Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System
-
摘要:
作为关键陆源物质,河流颗粒态有机碳(POC)的来源、输运及入海通量是当前关注的热点问题。然而,受水库等人类活动影响,河流颗粒碳的组分正在发生变化,这势必给陆地和海洋间碳的源汇过程和生物地球化学循环机制带来深刻影响。围绕上述问题,以辽河水系为研究区,于2023年7月沿河采集14个样品,将生物地球化学指标分析与最新的基因检测技术相结合,分析了POC含量和来源在流域内的变化规律,探讨了初级生产力主导辽河水系POC来源的可能机制,对比和总结了中国典型河流POC来源改变的共同趋势。研究结果显示,初级生产力是当前辽河水系POC的最主要来源,其中共球藻纲和蓝藻门生物是最主要贡献者;动物可能也是POC的重要来源,未来在分析POC来源时需加以重视;水库拦蓄效应可改变河流浮游生物的组成,进而对河流POC的来源产生重要影响;长江、黄河、珠江以及台湾岛和海南岛的诸多河流POC的浮游生物来源比例也在显著增加。上述趋势性变化,可能导致POC在流域-河口-陆架间的源汇格局发生剧烈变化,需要持续关注。
Abstract:As a crucial terrestrial source, the source, transport, and flux of riverine particulate organic carbon (POC) to the ocean are currently of significant interest. However, human activities, such as the construction of reservoirs, are changing the composition of river POC, potentially impacting the source-sink processes between land and sea, as well as biogeochemical cycles. To address this issue, the Liaohe River System was selected for this study, in which 14 samples were collected in July 2023, and the trends in POC content and sources within the drainage basin were analyzed using biogeochemical methods and gene detection technology. The potential mechanisms by which riverine primary production (Rpp) has become a dominant POC source in the Liaohe River System was explored and those in other typical Chinese rivers were compared. Results indicate that the Rpp was the predominant source of POC in the Liaohe River System, and Trebouxiophyceae and Cyanobacteria were the primary contributors. Additionally, animals may also play a significant role as POC sources in rivers, warranting further attention in future analyses. The retention effect in reservoirs could alter the composition of river plankton and thus significantly affect the POC sources. Moreover, the proportions of plankton-derived POC in the Changjiang River, Huanghe River, and Zhujiang River in the continent, and rivers in Taiwan and Hainan islands have also seen notable increases. These changing trends could lead to substantial shifts in the patterns of POC sources and sinks across watersheds, estuaries, and continental shelves, meriting considerable attention.
-
南海位于亚欧大陆和太平洋之间,东临太平洋暖池,西近青藏高原,是西太平洋上最大的边缘海,独特的地理位置决定了南海对环境气候变化的高敏感性,使其成为古海洋学研究的热点区域[1]。
由于处于典型的亚洲季风影响区,南海的气候和表层环流格局受东亚季风影响,具有季节性反转的季风环流。冬季在东北季风的驱动下,南海形成海盆尺度的气旋式表层环流,夏季在西南季风的作用下,则在南海南部形成反气旋式表层环流[2, 3]。在季风的影响下,冬季在南海东北部的吕宋岸外,南部巽他陆坡海域,以及夏季在越南岸外发育了强烈的季节性上升流[4, 5]。季节性改变的环流结构及上升流发育使南海上层水体物理化学环境有着显著的季节变化和空间差异,从而强烈影响表层海洋生态系统,包括海洋初级生产力及生物群落结构等,例如夏季风导致的南海西部越南岸外上升流为表层水体带来了丰富的营养盐,促进浮游植物的生长,大大提高上层海洋初级生产力。
已有研究表明,在过去的冰期间冰期旋回中,东亚季风的强度和结构都有着显著的变化,主要表现在冰期时东亚冬季风增强,而间冰期时东亚夏季风强度增加[6, 7]。东亚季风的变化必然导致南海海洋环境的显著变化,此外冰期间冰期旋回过程中全球海平面的变化则导致南海地貌结构的变化,尤其是南海南部巽他陆架在冰期时出露[8],对整个南海表层环流及海盆区物质来源都有着巨大影响。
由于邻近东亚大陆,南海深海沉积物中生物成因的沉积物含量相对于陆源物质含量较低,但其丰度和组成变化可更直观的反映过去上层海洋环境,尤其是海洋初级生产力的变化情况[9],因而受到古海洋学家的普遍关注。其中生物蛋白石主要来源于硅藻、放射虫等硅质生物细胞壁或骨骼,沉积物中其相对含量及堆积速率作为古海洋表层生产力的指标之一被广泛应用于各大洋[10, 11]。此外,浮游植物通过一系列生物化学作用将二氧化碳等无机碳转化为有机碳或生物骨骼,随后输出至深海并埋藏于深海沉积物中,因此, 深海沉积物中有机碳和碳酸钙沉积不仅可以反映过去海洋生产力及海洋环境变化,也是地质历史上海洋碳循环研究的重要环节。
在过去几十年的多项国际合作科学考察航次中虽然取得了许多高质量的岩心,提供了新生代以来的连续深海沉积序列,在东亚古季风演变、古环境演化等领域取得重大进展[12-15],但是前人对深海沉积物的沉积组分及堆积过程研究还不够全面,多聚焦于一种或者几种成分的变化,如陆源物质不同矿物的来源变化[16, 17]、碳酸盐的旋回变化[12, 18]、有机质含量的变化[18, 19], 整体上对各组分系统研究比较少见[20, 21]。另一方面,以往研究主要集中在南海北部[22-24],对南海西部现代上升流区涉及较少,本文拟通过分析南海西南部越南岸外现代上升流影响区所采集的柱状沉积物样品中沉积物组成及堆积速率的变化,恢复140kaBP以来南海西南部上层海洋生产力及沉积物来源变化,并以此探讨末次间冰期以来东亚季风及海平面变化对南海西南部海洋环境的影响。
1. 材料与方法
1.1 样品材料
本研究中沉积物样品来自2006年德国“太阳号”科考船第187航次在南海西南部采集的一个直径12cm的重力柱状样,采样站位号为BIS-187-61,位于11°25.5′N、111°17.0′E(图 1),水深为2226m,柱样长度927cm。柱状心样岩性单一,为灰绿色粉砂质泥,无明显浊流沉积。用于沉积物组分分析的样品采样间距为10cm,共分析样品91个。
1.2 沉积物生物硅的测定
本文采用连续提取法来测定沉积物样品中生物硅的含量,样品的取样量和提取液的固液比值采用1.25g/L(不存在明显的吸附损失);提取液采用2 mol/L的Na2CO3溶液, 以保证较高生物硅含量样品的完全提取;另外采用外推法校正非生物硅的干扰[12, 13]。具体实验步骤如下:将采集的沉积物样品冷冻(-50℃)干燥,室温下平衡后,取150mg左右样品轻轻研磨至200目左右,烘干后室温下平衡后待用。称取100mg样品置于离心管中,加入5mL 10%的H2O2,超声0.5h后再加入1mol/L的HCl超声0.5h,静置2h。加入20mL超纯水,4000r/min离心5min后去除上清液,如此反复直至溶液呈中性。将上述处理好的样品置于102℃烘箱中烘干2h。加入40mL 2mol/L的Na2CO3超声5min后置于85℃水浴中加热提取生物硅。每隔1h用移液枪取1mL提取液后混入0.1mL酸性钼酸铵溶液后加入到石英比色管中在TU-1810型紫外可见分光光度计(吸收峰为650nm,检出限10-8g)测量吸光值, 并根据标准曲线利用回归方程计算得到生物硅含量(系统误差小于2%)。
计算生物蛋白石百分含量时,需要确定生物硅分子式SiO2·nH2O中n的数值,生物硅的含水率取决于硅质生物的类型与沉积年龄[14],对于年龄小于30Ma的硅藻生物硅平均含水率为10%[15],即生物硅分子式为SiO2 0.4H2O,此次研究采用opal%表示生物硅的含量。
1.3 有机碳和碳酸盐含量的测定
根据汪品先等[12]采用的方法,将采集的沉积物样品冷冻干燥放入干燥器平衡后,取部分样品研磨至200目,称取约100mg用1N盐酸去除碳酸盐,至完全反应后静置24h,反复多次用纯水洗至中性,烘干称量后将样品研磨粉碎后放入干燥器平衡24h。另称取3mg左右研磨过的原始样品和上述去除碳酸盐后的样品同时在有机元素仪(ThermoQuest Italia.S.P.A)上进行总碳(TC)和有机碳(TOC)的分析(数据误差小于0.2%),碳酸盐的含量是由总碳和有机碳含量含量之间的差值计算而来。陆源物质的含量用公式[24](1)计算:
$$ 陆源物质百分含量=1-碳酸盐百分含量-生\\物蛋白石百分含量-有机质百分含量(1\text{.8}\times 有机碳\\百分含量)\ $$ (1) 1.4 沉积物干密度测定
在基尔大学岩心库中,对BIS-187-61孔每隔5cm定量取2cm3的湿样,冷冻干燥后精确称量(精确到0.00001g,Sartorius CPA225D),计算所得质量体积比为沉积物样品干密度(DBD,g·cm-3)。
1.5 钻孔年龄框架确定
本研究的年龄框架主要依据BIS-187-61柱样中浮游有孔虫Globigerinoides ruber壳体的氧同位素值(数据由Martin G Wiesner提供)与SPECMAP stack氧同位素曲线[16]的对比来确定,采用“峰对峰、谷对谷、冰期-间冰期界限位于氧同位素曲线变化最快处”的形态对比法确定了本钻孔主要的年龄拐点(图 2)。此外,本文通过对比本钻孔与邻近海域已发表的MD972151孔[23](8°43.73′N、109°52.17′E,水深1598m)(图 1)的碳酸盐百分含量[18, 19],来进一步确定更为精细的年代框架。根据定年结果,BIS-187-61钻孔记录了约140ka以来,暨涵盖了末次间冰期(MIS 5期)以来南海西南部海洋环境的变化信息。
图 2 柱状样BIS-187-61的年龄框架a:柱状样BIS-187-61 Globigerinoides ruber氧同位素曲线;b:SPECMAP;c:柱状样BIS-187-61年龄控制点;d:MD92151孔碳酸盐百分含量;e:BIS-187-61孔碳酸盐百分含量Figure 2. Age model of core BIS-187-61 in the southwestern South China Seaa:oxygen isotope (δ18O) of Globigerinoides ruber in core BIS-187-61;b: SPECMAP; c:Control Point of the core BIS-187-61; d:Carbonate% of core MD972151;e:Carbonate% of core BIS-87-611.6 各沉积组分堆积速率的计算
为了量化展示出每个沉积组分真实变化情况,而避免百分比数据明显的反相关关系,本文计算了每个组分的堆积速率(Mass Accumulation Rate MAR, mg·cm2·ka -1)。根据钻孔年代框架及采样深度,计算可得该沉积柱样不同时期的线性沉积速率(Sedimentation Rate (SR),cm·ka-1),在此基础上MAR使用公式(2)求得:
$$ \text{MAR=1000}\times \text{wt}\text{. }\%\text{ }\times \text{DBD}\times \text{SR}\ $$ (2) 其中wt.%代表每个组分的质量百分比。
2. 结果
2.1 沉积物堆积速率
如图 3a所示,在约19~29、65~71以及120kaBP,研究区海域有较高的线性沉积速率。该柱样沉积物干密度变化范围较小,为0.6~0.9 g·cm-3。在此基础上,计算所得总的沉积物堆积速率与线性沉积速率变化基本保持一致,总体上表现为冰期(MIS 2和MIS 4期)高、间冰期(MIS 1, MIS 3和MIS 5期)低的特点。
2.2 末次间冰期以来BIS-187-61孔生源沉积相对含量变化
如图 4所示,陆源物质是BIS-187-61孔沉积物的主要贡献者,其质量百分比达65.28%~91.74%,碳酸盐的贡献次之,生物蛋白石和有机碳的含量则颇低。
过去140ka以来,BIS-187-61岩心中的碳酸盐含量变化范围为3.98%~28.43%,较低值出现在大约17~23、63~75、130~136kaBP,较高值出现在约1~12、50~55、79~84、100~109、119~128kaBP,其中最低值出现在69kaBP(3.98%),最高值出现在123kaBP(28.43%),平均值为15.26%(图 4d)。
生物蛋白石质量百分比为1.59%~6.23%,平均值是3.27%(图 4b)。大约在140~116kaBP期间,生物蛋白石含量相对较高,随后迅速下降,至107kaBP达到极小值1.76%,自107kaBP至14kaBP,生物蛋白石百分含量有一个缓慢上升的趋势,但在末次冰期晚期至全新世初生物蛋白石含量再次出现极低值,而后在全新世期间逐渐回升。有机碳在沉积物中仅占0.4%~0.93%,总体变化幅度不大,其平均值为0.68%,最低值出现在约123kaBP,最高值则出现在约36kaBP(图 4a)。
2.3 末次间冰期以来BIS-187-61孔生源沉积堆积速率变化
如图 5a所示,碳酸盐的堆积速率变化范围为210.1~1949.2mg·cm-2·ka-1,平均值为787.5 mg·cm-2·ka-1,在约123、78、65和29kaBP出现明显的极大值,分别为1740.55、1432.36、945.05和1949.19mg·cm-2·ka-1。
有机碳的堆积速率变化范围是16.2~82.9 mg·cm-2·ka-1,平均值为37.4 mg·cm-2 ka-1。在118~122、65~78、19~29kaBP有机碳平均堆积速率分别为36.2、64.9、63.8mg·cm-2·ka-1,高于相邻的时期(图 5b)。
如图 5c所示,生物蛋白石的堆积速率变化范围为60.9~199.8mg·cm-2·ka-1,平均值为180.1 mg·cm-2·ka-1。最小值出现在约107kaBP,最大值出现在29kaBP。与有机碳的堆积速率相似,生物硅堆积速率在118~122、65~71、19~29kaBP出现较高的值,分别为242.7、283.6、280.3mg·cm-2·ka-1。
如图 3及5所示,除碳酸盐以外,其他沉积物组分堆积速率与沉积物总的堆积速率基本保持一致,均表现为冰期(即MIS 4和MIS 2)时堆积速率较高,间冰期时较低。此外,末次间冰期MIS 5e期各组分堆积速率都出现了极大值。碳酸盐堆积速率在MIS 2期和MIS 5e期也出现了极大值,但在MIS 4期及MIS 5后期,其变化与其他组分存在差异。
3. 讨论
3.1 BIS-187-61孔碳酸盐沉积记录及其古海洋学意义
碳酸盐丰度是沉积物中最常用的古海洋环境指标,一直以来也是古海洋学研究的热点之一,早期南海的古海洋学即始于沉积物碳酸盐旋回的研究[24]。
研究表明,低纬度海域沉积物中碳酸盐相对含量变化主要取决于3个因素[18]:(1)表层海水的生产力,主要是有孔虫、颗石藻等钙质骨骼生物的生产力;(2)深层海水对碳酸盐的溶解作用,一般而言深度越大水压增大,水温下降,碳酸盐溶解作用越强;(3)陆源物质输入量的变化,即陆源输入的增加对碳酸盐造成了稀释作用。
如图 3a所示,BIS-187-61孔140kaBP以来的碳酸盐百分含量变化总体表现为冰期高、间冰期低的特征,呈现出典型的“大西洋型旋回”特征,这表明南海南部海域碳酸盐含量变化主要反映陆源物输入量的变化和稀释作用。如图 4b, c所示,BIS-187-61孔碳酸盐百分含量与该孔陆源物质含量呈现明显的负相关,而与生物硅和有机质百分含量无明显关系,这进一步证实南海南部MIS 5期以来沉积物碳酸盐旋回主要受控于陆源物质输入量。研究表明冰期时全球海平面下降80~150m,彼时南海西南部广阔的巽他陆架出露,并发育大型网状的古巺他河口[25],这可能是冰期时南海南部海域大量陆源物质的主要来源。BIS-187-61孔碳酸盐百分含量与XRF岩心扫描元素Ca的相对含量(图 4f)具有很好的线性相关性(R2=0.87),这表明该柱状样中碳酸钙是主要的碳酸盐矿物。
3.2 南海西南部古海洋生产力变化探讨
如图 5b, c所示,BIS-187-61孔有机碳和生物蛋白石堆积速率都有着较大幅度的波动,可能指示南海西南部海域140kaBP以来古海洋生产力存在明显的波动。海洋自生有机质C/N比值为6~7[26],由于浮游植物有机质降解时N相对于C优先损失[27],因此,典型的海洋沉积物有机质C/N比值为8~9。而陆生植物因富含纤维素和木质素等,其有机质C/N比值则较高(20~200)[28]。因此,海洋沉积物有机质中碳、氮元素比值可作为一个较好的指示海洋沉积物中有机质来源的指标。如图 4e所示,过去140kaBP以来BIS-187-61孔沉积物有机C/N比值变化为4~12,绝大部分时期C/N比均小于9,说明该孔沉积物中的有机质主要来自海洋自生生物,陆源有机质输入相对有限。因此,140 kaBP以来BIS-187-61孔有机碳的堆积速率可以一定程度上反映古海洋生产力的变化。根据Sarnthein等[29]提出的计算古海洋生产力计算公式(3),我们估算了BIS-187-61孔过去15万年的新生产力变化(图 6):
$$ \begin{align} & {{\text{P}}_{\text{new}}}=0.0238(\text{ }\%\text{ }{{\text{C}}^{0.6429}})(\text{S}{{\text{R}}^{\text{0}\text{.8575}}})(\text{DB}{{\text{D}}^{\text{0}\text{.5364}}})\times \\ & ({{\text{Z}}^{0.8292}}){{(\text{SR(1}-\%\text{ C)})}^{-0.2392}} \\ \end{align} $$ (3) 其中%C表示沉积物有机碳的百分含量,SR是沉积物线性沉积速率,Z是水深。考虑到仍然有少量的陆源有机碳的贡献,此处估算应该被认为是该海域过去新生产力的最高水平。此外,根据Eppley和Peterson[30]提出的Pnew=PP2/400(Pnew<100,PP表示初级生产力(以碳计)),我们进一步计算出该海域过去140ka以来的初级生产力变化(图 6)。如图 6所示,估算出的新生产力和初级生产力水平的变化范围分别为21.3~77.5和92.40~176.03 g·m-2·a-1,平均值是为41.7和127.41 g·m-2·a-1。估算结果显示该海域生产力在冰期,即MIS 4期和MIS 2期,高于邻近间冰期,但在MIS 5e和全新世后期也有明显增加。
如图 5,6所示,BIS-187-61孔生物蛋白石堆积速率和有机碳堆积速率及新生产力的变化有很好的相关性,高值均出现在MIS 2期、MIS 4期和MIS 5e期,而碳酸盐堆积速率的变化与生物蛋白石和有机碳的堆积速率变化则存在明显的差异,这表明该海域古海洋生产力的变化可能主要由硅质浮游生物生产力变化所引起,而与钙质生物生产力的变化关系较小。
3.3 过去140kaBP以来南海西南部海洋环境变化
已有的研究表明,在第四纪冰期间冰期旋回中,南海古生产力的变化主要受到东亚季风和海平面升降的控制(表 1),主要表现为冰期时东亚冬季风增强一方面导致上层海水的混合作用加强,另一方面导致南海北部冬季离岸上升流增强,同时陆源物质输入的增加也为南海带来更多的营养物质,导致南海北部生产力的升高。相反地,间冰期夏季风增强导致南海西部或西南部夏季上升流增强, 混合作用加强,为相应海域带来较多的营养物质,使得南海南部生产力得以提高。
表 1 南海不同海域的第四纪古生产力特征Table 1. Characteristics of the reconstructed productivity in different areas in the SCS位置 站位 北纬 东经 指标 变化特征 可能的影响因素 参考文献 南海
北部17928 18°9′36″ 119°26′24″ 底栖有孔虫丰度 末次冰期和MIS 6
期生产力较高冰期冬季风增强,冬季上升
流加强,而且陆源营养物质
输入量增加[31] 17937 19°30′ 117°39.9′ 沉积物中有机碳的含
量及不同有机碳比值生产力在MIS 2期
较高冰期冬季风强化, 海水混合程
度加强, 营养物质利用更充分
以及陆源输入增多导致营养
物质增加[32] 南海
西部17954 14°48′ 111°31′48″ Ba/(Zr+Rb)值底栖
有孔虫丰度和有机碳
通量间冰期生产力高,
MIS 3期最大夏季风增强,上升流发育,带
来大量营养物质[33, 34] MD05-2901 14°13′12″ 110°26′24″ 生源组分、颗石藻丰度 冰期生产力高间冰
期生产力低、末次冰
期生产力最高冰期海平面下降,陆源物质输
入增加,东北风发育也促进生
产力的提高[35, 36] BIS-187-61 11°25.5′ 111°17.0′ 有机碳通量、蛋白石通
量冰期生产力高,间冰
期低冰期陆源物质输入增多,营养
物质增多促进生产力提高本研究 南海
南部ODP1143 9°12′36″ 113°10′12″ 蛋白石百分含量及其堆积
速率钙质超微化
石丰度及堆积速率间冰期生产力高,冰
期生产力低间冰期夏季风增
强,上升流增强,营养物质增加[21, 22] MD05-2896 8°29′24″ 111°15′36″ Ba/Al比值 间冰期生产力高,
MIS 3期生产力较
高间冰期夏季风增强,上升流增
强,陆源有机物质输入增多[37] 如图 1所示,BIS-187-61孔处在南海西南部越南岸外夏季上升流影响的海域,夏季风导致的季节性上升流将为该海域上层水体带来较丰富的营养物质,从而刺激浮游植物的生长旺盛[38]。此外,现代东亚夏季风导致南海西部发育两个对称涡旋,并随之产生的离岸流(jet)[39, 40],也可能将沿岸的营养物质和颗粒物输送至本钻孔所在区域。据此可以推测间冰期时夏季风增强所导致的南海西南部上升流强度增加,会为本研究区域浮游植物生长带来更丰富的营养物质,从而导致海洋初级生产力和生源物质堆积速率的增加。然而如图 5, 6所示,BIS-187-61孔有机碳和生物蛋白石堆积速率以及根据有机碳估算出的古海洋生产力的高值出现在MIS 5e、MIS 4和MIS 2期,其中仅MIS 5e处在末次间冰期。总体而言该孔生源物质堆积速率表现为冰期高,而间冰期相对较低的变化趋势,与之前推测的间冰期夏季风增强、上升流增强可能引起海洋初级生产力和生源物质堆积速率增加的变化趋势相去甚远,因此, 本孔所记录的冰期时生源物质堆积速率的增加必然存在其他原因。
根据刘志飞等的研究结果[25](图 7a, b), 冰期时整个南海南部巽他陆架出露。与现代南海相比,BIS-187-61孔所处位置离陆地距离更近,这可能导致本研究区域在冰期时接受大量来自巽他陆架的陆源物质输入。此外,冰期时东亚冬季风增强,也将使整个南海接收更多来自亚洲大陆的陆源物质。如图 5d所示,陆源物质堆积速率在MIS 2和MIS 4期明显增加,与有机质和蛋白石堆积速率变化趋势基本保持一致(图 5),且这两个时期陆源物质百分含量也相对较高,证明冰期时本研究海域确实接收了更多来自东亚大陆或巽他陆架的陆源物质。陆源物质输入的增加一方面会为上层海洋带来更多的营养物质,从而刺激上层海洋浮游植物的生长,另一方面,陆源物质作为海洋沉降颗粒物最重要的压载物之一,其沉积通量(即堆积速率)的增加也将会携带更多的上层生源颗粒物往深海沉降,从而提高颗粒物的沉降速率,减少生源颗粒物在水柱中的停留时间,有利于生源物质的保存[41-43], 即发现大西洋有机碳向海底的输出通量随着离岸距离的增加(即接受的陆源输入的减少)而减少,而与上层海洋初级生产力的变化趋势无明显关系。综上所述,我们认为BIS-187-61孔所记录的冰期时(MIS 2和MIS 4期)生源物质和陆源物质的协同增加,反映了冰期时由于东亚季风增强以及巺他陆架出露,为研究海域带来大量陆源物质,可能促进浮游植物生长,生产力提高,同时对海洋上层颗粒物起到强烈的清扫作用,提高沉积物堆积速率,并在一定程度上增加了生源颗粒物的保存效率。
图 7 间冰期(a)和冰期(b)时南海地形地貌[25],及末次间冰期以来全球海平面的平均变化(c)Figure 7. The South China Sea during interglacial (a) and glacial periods (b) and the average global sea level change since last interglacial period (c)在约120kaBP,即MIS 5e期,可以看到所有的沉积物组分堆积速率都明显增加。区别于MIS 2和MIS 4期,MIS 5e期沉积碳酸盐的相对含量处于一个显著的高值,而陆源物质含量则出现相应的低值,这说明此时陆源输入相对较低,生源物质的增加主导了MIS 5e期沉积物堆积速率的增加。MIS 5e作为末次间冰期最盛期,被广泛深入的研究,以更好的与现代间冰期即全新世做对比,并帮助更好的预测全球变暖可能导致的未来全球环境变化。如图 7c(海平面变化)所示,MIS 5e期南海海平面和现今海平面相差不大[44, 45], 可以推测该时期南海地貌格局与现代相仿。因此,MIS 5e期BIS-187-61孔较高的有机碳、生物硅和碳酸钙等生源物质堆积速率可能是由于末次间冰期夏季风增强导致沿岸上升流增强,为研究海域带来更多营养物质,促使浮游生物大量繁盛,海洋生产力增加。该时期陆源物质堆积速率的相应增加则可能与浮游植物与陆源物质的相互作用有关,研究认为浮游植物藻类分泌的黏液会增加陆源颗粒物,尤其是一些细颗粒的陆源物质的胶结聚合,因此在陆源输入颗粒物向深海沉降过程中起到关键作用[29]。
4. 结论
(1) 碳酸钙是南海西南部柱样BIS-187-61孔主要的碳酸盐矿物,碳酸盐含量变化为3.98%~28.43%,总体表现出冰期低、间冰期高的特征,表现为典型的“大西洋型碳酸盐旋回”,表明南海南部深海沉积物中碳酸盐沉积主要受控于周边陆源物质输入稀释的控制;
(2) 南海西南部研究区沉积物有机碳和生物蛋白石堆积速率在MIS 2期和MIS4期和MIS 5e出现较高值。沉积有机质碳氮元素比表明该孔有机质主要来源于海洋自生有机碳,并据此估算出过去140kaBP以来该区域新生产力和初级生产力水平变化范围分别为21.3~77.5和92.40~176.03g·m-2·a-1;
(3) 冰期时(MIS 2和MIS 4期)南海西南部海域接受了更多来自东亚大陆和巽他陆架的陆源物质沉积,大量陆源物质输入可能为研究区域带来更丰富的营养物质,从而刺激上层生产力的增加,另外也提高了生源颗粒物的沉降速率和保存效率,从而导致生源物质堆积速率的增加;而MIS 5e期各沉积物组分堆积速率的高值则与末次间冰期夏季风增强、上升流增强有关。
-
图 1 研究区域及土地利用类型示意图
图中数字代表采样点编号。S1—S4依次为:南城子水库、清河水库、榛子岭水库和柴河水库;No. 12为石佛寺水库。
Figure 1. The study area and land-use type
The numbers represent the sampling point number. S1—S4 are Nanchengzi Reservoir, Qinghe Reservoir, Zhenziling Reservoir and Chaihe Reservoir, respectively; and No.12 is Shifosi Reservoir.
表 2 辽河水系SPM元素特征、同位素特征和POC来源分析
Table 2 Elemental and isotopic characteristics and POC source analysis of SPM in Liaohe River system
编号 流系 PN /% POC /% C/N Chla /(μg/L) Δ14C /‰ 14C年龄/aBP δ13C /‰ POC来源占比/% 岩石 土壤 植被 Rpp LH2 辽河 0.16 1.30 7.92 0.02 LH7 辽河 0.17 1.35 8.11 0.29 LH8 辽河 0.13 1.01 7.66 0.26 −153.74 1270 −23.9 1.55 25.89 19.60 52.96 LH9 辽河 0.14 1.19 8.62 0.33 −269.35 2450 −22.9 8.69 43.88 9.91 37.51 LH10 辽河 0.13 1.23 9.33 0.47 −291.74 2700 −23.3 12.33 42.19 13.63 31.85 LH11 辽河 0.63 3.92 6.19 0.83 −248.13 2220 −23.6 7.88 21.14 3.28 67.69 LH12 辽河 0.25 2.18 8.60 N.D. −250.00 2240 −23.5 7.21 41.83 11.45 39.52 LH13 辽河 0.13 1.10 8.36 0.07 −296.14 2750 −22.1 11.28 44.05 7.59 37.07 LH14 辽河 0.12 0.97 8.09 0.21 −269.35 2450 −22.8 8.53 41.34 7.68 42.45 LH15 辽河 0.10 0.80 8.25 0.32 LH16 太子河(大辽河) 0.81 4.87 5.98 2.25 −226.29 1990 −27.3 7.09 7.55 4.99 80.37 LH17 浑河(大辽河) 0.72 4.26 5.92 3.78 −144.21 1180 −25.7 1.34 7.65 8.11 82.90 LH18 大辽河 0.25 1.87 7.41 1.10 −261.12 2360 −26.2 0.57 1.25 95.73 2.45 LH19 大凌河 0.20 1.88 9.31 0.29 表中“N.D.”代表未测出相关指标。 表 1 来自岩石、土壤、植被和Rpp的POC的δ13C、Δ14C和N/C端元值(用平均值±标准差表示)
Table 1 δ13C, Δ14C, and N/C endmembers of POC from rocks, soils, vegetation, and Rpp (expressed as mean ± standard deviation)
来源 δ13C/‰ Δ14C/‰ N/C值 岩石 −22.4±4.9 1000 ±00.045±0.066 土壤 −21.8±4.9 276±30 0.075±0.018 植被 −28.5±2.0 0±50 0.038±0.019 Rpp −28.0±1.1 −161±22 0.184±0.011 注:由于辽河数据有限,部分端元值参考长江[22]。 表 3 选定指标与生物门类的相关关系
Table 3 Correlation between selected indicators and biological categories
POC C/N Chla Δ14C δ13C Rpp 绿藻纲 共球藻纲 动物界 蓝藻门 POC 1 −0.87** 0.79** 0.42 −0.71* 0.75* 0.33 0.68* 0.70* 0.6 C/N −0.87** 1 −0.77** −0.61 0.70* −0.86** −0.42 −0.59 −0.63 −0.48 Chla 0.79** −0.77** 1 0.61 −0.75* 0.80** 0.34 0.45 0.61 0.38 Δ14C 0.42 −0.61 0.61 1 −0.47 0.51 0.1 0.19 0.24 0.13 δ13C −0.71* 0.70* −0.75* −0.47 1 −0.62 −0.80** −0.85** −0.91*** −0.65* Rpp 0.75* −0.86** 0.80** 0.51 −0.62 1 0.13 0.61 0.65* 0.63 绿藻纲 0.33 −0.42 0.34 0.1 −0.80** 0.13 1 0.65* 0.67* 0.34 共球藻纲 0.68* −0.59 0.45 0.19 −0.85** 0.61 0.65* 1 0.96*** 0.91*** 动物界 0.70* −0.63 0.61 0.24 −0.91*** 0.65* 0.67* 0.96*** 1 0.89*** 蓝藻门 0.6 −0.48 0.38 0.13 −0.65* 0.63 0.34 0.91*** 0.89*** 1 注:由于PN和POC具有高度相关性(R=1; P<0.001),所以进一步分析时没有计算PN与其他数据的关系。 表 4 中国主要河流的悬浮颗粒物的部分特征
Table 4 Characteristics of SPM in major rivers of China
河流和流域 POC/% C/N值 δ13C/‰ Δ14C年龄/aBP 平均值 范围 平均值 范围 平均值 范围 平均值 范围 辽河 上游 1.30 N.D. 7.92 N.D. N.D. N.D. N.D. N.D. 中游 1.74 1.01~3.92 7.98 6.19~8.62 −23.43 −23.9~−22.9 2160 1270 ~2700 下游 1.26 0.80~2.18 8.32 8.09~8.60 −22.80 −23.5~−22.1 2480 2240 ~2750 平均 1.5 8.11 −23.19 2297 大辽河 3.67 1.87~4.87 6.44 5.92~7.41 −23.11 −27.3~−25.7 1843 1180 ~2360 黄河[58, 72-80] 中游 0.31 0.14~0.48 7.45 6.60~7.60 −24.16 −24.8~−23.3 5362 3650 ~7770 下游 0.49 0.13~1.78 7.12 5.80~10.5 −24.77 −27.4~−22.6 4868 3100 ~7160 平均 0.40 7.28 −24.47 5115 长江[22, 81] 上游 1.42 1.03~2.10 7.83 6.03~8.82 −25.65 −26.7~−24.3 3271 2620 ~4810 中游 1.48 1.41~1.59 7.59 7.37~7.82 −26.39 −27.3~−25.8 2816 2620 ~3040 下游 1.07 1.03~1.12 7.67 7.06~8.67 −26.03 −26.8~−25.2 2850 2480 ~3380 平均 1.36 7.74 −26.02 3069 珠江[69-70, 82-86] 上游 0.65 0.12~0.95 N.D. N.D. −25.90 −27.4~−24.8 2076 1040 ~3085 中游 0.33 0.09~0.81 N.D. N.D. −25.50 −28.6~−18.8 2731 760~ 3730 下游 0.39 0.24~0.52 6.55 6.20~6.90 −28.50 −31.8~−21.9 1908 985~ 2800 平均 0.46 6.55 −25.77 2331 台湾岛[87-88] 0.76 0.30~2.77 6.29 5.20~9.30 −24.31 −28.1~−22.0 N.D. N.D. 海南岛[89-90] 3.42 1.80~13.57 6.78 4.30~36.00 −25.96 −29.5~−19.0 N.D. N.D. 表格中长江数据部分来自未发表研究,N.D.代表没有相应数据。 表 5 中国主要河流POC入海通量及不同来源占比
Table 5 POC flux and percentage content of different sources from major rivers in China
POC通量/(Tg/a) POC来源/% 岩石 土壤 植被 Rpp 辽河 0.03 8.21 37.19 10.45 44.15 大辽河 0.08 3.00 5.48 36.28 55.24 黄河 0.47 34.08 14.96 8.81 42.15 长江 2.15 14.38 20.74 14.33 50.55 珠江 0.51 5.35 10.56 9.68 74.41 注:由于大辽河干流缺少控口水文站,因此使用太子河和浑河POC通量之和代表。 -
[1] Drake T W, Raymond P A, Spencer R G M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018, 3(3):132-142. doi: 10.1002/lol2.10055
[2] Mckee B. The transport, transformation, and fate of carbon in river-dominated ocean margins[C]//Proceedings of the RiOMar Workshop New Orleans: Tulane University, 2003.
[3] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551):204-207. doi: 10.1038/nature14400
[4] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1):23-41. doi: 10.1029/95GB02925
[5] Schlünz B, Schneider R R. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux-and burial rates[J]. International Journal of Earth Sciences, 2000, 88(4):599-606. doi: 10.1007/s005310050290
[6] Boyd P W, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752):327-335. doi: 10.1038/s41586-019-1098-2
[7] Liu D, Tian L Q, Jiang X T, et al. Human activities changed organic carbon transport in Chinese rivers during 2004-2018[J]. Water Research, 2022, 222:118872. doi: 10.1016/j.watres.2022.118872
[8] Repasch M, Scheingross J S, Hovius N, et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection[J]. Nature Geoscience, 2021, 14(11):842-848. doi: 10.1038/s41561-021-00845-7
[9] Bouchez J, Galy V, Hilton R G, et al. Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles[J]. Geochimica et Cosmochimica Acta, 2014, 133:280-298. doi: 10.1016/j.gca.2014.02.032
[10] Hilton R G. Climate regulates the erosional carbon export from the terrestrial biosphere[J]. Geomorphology, 2017, 277:118-132. doi: 10.1016/j.geomorph.2016.03.028
[11] van Hoek W J, Vilmin L, Beusen A H W, et al. CARBON-DISC 1.0-A coupled, process-based model of global in-stream carbon biogeochemistry[J]. Geoscientific Model Development Discussions, 2019: 1-31.
[12] Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity: importance, threats, status and conservation challenges[J]. Biological Reviews, 2006, 81(2):163-182. doi: 10.1017/S1464793105006950
[13] Lin B Z, Liu Z F, Eglinton T I, et al. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China[J]. Geochimica et Cosmochimica Acta, 2019, 259:270-287. doi: 10.1016/j.gca.2019.06.018
[14] Mendonça R, Kosten S, Sobek S, et al. Hydroelectric carbon sequestration[J]. Nature Geoscience, 2012, 5(12):838-840. doi: 10.1038/ngeo1653
[15] Battin T J, Lauerwald R, Bernhardt E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023, 613(7944):449-459. doi: 10.1038/s41586-022-05500-8
[16] Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70. doi: 10.1038/nature12857
[17] Syvitski J, Ángel J R, Saito Y, et al. Earth’s sediment cycle during the Anthropocene[J]. Nature Reviews Earth & Environment, 2022, 3(3):179-196.
[18] Li G, Wang X T, Yang Z F, et al. Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) river basin (China) a significant carbon sink[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1):39-53. doi: 10.1002/2014JG002646
[19] Engel F, Attermeyer K, AyalA A I, et al. Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: insights from high frequency water quality monitoring[J]. Scientific Reports, 2019, 9(1):6701. doi: 10.1038/s41598-019-43008-w
[20] Kang S J, Kim J H, Kim D, et al. Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: geum and Seomjin, South Korea[J]. Environment International, 2019, 133:105126. doi: 10.1016/j.envint.2019.105126
[21] Kronvang B, Hejzlar J, Boers P, et al. Nutrient retention handbook. Software manual for EUROHARP-NUTRET and scientific review on nutrient retention[R]. Oslo, Norway: Norwegian Institute for Water Research, 2005.
[22] Lyu J, Shi Y, Zhang S, et al. The reservoirs gradually changed the distribution, source, and flux of particulate organic carbon within the Changjiang River catchment[J]. Journal of Hydrology, 2023, 623:129808. doi: 10.1016/j.jhydrol.2023.129808
[23] Burford M A, O'Donohue M J. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs[J]. Freshwater Biology, 2006, 51(5):973-982. doi: 10.1111/j.1365-2427.2006.01536.x
[24] Xiao Y, Li Z, Guo J S, et al. Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China[J]. Environmental Monitoring and Assessment, 2016, 188(3):153. doi: 10.1007/s10661-016-5132-7
[25] Li Z, Lu L H, Guo J S, et al. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China[J]. Scientific Reports, 2017, 7(1):42469. doi: 10.1038/srep42469
[26] Li Y L, Liu K, Li L, et al. Relationship of land use/cover on water quality in the Liao River basin, China[J]. Procedia Environmental Sciences, 2012, 13:1484-1493. doi: 10.1016/j.proenv.2012.01.140
[27] 曲凤垚, 李瑞. 辽河干流主要水库工程防洪作用与防洪效果分析[J]. 水利科学与寒区工程, 2021, 4(5):151-155 doi: 10.3969/j.issn.2096-5419.2021.05.035 QU Fengyao, LI Rui. Analysis on flood control function and effect of Liaohe main reservoir project[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5):151-155.] doi: 10.3969/j.issn.2096-5419.2021.05.035
[28] Yue F J, Li S L, Liu C Q, et al. Using dual isotopes to evaluate sources and transformation of nitrogen in the Liao River, northeast China[J]. Applied Geochemistry, 2013, 36:1-9. doi: 10.1016/j.apgeochem.2013.06.009
[29] 翁巧然, 吕旭波, 孙明东, 等. 基于控制单元划分的大辽河流域污染物空间分布及来源解析[J]. 环境工程技术学报, 2023, 13(1):171-179 doi: 10.12153/j.issn.1674-991X.20210573 WENG Qiaoran, LYU Xubo, SUN Mingdong, et al. Spatial distribution and source analysis of pollutants in Daliao River Basin based on control unit division[J]. Journal of Environmental Engineering Technology, 2023, 13(1):171-179.] doi: 10.12153/j.issn.1674-991X.20210573
[30] 杜甫, 闫晓惠, 陈小强. 基于Delft3D的大辽河水动力水质数值模拟[J]. 水电能源科学, 2024, 42(1):32-35,161 DU Fu, YAN Xiaohui, CHEN Xiaoqiang. Numerical simulation of hydrodynamic water quality of Daliao River based on Delft3D[J]. Water Resources and Power, 2024, 42(1):32-35,161.]
[31] 许晓艳, 高世斌. 辽河流域洪水河库联合调度实践探析[J]. 东北水利水电, 2022, 40(1):42-43,49,72 doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016 XU Xiaoyan, GAO Shibin. Practice analysis on combined flood and river storage operation in Liaohe River Basin[J]. Water Resources & Hydropower of Northeast China, 2022, 40(1):42-43,49,72.] doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016
[32] 杨赫男. 大凌河流域河流中氮磷变化特征分析[J]. 水土保持应用技术, 2024(4):49-52 doi: 10.3969/j.issn.1673-5366.2024.04.20 YANG Henan. Variation characteristics of nitrogen and phosphorus in the Daling River basin[J]. Technology of Soil and Water Conservation, 2024(4):49-52.] doi: 10.3969/j.issn.1673-5366.2024.04.20
[33] 董浩. 小凌河流域土壤侵蚀强度空间分布特征研究[J]. 水土保持应用技术, 2024(4):9-10 doi: 10.3969/j.issn.1673-5366.2024.04.04 DONG Hao. Spatial distribution characteristics of soil erosion intensity in Xiaoling River Basin[J]. Technology of Soil and Water Conservation, 2024(4):9-10.] doi: 10.3969/j.issn.1673-5366.2024.04.04
[34] Xu S, Yue F J, Li S L, et al. Carbon and nitrogen isotope constraints on source and variation of particulate organic matter in high-latitude agricultural rivers, Northeast China[J]. Journal of Cleaner Production, 2021, 321:128974. doi: 10.1016/j.jclepro.2021.128974
[35] Duan X W, Xie Y, Ou T H, et al. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China[J]. Catena, 2011, 87(2):268-275. doi: 10.1016/j.catena.2011.06.012
[36] Lu L, Cheng H G, Pu X, et al. Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China[J]. Agriculture, Ecosystems & Environment, 2016, 222: 48-59.
[37] 水电知识网. 辽河[Z]. 2019 Hydropower knowledge Network. Liaohe River[Z]. 2019.]
[38] Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10):1106-1115. doi: 10.1016/j.csr.2011.04.003
[39] Andersson A, Deng J J, Du K, et al. Regionally-varying combustion sources of the january 2013 severe haze events over eastern China[J]. Environmental Science & Technology, 2015, 49(4):2038-2043.
[40] Chen S F, Zhou Y Q, Chen Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):884-890. doi: 10.1093/bioinformatics/bty560
[41] Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963. doi: 10.1093/bioinformatics/btr507
[42] Wang Q, Garrity G M, Tiedje J M, et al. Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267. doi: 10.1128/AEM.00062-07
[43] Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4):846-849. doi: 10.1099/00207713-44-4-846
[44] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998. doi: 10.1038/nmeth.2604
[45] Douglas G M, Maffei V J, Zaneveld J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6):685-688. doi: 10.1038/s41587-020-0548-6
[46] Ren Y, Yu G, Shi C P, et al. Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses[J]. iMeta, 2022, 1(2):e12. doi: 10.1002/imt2.12
[47] Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, 563:116870. doi: 10.1016/j.jpgl.2021.116870
[48] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River1[J]. Limnology and Oceanography, 1986, 31(4):717-738. doi: 10.4319/lo.1986.31.4.0717
[49] Mayer L M, Schick L L, Hardy K R, et al. Organic matter in small mesopores in sediments and soils[J]. Geochimica et Cosmochimica Acta, 2004, 68(19):3863-3872. doi: 10.1016/j.gca.2004.03.019
[50] Goni M A, Monacci N, Gisewhite R, et al. Terrigenous organic matter in sediments from the Fly River delta-clinoform system (Papua New Guinea)[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1):F01S10.
[51] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4):29-57. doi: 10.1016/j.earscirev.2005.10.003
[52] Wei B B, Mollenhauer G, Hefter J, et al. Dispersal and aging of terrigenous organic matter in the Pearl River Estuary and the northern South China Sea Shelf[J]. Geochimica et Cosmochimica Acta, 2020, 282:324-339. doi: 10.1016/j.gca.2020.04.032
[53] Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4):618-630. doi: 10.1016/j.ecss.2010.02.018
[54] Hedges J I, Cowie G L, Richey J E, et al. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids[J]. Limnology and Oceanography, 1994, 39(4):743-761. doi: 10.4319/lo.1994.39.4.0743
[55] Qu Y X, Jin Z D, Wang J, et al. The sources and seasonal fluxes of particulate organic carbon in the Yellow River[J]. Earth Surface Processes and Landforms, 2020, 45(9):2004-2019. doi: 10.1002/esp.4861
[56] Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1-2):13-25. doi: 10.1016/j.ecss.2006.08.016
[57] 中华人民共和国水利部. 2022年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2022 Ministry of Water Resources of the People’s Republic of China. 2022 National Water Conservancy Development Statistical Bulletin[M]. Beijing: China Water & Power Press, 2022.]
[58] Lu T A, Wang H J, Wu X, et al. Transport of particulate organic carbon in the lower Yellow River (Huanghe) as modulated by dam operation[J]. Global and Planetary Change, 2022, 217:103948. doi: 10.1016/j.gloplacha.2022.103948
[59] Huisman J, Codd G A, Paerl H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(8):471-483. doi: 10.1038/s41579-018-0040-1
[60] Imtiazy M N, Hunter K, Sereda J, et al. Effects of regional climate, hydrology and river impoundment on long-term patterns and characteristics of dissolved organic matter in semi-arid northern plains rivers[J]. Science of The Total Environment, 2023, 870:161961. doi: 10.1016/j.scitotenv.2023.161961
[61] Pradhan U K, Wu Y, Shirodkar P V, et al. Multi-proxy evidence for compositional change of organic matter in the largest tropical (peninsular) river basin of India[J]. Journal of Hydrology, 2014, 519:999-1009. doi: 10.1016/j.jhydrol.2014.08.018
[62] Voss B M, Wickland K P, Aiken G R, et al. Biological and land use controls on the isotopic composition of aquatic carbon in the Upper Mississippi River Basin[J]. Global Biogeochemical Cycles, 2017, 31(8):1271-1288. doi: 10.1002/2017GB005699
[63] Wang H, Ran X B, Bouwman A F, et al. Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers[J]. Journal of Hydrology, 2022, 607:127525. doi: 10.1016/j.jhydrol.2022.127525
[64] Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3-4):331-354. doi: 10.1016/j.gloplacha.2007.01.003
[65] Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600):1447-1452. doi: 10.1126/science.abn7980
[66] Ran X B, Wu W T, Song Z L, et al. Decadal change in dissolved silicate concentration and flux in the Changjiang (Yangtze) River[J]. Science of The Total Environment, 2022, 839:156266. doi: 10.1016/j.scitotenv.2022.156266
[67] Maavara T, Chen Q W, Van Meter K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2):103-116.
[68] Raymond P A, Bauer J E, Caraco N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in Northeast US rivers[J]. Marine Chemistry, 2004, 92(1-4):353-366. doi: 10.1016/j.marchem.2004.06.036
[69] Yang M X, Liu Z H, Sun H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73:132-141. doi: 10.1016/j.apgeochem.2016.08.008
[70] Liu Z H, Zhao M, Sun H L, et al. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: coupled action of carbonate weathering and aquatic photosynthesis[J]. Applied Geochemistry, 2017, 78:96-104. doi: 10.1016/j.apgeochem.2016.12.014
[71] Prats J, Armengol J, Marcé R, et al. Dams and reservoirs in the lower ebro river and its effects on the river thermal cycle[M]//Barceló D, Petrovic M. The Ebro River Basin. Berlin, Heidelberg: Springer, 2010: 77-95.
[72] Ge T T, Xue Y J, Jiang X Y, et al. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments[J]. Chemical Geology, 2020, 534:119452. doi: 10.1016/j.chemgeo.2019.119452
[73] Hu B Q, Li J, Bi N S, et al. Effect of human-controlled hydrological regime on the source, transport, and flux of particulate organic carbon from the lower Huanghe (Yellow River)[J]. Earth Surface Processes and Landforms, 2015, 40(8):1029-1042. doi: 10.1002/esp.3702
[74] Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414:77-86. doi: 10.1016/j.jpgl.2015.01.004
[75] Tao S Q, Eglinton T I, Zhang L, et al. Temporal variability in composition and fluxes of Yellow River particulate organic matter[J]. Limnology and Oceanography, 2018, 63(S1):S119-S141.
[76] Wang S J, Yan Y X, Li Y K. Spatial and temporal variations of suspended sediment deposition in the alluvial reach of the upper Yellow River from 1952 to 2007[J]. Catena, 2012, 92:30-37. doi: 10.1016/j.catena.2011.11.012
[77] Xue Y J, Zou L, Ge T T, et al. Mobilization and export of millennial-aged organic carbon by the Yellow River[J]. Limnology and Oceanography, 2017, 62(S1):S95-S111.
[78] Yu M, Eglinton T I, Haghipour N, et al. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport[J]. Geochimica et Cosmochimica Acta, 2019, 262:78-91. doi: 10.1016/j.gca.2019.07.040
[79] Ke Y T, Calmels D, Bouchez J, et al. Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe[J]. Earth Surface Dynamics, 2023, 12(1):347-365.
[80] Lu T A, Wang H J, Hu L M, et al. Dynamic transport of particulate organic carbon in the Yellow River during dam-orientated Water-Sediment Regulation[J]. Marine Geology, 2023, 460:107054. doi: 10.1016/j.margeo.2023.107054
[81] Wang Z H, Bai Y, He X Q, et al. Assessing the effect of strong wind events on the transport of particulate organic carbon in the Changjiang River estuary over the last 40 years[J]. Remote Sensing of Environment, 2023, 288:113477. doi: 10.1016/j.rse.2023.113477
[82] Wei X G, Yi W X, Shen C D, et al. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7-8):1094-1097. doi: 10.1016/j.nimb.2009.10.107
[83] Wei X G, Shen C D, Li N L, et al. Apparent ages of suspended sediment and soil erosion of the Pearl River (Zhujiang) drainage basin[J]. Chinese Science Bulletin, 2010, 55(15):1547-1553. doi: 10.1007/s11434-010-3067-x
[84] Guo W, Ye F, Xu S D, et al. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China[J]. Estuarine, Coastal and Shelf Science, 2015, 167:540-548. doi: 10.1016/j.ecss.2015.11.004
[85] Liu D, Bai Y, He X Q, et al. Changes in riverine organic carbon input to the ocean from mainland China over the past 60 years[J]. Environment International, 2020, 134:105258. doi: 10.1016/j.envint.2019.105258
[86] He B Y, Dai M H, Zhai W D, et al. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China[J]. Marine Chemistry, 2010, 119(1-4):52-64. doi: 10.1016/j.marchem.2009.12.006
[87] Hilton R G, Galy A, Hovius N, et al. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan[J]. Geochimica et Cosmochimica Acta, 2010, 74(11):3164-3181. doi: 10.1016/j.gca.2010.03.004
[88] Bao H Y, Lee T Y, Huang J C, et al. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon[J]. Scientific Reports, 2015, 5(1):16217. doi: 10.1038/srep16217
[89] Wu Y, Bao H Y, Unger D, et al. Biogeochemical behavior of organic carbon in a small tropical river and estuary, Hainan, China[J]. Continental Shelf Research, 2013, 57:32-43. doi: 10.1016/j.csr.2012.07.017
[90] Pradhan U K, Wu Y, Wang X N, et al. Signals of typhoon induced hydrologic alteration in particulate organic matter from largest tropical river system of Hainan Island, South China Sea[J]. Journal of Hydrology, 2016, 534:553-566. doi: 10.1016/j.jhydrol.2016.01.046
[91] Galy V V, Eglinton T I. Protracted storage of biospheric carbon in the Ganges-Brahmaputra basin[J]. Nature Geoscience, 2011, 4(12):843-847. doi: 10.1038/ngeo1293
[92] Keller P S, Marcé R, Obrador B, et al. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas[J]. Nature Geoscience, 2021, 14(6):402-408. doi: 10.1038/s41561-021-00734-z
[93] Maavara T, Lauerwald R, Regnier P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8(1):15347. doi: 10.1038/ncomms15347
[94] Schädel C, Schuur E A G, Bracho R, et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data[J]. Global Change Biology, 2014, 20(2):641-652. doi: 10.1111/gcb.12417
[95] Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10):776-779. doi: 10.1038/ngeo2520
[96] Syvitski J P M, Vörösmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5720):376-380. doi: 10.1126/science.1109454
[97] Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115:138-155. doi: 10.1016/j.orggeochem.2017.09.008
[98] Scavia D, Field J C, Boesch D F, et al. Climate change impacts on U. S. coastal and marine ecosystems[J]. Estuaries, 2002, 25(2):149-164. doi: 10.1007/BF02691304