏细,表明介质动力条件强并且稳定,相比于Ⅰ簇沉积物对应的沉积环境动力条件较低。

    第四类中第Ⅲ簇沉积物以细砂为主,粗粉砂、中砂、粗砂含量均大于15%,平均粒径为1.582Φ,分选系数1.976,样品分选差,极正偏,宽峰态,表明沉积动力复杂多变且动力较强。

    根据上述方法对粒度分布曲线直接进行聚类分析,避免人为干扰聚类效果,有效地揭示研究区内的沉积环境差异是此方法的优点,也是能够利用此方法对粒度分布曲线进行研究区所存在的沉积环境类型反演的出发点。本文以白洋淀地区作为研究对象,尝试利用AP聚类算法建立粒度分布曲线与沉积环境之间的内在联系,通过识别结果与野外识别进行对比,发现所得结果较为一致,85个样品中有6个不一致。如下给出了沉积环境识别过程中存在差异的沉积物样品信息(表4)以及样品对应的粒度分布曲线(图8)。

    表  4  沉积环境识别过程中存在差异的沉积物样品
    Table  4.  Sediment samples with differences in the process of sedimentary environment identification
    样品编号簇类野外人为识别粒度分布曲线对比识别
    SITE01-03灰黑色粉砂质黏土,湖沼相沉积湖滨相或漫滩相
    SITE03-04灰黑色黏土,湖沼相沉积湖滨相或漫滩相
    SITE05-01灰黄色粉砂,河流相沉积湖滨相或漫滩相
    SITE13-02灰黄色粉砂,河流相沉积湖滨相或漫滩相
    SITE14-01灰黑色粉砂质黏土,湖相沉积湖滨相或漫滩相
    SITE14-02湖沼相沉积湖滨相或漫滩相
    下载: 导出CSV 
    | 显示表格
    图  8  沉积环境识别过程中存在差异的样品粒度曲线
    Figure  8.  Sediment samples with differences in sedimentary environment identification

    其中,SITE01-03、SITE14-01、SITE14-02三个样品的粒度曲线具有明显双峰,分布范围和曲线形态与典型湖滨相或漫滩相较为符合,野外观察结果存在识别错误(图8)。SITE03-04、SITE05-01、SITE13-02样品峰值粒径比典型湖沼相粒径较粗,但是没有明显次峰(图8)。对比其他簇曲线形态及分布范围,此类样品更为可能形成于沉积环境相对稳定,但动力强度较强的湖沼相沉积环境。AP聚类算法进行聚类分析时,由于样品相对典型湖沼相样品粒径较粗,被划分到湖滨相沉积物一类,出现了偏差。因此,对于85个样品中有3个样品沉积环境识别出现误差,错误率为3.53%。

    鉴于聚类方法是尽可能将相似的数据点聚集成一类,沉积物的形成受物源、介质等多个因素影响,同一沉积环境条件下,粒度分布曲线会在一定范围内发生波动,因此采用邻近传播聚类分析时需要合理选取偏向系数控制各簇之间数据的差异。本文为了充分挖掘粒度数据中蕴含的沉积环境类型,选取了相似系数最大值作为偏向系数,尽可能减小数据之间差异,导致出现同一沉积环境条件下形成的粒度曲线可能被划分到不同簇中的现象。

    (1)AP聚类算法具有不需要预设聚类数量,能够准确地确定研究区沉积环境中存在的动力类型,将曲线形态、分布范围相近的沉积物聚成一类。每一簇的曲线形态和分布范围都能反演出研究区对应的沉积环境存在的动力类型,并且建立沉积物粒度特征与沉积动力学之间的内在联系,为沉积物类型划分提供依据。

    (2)根据粒度概率累积曲线以及分布曲线特征,将11簇曲线中形态、分布范围相近的曲线进一步合并,得到4类曲线,并与已知沉积环境样品曲线进行对比,确定出白洋淀地区剖面地层中出露着湖沼相、湖相、河流相以及洪积相四种沉积相。

    (3)白洋淀地区存在的4类典型沉积环境中湖心相、湖沼相的动力环境相近,以细粉砂为主,分选差,动力强度最低;湖滨相以粗粉砂为主,双峰明显,分选差。河流相颗粒较粗,以细、中砂为主,沉积物粒度特征反映漫滩相沉积环境与湖滨相相似;洪积相具有明显双峰,含量相近,分选差,水动力条件动荡。

    由此可见,基于粒度频率分布曲线的邻近聚类传播算法可以作为挖掘研究区存在的沉积类型的新方法,为沉积环境动力条件反演、分区等提供潜在的新手段。

  • 图  1   研究区域及土地利用类型示意图

    图中数字代表采样点编号。S1—S4依次为:南城子水库、清河水库、榛子岭水库和柴河水库;No. 12为石佛寺水库。

    Figure  1.   The study area and land-use type

    The numbers represent the sampling point number. S1—S4 are Nanchengzi Reservoir, Qinghe Reservoir, Zhenziling Reservoir and Chaihe Reservoir, respectively; and No.12 is Shifosi Reservoir.

    图  2   根据C/N值和δ13C指示POC来源

    Figure  2.   The source of POC grouped in C/N vs δ13C plot

    图  3   基于辽河水系悬浮颗粒物的DNA分析

    a. 真核生物,b. 原核生物。

    Figure  3.   DNA analysis of SPM in Liaohe River System

    a. Eukaryotes, b. prokaryotes.

    图  4   辽河水系悬浮颗粒物中主要生物门类(部分)空间分布特征

    Figure  4.   Spatial distribution of main biological phyla (partial) in SPM in Liaohe River system

    表  2   辽河水系SPM元素特征、同位素特征和POC来源分析

    Table  2   Elemental and isotopic characteristics and POC source analysis of SPM in Liaohe River system

    编号 流系 PN /% POC /% C/N Chla /(μg/L) Δ14C /‰ 14C年龄/aBP δ13C /‰ POC来源占比/%
    岩石 土壤 植被 Rpp
    LH2 辽河 0.16 1.30 7.92 0.02
    LH7 辽河 0.17 1.35 8.11 0.29
    LH8 辽河 0.13 1.01 7.66 0.26 −153.74 1270 −23.9 1.55 25.89 19.60 52.96
    LH9 辽河 0.14 1.19 8.62 0.33 −269.35 2450 −22.9 8.69 43.88 9.91 37.51
    LH10 辽河 0.13 1.23 9.33 0.47 −291.74 2700 −23.3 12.33 42.19 13.63 31.85
    LH11 辽河 0.63 3.92 6.19 0.83 −248.13 2220 −23.6 7.88 21.14 3.28 67.69
    LH12 辽河 0.25 2.18 8.60 N.D. −250.00 2240 −23.5 7.21 41.83 11.45 39.52
    LH13 辽河 0.13 1.10 8.36 0.07 −296.14 2750 −22.1 11.28 44.05 7.59 37.07
    LH14 辽河 0.12 0.97 8.09 0.21 −269.35 2450 −22.8 8.53 41.34 7.68 42.45
    LH15 辽河 0.10 0.80 8.25 0.32
    LH16 太子河(大辽河) 0.81 4.87 5.98 2.25 −226.29 1990 −27.3 7.09 7.55 4.99 80.37
    LH17 浑河(大辽河) 0.72 4.26 5.92 3.78 −144.21 1180 −25.7 1.34 7.65 8.11 82.90
    LH18 大辽河 0.25 1.87 7.41 1.10 −261.12 2360 −26.2 0.57 1.25 95.73 2.45
    LH19 大凌河 0.20 1.88 9.31 0.29              
    表中“N.D.”代表未测出相关指标。
    下载: 导出CSV

    表  1   来自岩石、土壤、植被和Rpp的POC的δ13C、Δ14C和N/C端元值(用平均值±标准差表示)

    Table  1   δ13C, Δ14C, and N/C endmembers of POC from rocks, soils, vegetation, and Rpp (expressed as mean ± standard deviation)

    来源 δ13C/‰ Δ14C/‰ N/C值
    岩石 −22.4±4.9 1000±0 0.045±0.066
    土壤 −21.8±4.9 276±30 0.075±0.018
    植被 −28.5±2.0 0±50 0.038±0.019
    Rpp −28.0±1.1 −161±22 0.184±0.011
    注:由于辽河数据有限,部分端元值参考长江[22]
    下载: 导出CSV

    表  3   选定指标与生物门类的相关关系

    Table  3   Correlation between selected indicators and biological categories

      POC C/N Chla Δ14C δ13C Rpp 绿藻纲 共球藻纲 动物界 蓝藻门
    POC 1 −0.87** 0.79** 0.42 −0.71* 0.75* 0.33 0.68* 0.70* 0.6
    C/N −0.87** 1 −0.77** −0.61 0.70* −0.86** −0.42 −0.59 −0.63 −0.48
    Chla 0.79** −0.77** 1 0.61 −0.75* 0.80** 0.34 0.45 0.61 0.38
    Δ14C 0.42 −0.61 0.61 1 −0.47 0.51 0.1 0.19 0.24 0.13
    δ13C −0.71* 0.70* −0.75* −0.47 1 −0.62 −0.80** −0.85** −0.91*** −0.65*
    Rpp 0.75* −0.86** 0.80** 0.51 −0.62 1 0.13 0.61 0.65* 0.63
    绿藻纲 0.33 −0.42 0.34 0.1 −0.80** 0.13 1 0.65* 0.67* 0.34
    共球藻纲 0.68* −0.59 0.45 0.19 −0.85** 0.61 0.65* 1 0.96*** 0.91***
    动物界 0.70* −0.63 0.61 0.24 −0.91*** 0.65* 0.67* 0.96*** 1 0.89***
    蓝藻门 0.6 −0.48 0.38 0.13 −0.65* 0.63 0.34 0.91*** 0.89*** 1
    注:由于PN和POC具有高度相关性(R=1; P<0.001),所以进一步分析时没有计算PN与其他数据的关系。
    下载: 导出CSV

    表  4   中国主要河流的悬浮颗粒物的部分特征

    Table  4   Characteristics of SPM in major rivers of China

     河流和流域 POC/% C/N值 δ13C/‰ Δ14C年龄/aBP
    平均值 范围 平均值 范围 平均值 范围 平均值 范围
    辽河 上游 1.30 N.D. 7.92 N.D. N.D. N.D. N.D. N.D.
    中游 1.74 1.01~3.92 7.98 6.19~8.62 −23.43 −23.9~−22.9 2160 12702700
    下游 1.26 0.80~2.18 8.32 8.09~8.60 −22.80 −23.5~−22.1 2480 22402750
    平均 1.5 8.11 −23.19 2297
    大辽河 3.67 1.87~4.87 6.44 5.92~7.41 −23.11 −27.3~−25.7 1843 11802360
    黄河[58, 72-80] 中游 0.31 0.14~0.48 7.45 6.60~7.60 −24.16 −24.8~−23.3 5362 36507770
    下游 0.49 0.13~1.78 7.12 5.80~10.5 −24.77 −27.4~−22.6 4868 31007160
    平均 0.40 7.28 −24.47 5115
    长江[22, 81] 上游 1.42 1.03~2.10 7.83 6.03~8.82 −25.65 −26.7~−24.3 3271 26204810
    中游 1.48 1.41~1.59 7.59 7.37~7.82 −26.39 −27.3~−25.8 2816 26203040
    下游 1.07 1.03~1.12 7.67 7.06~8.67 −26.03 −26.8~−25.2 2850 24803380
    平均 1.36 7.74 −26.02 3069
    珠江[69-70, 82-86] 上游 0.65 0.12~0.95 N.D. N.D. −25.90 −27.4~−24.8 2076 10403085
    中游 0.33 0.09~0.81 N.D. N.D. −25.50 −28.6~−18.8 2731 760~3730
    下游 0.39 0.24~0.52 6.55 6.20~6.90 −28.50 −31.8~−21.9 1908 985~2800
    平均 0.46 6.55 −25.77 2331
    台湾岛[87-88] 0.76 0.30~2.77 6.29 5.20~9.30 −24.31 −28.1~−22.0 N.D. N.D.
    海南岛[89-90] 3.42 1.80~13.57 6.78 4.30~36.00 −25.96 −29.5~−19.0 N.D. N.D.
    表格中长江数据部分来自未发表研究,N.D.代表没有相应数据。
    下载: 导出CSV

    表  5   中国主要河流POC入海通量及不同来源占比

    Table  5   POC flux and percentage content of different sources from major rivers in China

    POC通量/(Tg/a) POC来源/%
    岩石 土壤 植被 Rpp
    辽河 0.03 8.21 37.19 10.45 44.15
    大辽河 0.08 3.00 5.48 36.28 55.24
    黄河 0.47 34.08 14.96 8.81 42.15
    长江 2.15 14.38 20.74 14.33 50.55
    珠江 0.51 5.35 10.56 9.68 74.41
    注:由于大辽河干流缺少控口水文站,因此使用太子河和浑河POC通量之和代表。
    下载: 导出CSV
  • [1]

    Drake T W, Raymond P A, Spencer R G M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018, 3(3):132-142. doi: 10.1002/lol2.10055

    [2]

    Mckee B. The transport, transformation, and fate of carbon in river-dominated ocean margins[C]//Proceedings of the RiOMar Workshop New Orleans: Tulane University, 2003.

    [3]

    Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551):204-207. doi: 10.1038/nature14400

    [4]

    Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1):23-41. doi: 10.1029/95GB02925

    [5]

    Schlünz B, Schneider R R. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux-and burial rates[J]. International Journal of Earth Sciences, 2000, 88(4):599-606. doi: 10.1007/s005310050290

    [6]

    Boyd P W, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752):327-335. doi: 10.1038/s41586-019-1098-2

    [7]

    Liu D, Tian L Q, Jiang X T, et al. Human activities changed organic carbon transport in Chinese rivers during 2004-2018[J]. Water Research, 2022, 222:118872. doi: 10.1016/j.watres.2022.118872

    [8]

    Repasch M, Scheingross J S, Hovius N, et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection[J]. Nature Geoscience, 2021, 14(11):842-848. doi: 10.1038/s41561-021-00845-7

    [9]

    Bouchez J, Galy V, Hilton R G, et al. Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles[J]. Geochimica et Cosmochimica Acta, 2014, 133:280-298. doi: 10.1016/j.gca.2014.02.032

    [10]

    Hilton R G. Climate regulates the erosional carbon export from the terrestrial biosphere[J]. Geomorphology, 2017, 277:118-132. doi: 10.1016/j.geomorph.2016.03.028

    [11]

    van Hoek W J, Vilmin L, Beusen A H W, et al. CARBON-DISC 1.0-A coupled, process-based model of global in-stream carbon biogeochemistry[J]. Geoscientific Model Development Discussions, 2019: 1-31.

    [12]

    Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity: importance, threats, status and conservation challenges[J]. Biological Reviews, 2006, 81(2):163-182. doi: 10.1017/S1464793105006950

    [13]

    Lin B Z, Liu Z F, Eglinton T I, et al. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China[J]. Geochimica et Cosmochimica Acta, 2019, 259:270-287. doi: 10.1016/j.gca.2019.06.018

    [14]

    Mendonça R, Kosten S, Sobek S, et al. Hydroelectric carbon sequestration[J]. Nature Geoscience, 2012, 5(12):838-840. doi: 10.1038/ngeo1653

    [15]

    Battin T J, Lauerwald R, Bernhardt E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023, 613(7944):449-459. doi: 10.1038/s41586-022-05500-8

    [16]

    Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70. doi: 10.1038/nature12857

    [17]

    Syvitski J, Ángel J R, Saito Y, et al. Earth’s sediment cycle during the Anthropocene[J]. Nature Reviews Earth & Environment, 2022, 3(3):179-196.

    [18]

    Li G, Wang X T, Yang Z F, et al. Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) river basin (China) a significant carbon sink[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1):39-53. doi: 10.1002/2014JG002646

    [19]

    Engel F, Attermeyer K, AyalA A I, et al. Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: insights from high frequency water quality monitoring[J]. Scientific Reports, 2019, 9(1):6701. doi: 10.1038/s41598-019-43008-w

    [20]

    Kang S J, Kim J H, Kim D, et al. Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: geum and Seomjin, South Korea[J]. Environment International, 2019, 133:105126. doi: 10.1016/j.envint.2019.105126

    [21]

    Kronvang B, Hejzlar J, Boers P, et al. Nutrient retention handbook. Software manual for EUROHARP-NUTRET and scientific review on nutrient retention[R]. Oslo, Norway: Norwegian Institute for Water Research, 2005.

    [22]

    Lyu J, Shi Y, Zhang S, et al. The reservoirs gradually changed the distribution, source, and flux of particulate organic carbon within the Changjiang River catchment[J]. Journal of Hydrology, 2023, 623:129808. doi: 10.1016/j.jhydrol.2023.129808

    [23]

    Burford M A, O'Donohue M J. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs[J]. Freshwater Biology, 2006, 51(5):973-982. doi: 10.1111/j.1365-2427.2006.01536.x

    [24]

    Xiao Y, Li Z, Guo J S, et al. Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China[J]. Environmental Monitoring and Assessment, 2016, 188(3):153. doi: 10.1007/s10661-016-5132-7

    [25]

    Li Z, Lu L H, Guo J S, et al. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China[J]. Scientific Reports, 2017, 7(1):42469. doi: 10.1038/srep42469

    [26]

    Li Y L, Liu K, Li L, et al. Relationship of land use/cover on water quality in the Liao River basin, China[J]. Procedia Environmental Sciences, 2012, 13:1484-1493. doi: 10.1016/j.proenv.2012.01.140

    [27] 曲凤垚, 李瑞. 辽河干流主要水库工程防洪作用与防洪效果分析[J]. 水利科学与寒区工程, 2021, 4(5):151-155 doi: 10.3969/j.issn.2096-5419.2021.05.035

    QU Fengyao, LI Rui. Analysis on flood control function and effect of Liaohe main reservoir project[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5):151-155.] doi: 10.3969/j.issn.2096-5419.2021.05.035

    [28]

    Yue F J, Li S L, Liu C Q, et al. Using dual isotopes to evaluate sources and transformation of nitrogen in the Liao River, northeast China[J]. Applied Geochemistry, 2013, 36:1-9. doi: 10.1016/j.apgeochem.2013.06.009

    [29] 翁巧然, 吕旭波, 孙明东, 等. 基于控制单元划分的大辽河流域污染物空间分布及来源解析[J]. 环境工程技术学报, 2023, 13(1):171-179 doi: 10.12153/j.issn.1674-991X.20210573

    WENG Qiaoran, LYU Xubo, SUN Mingdong, et al. Spatial distribution and source analysis of pollutants in Daliao River Basin based on control unit division[J]. Journal of Environmental Engineering Technology, 2023, 13(1):171-179.] doi: 10.12153/j.issn.1674-991X.20210573

    [30] 杜甫, 闫晓惠, 陈小强. 基于Delft3D的大辽河水动力水质数值模拟[J]. 水电能源科学, 2024, 42(1):32-35,161

    DU Fu, YAN Xiaohui, CHEN Xiaoqiang. Numerical simulation of hydrodynamic water quality of Daliao River based on Delft3D[J]. Water Resources and Power, 2024, 42(1):32-35,161.]

    [31] 许晓艳, 高世斌. 辽河流域洪水河库联合调度实践探析[J]. 东北水利水电, 2022, 40(1):42-43,49,72 doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016

    XU Xiaoyan, GAO Shibin. Practice analysis on combined flood and river storage operation in Liaohe River Basin[J]. Water Resources & Hydropower of Northeast China, 2022, 40(1):42-43,49,72.] doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016

    [32] 杨赫男. 大凌河流域河流中氮磷变化特征分析[J]. 水土保持应用技术, 2024(4):49-52 doi: 10.3969/j.issn.1673-5366.2024.04.20

    YANG Henan. Variation characteristics of nitrogen and phosphorus in the Daling River basin[J]. Technology of Soil and Water Conservation, 2024(4):49-52.] doi: 10.3969/j.issn.1673-5366.2024.04.20

    [33] 董浩. 小凌河流域土壤侵蚀强度空间分布特征研究[J]. 水土保持应用技术, 2024(4):9-10 doi: 10.3969/j.issn.1673-5366.2024.04.04

    DONG Hao. Spatial distribution characteristics of soil erosion intensity in Xiaoling River Basin[J]. Technology of Soil and Water Conservation, 2024(4):9-10.] doi: 10.3969/j.issn.1673-5366.2024.04.04

    [34]

    Xu S, Yue F J, Li S L, et al. Carbon and nitrogen isotope constraints on source and variation of particulate organic matter in high-latitude agricultural rivers, Northeast China[J]. Journal of Cleaner Production, 2021, 321:128974. doi: 10.1016/j.jclepro.2021.128974

    [35]

    Duan X W, Xie Y, Ou T H, et al. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China[J]. Catena, 2011, 87(2):268-275. doi: 10.1016/j.catena.2011.06.012

    [36]

    Lu L, Cheng H G, Pu X, et al. Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China[J]. Agriculture, Ecosystems & Environment, 2016, 222: 48-59.

    [37] 水电知识网. 辽河[Z]. 2019

    Hydropower knowledge Network. Liaohe River[Z]. 2019.]

    [38]

    Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10):1106-1115. doi: 10.1016/j.csr.2011.04.003

    [39]

    Andersson A, Deng J J, Du K, et al. Regionally-varying combustion sources of the january 2013 severe haze events over eastern China[J]. Environmental Science & Technology, 2015, 49(4):2038-2043.

    [40]

    Chen S F, Zhou Y Q, Chen Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):884-890. doi: 10.1093/bioinformatics/bty560

    [41]

    Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963. doi: 10.1093/bioinformatics/btr507

    [42]

    Wang Q, Garrity G M, Tiedje J M, et al. Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267. doi: 10.1128/AEM.00062-07

    [43]

    Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4):846-849. doi: 10.1099/00207713-44-4-846

    [44]

    Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998. doi: 10.1038/nmeth.2604

    [45]

    Douglas G M, Maffei V J, Zaneveld J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6):685-688. doi: 10.1038/s41587-020-0548-6

    [46]

    Ren Y, Yu G, Shi C P, et al. Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses[J]. iMeta, 2022, 1(2):e12. doi: 10.1002/imt2.12

    [47]

    Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, 563:116870. doi: 10.1016/j.jpgl.2021.116870

    [48]

    Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River1[J]. Limnology and Oceanography, 1986, 31(4):717-738. doi: 10.4319/lo.1986.31.4.0717

    [49]

    Mayer L M, Schick L L, Hardy K R, et al. Organic matter in small mesopores in sediments and soils[J]. Geochimica et Cosmochimica Acta, 2004, 68(19):3863-3872. doi: 10.1016/j.gca.2004.03.019

    [50]

    Goni M A, Monacci N, Gisewhite R, et al. Terrigenous organic matter in sediments from the Fly River delta-clinoform system (Papua New Guinea)[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1):F01S10.

    [51]

    Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4):29-57. doi: 10.1016/j.earscirev.2005.10.003

    [52]

    Wei B B, Mollenhauer G, Hefter J, et al. Dispersal and aging of terrigenous organic matter in the Pearl River Estuary and the northern South China Sea Shelf[J]. Geochimica et Cosmochimica Acta, 2020, 282:324-339. doi: 10.1016/j.gca.2020.04.032

    [53]

    Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4):618-630. doi: 10.1016/j.ecss.2010.02.018

    [54]

    Hedges J I, Cowie G L, Richey J E, et al. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids[J]. Limnology and Oceanography, 1994, 39(4):743-761. doi: 10.4319/lo.1994.39.4.0743

    [55]

    Qu Y X, Jin Z D, Wang J, et al. The sources and seasonal fluxes of particulate organic carbon in the Yellow River[J]. Earth Surface Processes and Landforms, 2020, 45(9):2004-2019. doi: 10.1002/esp.4861

    [56]

    Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1-2):13-25. doi: 10.1016/j.ecss.2006.08.016

    [57] 中华人民共和国水利部. 2022年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2022

    Ministry of Water Resources of the People’s Republic of China. 2022 National Water Conservancy Development Statistical Bulletin[M]. Beijing: China Water & Power Press, 2022.]

    [58]

    Lu T A, Wang H J, Wu X, et al. Transport of particulate organic carbon in the lower Yellow River (Huanghe) as modulated by dam operation[J]. Global and Planetary Change, 2022, 217:103948. doi: 10.1016/j.gloplacha.2022.103948

    [59]

    Huisman J, Codd G A, Paerl H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(8):471-483. doi: 10.1038/s41579-018-0040-1

    [60]

    Imtiazy M N, Hunter K, Sereda J, et al. Effects of regional climate, hydrology and river impoundment on long-term patterns and characteristics of dissolved organic matter in semi-arid northern plains rivers[J]. Science of The Total Environment, 2023, 870:161961. doi: 10.1016/j.scitotenv.2023.161961

    [61]

    Pradhan U K, Wu Y, Shirodkar P V, et al. Multi-proxy evidence for compositional change of organic matter in the largest tropical (peninsular) river basin of India[J]. Journal of Hydrology, 2014, 519:999-1009. doi: 10.1016/j.jhydrol.2014.08.018

    [62]

    Voss B M, Wickland K P, Aiken G R, et al. Biological and land use controls on the isotopic composition of aquatic carbon in the Upper Mississippi River Basin[J]. Global Biogeochemical Cycles, 2017, 31(8):1271-1288. doi: 10.1002/2017GB005699

    [63]

    Wang H, Ran X B, Bouwman A F, et al. Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers[J]. Journal of Hydrology, 2022, 607:127525. doi: 10.1016/j.jhydrol.2022.127525

    [64]

    Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3-4):331-354. doi: 10.1016/j.gloplacha.2007.01.003

    [65]

    Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600):1447-1452. doi: 10.1126/science.abn7980

    [66]

    Ran X B, Wu W T, Song Z L, et al. Decadal change in dissolved silicate concentration and flux in the Changjiang (Yangtze) River[J]. Science of The Total Environment, 2022, 839:156266. doi: 10.1016/j.scitotenv.2022.156266

    [67]

    Maavara T, Chen Q W, Van Meter K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2):103-116.

    [68]

    Raymond P A, Bauer J E, Caraco N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in Northeast US rivers[J]. Marine Chemistry, 2004, 92(1-4):353-366. doi: 10.1016/j.marchem.2004.06.036

    [69]

    Yang M X, Liu Z H, Sun H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73:132-141. doi: 10.1016/j.apgeochem.2016.08.008

    [70]

    Liu Z H, Zhao M, Sun H L, et al. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: coupled action of carbonate weathering and aquatic photosynthesis[J]. Applied Geochemistry, 2017, 78:96-104. doi: 10.1016/j.apgeochem.2016.12.014

    [71]

    Prats J, Armengol J, Marcé R, et al. Dams and reservoirs in the lower ebro river and its effects on the river thermal cycle[M]//Barceló D, Petrovic M. The Ebro River Basin. Berlin, Heidelberg: Springer, 2010: 77-95.

    [72]

    Ge T T, Xue Y J, Jiang X Y, et al. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments[J]. Chemical Geology, 2020, 534:119452. doi: 10.1016/j.chemgeo.2019.119452

    [73]

    Hu B Q, Li J, Bi N S, et al. Effect of human-controlled hydrological regime on the source, transport, and flux of particulate organic carbon from the lower Huanghe (Yellow River)[J]. Earth Surface Processes and Landforms, 2015, 40(8):1029-1042. doi: 10.1002/esp.3702

    [74]

    Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414:77-86. doi: 10.1016/j.jpgl.2015.01.004

    [75]

    Tao S Q, Eglinton T I, Zhang L, et al. Temporal variability in composition and fluxes of Yellow River particulate organic matter[J]. Limnology and Oceanography, 2018, 63(S1):S119-S141.

    [76]

    Wang S J, Yan Y X, Li Y K. Spatial and temporal variations of suspended sediment deposition in the alluvial reach of the upper Yellow River from 1952 to 2007[J]. Catena, 2012, 92:30-37. doi: 10.1016/j.catena.2011.11.012

    [77]

    Xue Y J, Zou L, Ge T T, et al. Mobilization and export of millennial-aged organic carbon by the Yellow River[J]. Limnology and Oceanography, 2017, 62(S1):S95-S111.

    [78]

    Yu M, Eglinton T I, Haghipour N, et al. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport[J]. Geochimica et Cosmochimica Acta, 2019, 262:78-91. doi: 10.1016/j.gca.2019.07.040

    [79]

    Ke Y T, Calmels D, Bouchez J, et al. Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe[J]. Earth Surface Dynamics, 2023, 12(1):347-365.

    [80]

    Lu T A, Wang H J, Hu L M, et al. Dynamic transport of particulate organic carbon in the Yellow River during dam-orientated Water-Sediment Regulation[J]. Marine Geology, 2023, 460:107054. doi: 10.1016/j.margeo.2023.107054

    [81]

    Wang Z H, Bai Y, He X Q, et al. Assessing the effect of strong wind events on the transport of particulate organic carbon in the Changjiang River estuary over the last 40 years[J]. Remote Sensing of Environment, 2023, 288:113477. doi: 10.1016/j.rse.2023.113477

    [82]

    Wei X G, Yi W X, Shen C D, et al. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7-8):1094-1097. doi: 10.1016/j.nimb.2009.10.107

    [83]

    Wei X G, Shen C D, Li N L, et al. Apparent ages of suspended sediment and soil erosion of the Pearl River (Zhujiang) drainage basin[J]. Chinese Science Bulletin, 2010, 55(15):1547-1553. doi: 10.1007/s11434-010-3067-x

    [84]

    Guo W, Ye F, Xu S D, et al. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China[J]. Estuarine, Coastal and Shelf Science, 2015, 167:540-548. doi: 10.1016/j.ecss.2015.11.004

    [85]

    Liu D, Bai Y, He X Q, et al. Changes in riverine organic carbon input to the ocean from mainland China over the past 60 years[J]. Environment International, 2020, 134:105258. doi: 10.1016/j.envint.2019.105258

    [86]

    He B Y, Dai M H, Zhai W D, et al. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China[J]. Marine Chemistry, 2010, 119(1-4):52-64. doi: 10.1016/j.marchem.2009.12.006

    [87]

    Hilton R G, Galy A, Hovius N, et al. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan[J]. Geochimica et Cosmochimica Acta, 2010, 74(11):3164-3181. doi: 10.1016/j.gca.2010.03.004

    [88]

    Bao H Y, Lee T Y, Huang J C, et al. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon[J]. Scientific Reports, 2015, 5(1):16217. doi: 10.1038/srep16217

    [89]

    Wu Y, Bao H Y, Unger D, et al. Biogeochemical behavior of organic carbon in a small tropical river and estuary, Hainan, China[J]. Continental Shelf Research, 2013, 57:32-43. doi: 10.1016/j.csr.2012.07.017

    [90]

    Pradhan U K, Wu Y, Wang X N, et al. Signals of typhoon induced hydrologic alteration in particulate organic matter from largest tropical river system of Hainan Island, South China Sea[J]. Journal of Hydrology, 2016, 534:553-566. doi: 10.1016/j.jhydrol.2016.01.046

    [91]

    Galy V V, Eglinton T I. Protracted storage of biospheric carbon in the Ganges-Brahmaputra basin[J]. Nature Geoscience, 2011, 4(12):843-847. doi: 10.1038/ngeo1293

    [92]

    Keller P S, Marcé R, Obrador B, et al. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas[J]. Nature Geoscience, 2021, 14(6):402-408. doi: 10.1038/s41561-021-00734-z

    [93]

    Maavara T, Lauerwald R, Regnier P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8(1):15347. doi: 10.1038/ncomms15347

    [94]

    Schädel C, Schuur E A G, Bracho R, et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data[J]. Global Change Biology, 2014, 20(2):641-652. doi: 10.1111/gcb.12417

    [95]

    Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10):776-779. doi: 10.1038/ngeo2520

    [96]

    Syvitski J P M, Vörösmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5720):376-380. doi: 10.1126/science.1109454

    [97]

    Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115:138-155. doi: 10.1016/j.orggeochem.2017.09.008

    [98]

    Scavia D, Field J C, Boesch D F, et al. Climate change impacts on U. S. coastal and marine ecosystems[J]. Estuaries, 2002, 25(2):149-164. doi: 10.1007/BF02691304

  • 期刊类型引用(4)

    1. 袁瑞,张昌民,赵芸,张莉,陈哲,张宝进,黄若鑫. 基于偏正态概率分布的粒度分布次总体分离及其沉积环境指示意义. 地质论评. 2022(03): 1033-1047 . 百度学术
    2. 王燕校,王永,姚培毅,田飞,袁路朋,叶梦旎. 白洋淀漕河全新世早期古洪水事件的沉积特征及气候背景. 岩石矿物学杂志. 2022(05): 916-928 . 百度学术
    3. 曹胜伟,刘春雷,李亚松,李静,郝奇琛,高婕,董岩,陆晨明. 福建泉州湾近岸海域沉积物重金属来源分析与生态风险评价. 中国地质. 2022(05): 1481-1496 . 百度学术
    4. 董续舒. 粒度分析在沉积岩中的应用. 西部资源. 2021(04): 4-5+8 . 百度学术

    其他类型引用(6)

图(4)  /  表(5)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  3
  • PDF下载量:  35
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-06-20
  • 修回日期:  2024-07-11
  • 录用日期:  2024-07-11
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回