中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究

魏吉林, 刘海龙, 郑伟鹏, 林鹏飞, 赵彦

魏吉林,刘海龙,郑伟鹏,等. 中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究[J]. 海洋地质与第四纪地质,2024,44(4): 32-40. DOI: 10.16562/j.cnki.0256-1492.2024060701
引用本文: 魏吉林,刘海龙,郑伟鹏,等. 中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究[J]. 海洋地质与第四纪地质,2024,44(4): 32-40. DOI: 10.16562/j.cnki.0256-1492.2024060701
WEI Jilin,LIU Hailong,ZHENG Weipeng,et al. Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene[J]. Marine Geology & Quaternary Geology,2024,44(4):32-40. DOI: 10.16562/j.cnki.0256-1492.2024060701
Citation: WEI Jilin,LIU Hailong,ZHENG Weipeng,et al. Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene[J]. Marine Geology & Quaternary Geology,2024,44(4):32-40. DOI: 10.16562/j.cnki.0256-1492.2024060701

中新世中低纬度海道变化对大西洋经圈翻转流和气候变化影响的模拟研究

基金项目: 国家重点研发计划项目课题“关键构造事件影响气候转型的数值模拟和机理分析”(2023YFF0803904)
详细信息
    作者简介:

    魏吉林(1995—),男,博士,主要从事古气候数值模拟研究,E-mail: weijilin@mail.iap.ac.cn

    通讯作者:

    郑伟鹏(1980—),男,正高级工程师,主要从事古气候数值模拟研究,E-mail: zhengwp@mail.iap.ac.cn

  • 中图分类号: P736

Simulation of the mid-to-low latitudes seaways changes and the impact on the Atlantic Meridional Overturning Circulation and climate during the Miocene

  • 摘要:

    自中中新世以来,特提斯海道和巴拿马海道的开合状态可能直接影响了大西洋经圈翻转流(AMOC)的强度和空间形态演变。但是,当前对这两处关键的中低纬度海道与AMOC之间联系的系统性研究较少。本研究基于中中新世时期的边界条件,利用耦合气候模式开展了中中新世气候模拟试验,以及特提斯海道和巴拿马海道先后关闭的敏感性试验。模拟结果显示,开放的特提斯海道和巴拿马海道分别为热带印度洋和太平洋海水进入北大西洋提供了“捷径”,同时分别向北大西洋输运高盐度海水和低盐度海水,对AMOC强度的变化起着相反的作用。特提斯海道开放增强了AMOC,这抵消了巴拿马海道开放导致的对AMOC的减弱。这两处中低纬度海道的关闭均能引起全球海表温度的南北不对称响应,分界线大致位于巴拿马海道所在纬度。本研究表明,只有特提斯海道和巴拿马海道关闭时,才会形成现代意义上的AMOC空间结构,因此这两处中低纬度海道的关闭时间对研究AMOC演变具有重要意义。

    Abstract:

    Since the Middle Miocene, the opening and closing of the Tethys and Panama seaways may have directly affected the intensity and spatial morphology of the Atlantic Meridional Overturning Current (AMOC). However, systematic studies on the connection between the two key mid- and low-latitude seaways and the AMOC are few. Based on the boundary conditions of the Middle Miocene, we conducted a Middle Miocene climate simulation experiment using a coupled climate model and a sensitivity experiment of the successive closure of the Tethys and Panama seaways. Results show that the openings of Tethys and Panama seaways provided "shortcuts" for tropical Indian and Pacific Ocean waters to enter the North Atlantic, respectively, and transported high-salinity and low-salinity seawater to the North Atlantic, respectively, which played opposite roles in the change of AMOC intensity. The opening of the Tethys Seaway enhanced the AMOC, which offset the weakening of the AMOC caused by the opening of the Panama Seaway. The closure of these two mid- and low-latitude seaways could cause a north-south asymmetric response of global sea surface temperature, and the dividing line was roughly located at the latitude of the Panama Seaway. This study showed that the modern spatial structure of AMOC could be formed only when the Tethys Seaway and the Panama Seaway were closed. Therefore, the closure time of these two mid- and low-latitude seaways is of great significance for studying the evolution of AMOC.

  • 南黄海东北凹位于南黄海盆地北部坳陷的东北部(图1),总体呈NEE向展布,面积约1.2×104 km2,最大沉积厚度约10 km,是北部坳陷各凹陷中埋藏较深、面积相对较大的一个沉积凹陷,也是北部坳陷中唯一钻遇侏罗纪地层的凹陷[1-2]。南黄海盆地东北凹仅有中海油上海分公司于2008年钻探的1口探井(RC20-2-1),揭示了第四系—上侏罗统,未见油气显示。

    图  1  南黄海盆地及邻区构造区划简图
    Figure  1.  Tectonic map of the South Yellow Sea Basin and its adjacent areas

    目前,南黄海盆地东北凹构造特征方面的研究相对薄弱,仅见少量地层剥蚀方面的报道[3-4],鲜有涉及构造演化、构造反转[5]、成因机制等方面的研究,也未曾开展过伸缩率等方面的定量研究工作,这在一定程度上制约着南黄海盆地东北凹的油气勘探进程。

    本文通过选取南黄海盆地东北凹典型地震剖面,开展精细的构造解释,系统梳理东北凹的构造样式特征。同时,采用平衡剖面恢复技术和伸缩率计算方法,分析了东北凹各时期的伸缩率与构造变形特征。最后,结合深部动力学背景和区域应力场特征,探讨了东北凹的构造演化历程,填补了南黄海盆地东北凹构造特征研究方面的空白,为进一步推进南黄海盆地东北凹的油气勘探进程奠定了坚实的资料基础。

    南黄海盆地主要位于扬子板块,是下扬子板块沿北东方向的海域延伸部分[6]。南黄海盆地的北界以千里岩隆起北断裂与华北板块相邻,南界以江山-绍兴断裂与华夏板块相接,西界以苏北-滨海断裂与苏北盆地相连,东界为南黄海东缘断裂。需要指出的是,南黄海盆地北部和南部边界为两期碰撞造山带(华北-下扬子板块碰撞造山、下扬子-华夏板块拼合)的产物,表现为复杂的逆冲断裂带特征[7-9];而西部和东部边界受控于区域上晚中生代以来古太平洋板块的多期次俯冲作用,迄今表现为区域性走滑断裂的性质[10-12]

    南黄海盆地整体具有“三隆夹两坳”的构造格局,从北到南依次为千里岩隆起、北部坳陷、中部隆起、南部坳陷、勿南沙隆起[13]。其中,北部坳陷共发育7个凹陷(东北凹、北凹、中凹、西凹、南凹、东凹、群山凹陷)和6个凸起(北部凸起、东二凸起、东一凸起、西部凸起、南部凸起、群山西凸起),凹陷和凸起相间分布,各构造单元总体呈NEE-近EW向展布。东北凹位于北部坳陷东北部(图1),其西北侧为千里岩隆起,南侧为北部凸起和东二凸起。

    南黄海盆地东北凹自晚三叠世开始发育,接受了中、新生代巨厚的河流、湖泊相及滨浅海相沉积建造,自下而上依次为上三叠统(T3)、下侏罗统(J1)、中—上侏罗统(J2+3)、下白垩统(K1)、上白垩统泰州组(K2t)、古近系古新统阜宁组(E1f)、始新统戴南组(E2d)和三垛组(E2s),新近系盐城组(N1y)及第四系东台组(Qpdt),最大沉积厚度约10000 m(表1)。

    东北凹构造演化经历了晚侏罗世仪征运动和渐新世末三垛运动两期构造反转作用,分别以Tk40和T20角度不整合界面为代表,界面之下地层遭受显著的挤压、褶皱、抬升剥蚀。以两次构造运动为界,可以将东北凹的构造演化大体划分为3个阶段:晚三叠世—侏罗纪的初始断陷阶段、白垩纪—渐新世的裂陷-反转阶段、新近纪—第四纪的区域沉降阶段(表1)。

    在凹陷结构方面,南黄海盆地东北凹主要受控于西北侧、南侧的铲式同沉积断层和东侧的构造斜坡,着重表现为箕状断陷特征;相应地,在地层沉积厚度方面,表现出“西北厚、东南薄”的不对称楔形特征。在构造样式方面,东北凹主要发育伸展构造(犁式正断层、顺向断层、反向断层)、走滑构造(负花状)和反转构造等多种构造组合样式(图2)。

    图  2  南黄海盆地东北凹地震剖面特征(剖面位置见图1)
    Figure  2.  Characteristics of seismic sections in north-east sag,the South Yellow Sea Basin(see Fig.1 for profile location)

    南黄海盆地东北凹发育的伸展构造主要包括同沉积犁式正断层、顺向/反向断层(图2)。同沉积犁式正断层也称铲式正断层,其特点是随着深度增加,断层倾角“上陡下缓”,愈向下断层倾角愈缓,接近于水平;断层断距也具有“上小下大”的特征,说明在断层发育的早期,即东北凹形成初期,断层活动强度最大,对沉积的控制作用也最大。顺向/反向断层是指东北凹斜坡部位发育的与斜坡倾向相同的顺向正断层和与斜坡倾向相背的反向断层,且这些顺向断层/反向断层具有多米诺式组合特征,剖面上呈叠瓦状,平面上呈雁列式展布。

    南黄海盆地东北凹发育的走滑构造主要为负花状构造。主干走滑断层与伴生的分支断层构成的上宽下窄、似“花朵”状的破裂带称为花状构造。其中,负花状构造是在张扭作用下产生的,其大多数断层具有正断距(图2)。东北凹发育的负花状构造大多位于凹陷中央部位,主要起到局部重力及应力调节作用。

    东北凹的地震剖面中可识别出两期明显的构造反转特征,以T20和Tk40角度不整合界面为代表,界面之下地层遭受显著的挤压抬升剥蚀(图2)。其中,Tk40不整合面代表晚侏罗世仪征运动,南黄海盆地东北凹经历的第一次挤压构造反转,界面之下的侏罗系遭受强烈挤压抬升剥蚀,侏罗纪地层背斜形态明显,界面上下地层呈角度不整合接触关系。T20不整合面代表渐新世末期三垛运动,界面之下地层发生明显的隆升、剥蚀,缺失始新统上部和渐新统沉积。

    平衡剖面技术是一种遵循几何守恒原则而建立的地质剖面正演与恢复方法,已成为区域构造应力分析与构造变形恢复的重要手段,是构造演化定量分析的有效方法。平衡剖面恢复主要遵循层长和面积守恒,由于研究区主要为刚性岩层,本文运用层长守恒法则绘制平衡剖面,即假定地层厚度不变,岩层在变形后的长度和初始沉积时的长度是相同的[14]。利用平衡剖面技术将现今的剖面进行岩石变形和地层伸缩变形的恢复,从而得到南黄海盆地东北凹各时期的伸展和压缩量,获取各演化阶段的构造变形和展布特征。

    假设每条地震剖面原始长度为L0,变形后长度为L1,伸展率、压缩率=(L1-L0)/L0×100%,正值代表伸展,负值代表收缩。对选取的3条地震剖面分别恢复了晚三叠世(T3)、早侏罗世(J1)、中—晚侏罗世(J2+3)、白垩世(K)、古新世—始新世(E1+2)、渐新世(E3)等各时期的地质剖面,得到各时期剖面的伸缩率(表2),部分平衡剖面恢复结果见图3

    表  2  南黄海盆地东北凹伸缩率计算结果
    Table  2.  The extensional and compressional rate of north-east sag,the South Yellow Sea Basin
    时代T3J1J2+3KE1+2E3
    剖面A-A'2.6%3.5%−3.2%3.2%5.6%−4.5%
    剖面B-B'3.7%4.5%−6.2%1.5%4.4%−5.2%
    剖面C-C'1.8%2.6%−7.6%2.3%7.0%−3.0%
    下载: 导出CSV 
    | 显示表格
    图  3  南黄海盆地东北凹构造演化
    Figure  3.  The tectonic evolution section of north-east sag in the South Yellow Sea Basin

    研究表明,南黄海盆地东北凹的伸缩率具有如下特征:

    (1)晚三叠世(T3)、早侏罗世(J1)沉积时期南黄海盆地东北凹整体处于弱伸展阶段,且早侏罗世(J1)沉积时期的伸展强度(伸缩率为2.6%~4.5%)总体大于晚三叠世(T3)沉积时期(伸缩率为1.8%~3.7%)(图4),说明由晚三叠世(T3)到早侏罗世(J1),东北凹的伸展强度有逐渐增强的趋势。同时,晚三叠世(T3)沉积时期,东北凹的中部伸缩率最大(伸缩率为3.7%),其次为南部(伸缩率为2.6%)和北部(伸缩率为1.8%),说明晚三叠世(T3)时期,东北凹中部的伸展强度最大,大于凹陷南部和北部(图5)。早侏罗世(J1)沉积时期,东北凹的南部、中部和北部的伸缩率,具有与晚三叠世(T3)相似的规律(图5)。

    图  4  南黄海盆地东北凹伸缩率时间变化趋势(剖面位置见图1)
    Figure  4.  The difference of extensional - compressional rates in different tectonic evolution stages of north-east sag,the South Yellow Sea Basin(see Fig.1 for profile location)
    图  5  南黄海盆地东北凹伸缩率空间变化趋势(剖面位置见图1)
    Figure  5.  The difference of extensional -compressional rates in different space of north-east sag,the South Yellow Sea Basin(see Fig.1 for profile location)

    (2)中—晚侏罗世(J2+3)沉积时期,南黄海盆地东北凹整体转为收缩阶段,伸缩率为−3.2%~−7.6%(图4),说明在中—晚侏罗世(J2+3)沉积之后东北凹经历了第一次构造反转作用,该期构造反转对应于中—晚侏罗世仪征运动,在东北凹以Tk40角度不整合界面为代表,界面之下地层褶皱、抬升剥蚀明显。此外,该时期东北凹北部的伸缩率(−7.6%),总体大于中部(−6.2%)和南部(−3.2%),说明该期构造反转作用强度在东北凹具有“北强南弱”的特征(图5)。

    (3)白垩世(K)、古新世—始新世(E1+2)沉积时期,南黄海盆地东北凹再次处于伸展状态,且古新世—始新世(E1+2)沉积时期的伸展强度(伸缩率为4.4%~7.0%)总体大于晚白垩世(K)沉积时期(伸缩率为1.5%~3.2%)(图4),表明从白垩世(K)到古新世—始新世(E1+2),东北凹的伸展强度有逐渐增强的趋势。同时,白垩世(K)沉积时期,东北凹南部的伸缩率(3.2%)大于北部(2.3%)和中部(1.5%);古新世—始新世(E1+2)沉积时期,北部的伸缩率(7.0%)大于南部(5.6%)和中部(4.4%)(图5)。

    (4)渐新世(E3)沉积时期,东北凹发生了明显的收缩,伸缩率为−3.0%~−5.2%(图4),东北凹中部的伸缩率(−5.2%)略大于南部(−4.5%)和北部(−3%)(图5)。说明在渐新统(E3)沉积之后,南黄海盆地东北凹经历了第二次构造反转作用,该期构造反转作用对应于渐新世末三垛运动,以T20角度不整合界面为代表,界面之下地层发生明显的隆升、剥蚀,缺失始新统上部和渐新统沉积。

    南黄海盆地东北凹各时期的伸缩率变化特征刚好与东北凹的构造演化历程相耦合,即东北凹存在两期伸展阶段(T3-J1)和(K-E2),伸缩率为正值,且每个伸展阶段的伸缩率均是“由小到大”逐渐增强,表明伸展作用“由弱向强”过渡;而每期伸展阶段的结束,均存在一次构造反转作用,伸缩率为负值,代表着凹陷伸展作用向挤压作用的调整,即南黄海东北凹具有“弱伸展→强伸展→构造反转”的构造演化规律,这与中国东部各盆地(凹陷)具有相似的演化特征。

    南黄海盆地处于古亚洲构造域和滨太平洋构造域的核心区域,位于下扬子板块东北缘[15],是一个中—新生界陆相沉积叠加于中—古生界海相碳酸盐岩沉积之上的叠合盆地。南黄海盆地东北凹作为一个晚三叠世开始发育的中—新生界沉积凹陷,经历了中—晚侏罗世仪征运动、渐新世末三垛运动等多期构造运动的叠加改造,且构造运动与东北凹构造样式的时空展布、发育期次和成因机制之间表现出良好的耦合关系。其中,晚中生代以来,古太平洋板块相对欧亚板块的俯冲作用是控制南黄海盆地东北凹构造、沉积演化的最关键因素。

    三叠纪末,扬子板块与华北板块发生碰撞,形成秦岭-大别-苏鲁造山带[16-17],彻底改变了中国东部古生代盆地的发展格局,中国东部逐渐由古亚洲构造域转向滨太平洋构造域[18]。印支运动结束后,南黄海盆地东北凹开始进入初始断裂阶段,发育了少量上三叠统和近2 000 m的侏罗系沉积地层[1-2]。进入晚侏罗世,中国东部深部地球动力学背景和区域应力场特征又发生了巨大的转变,古太平洋板块开始以NW向、低角度相对欧亚板块俯冲[19],南黄海盆地东北凹经历了第一次构造反转(仪征运动),强烈的挤压应力作用导致上侏罗统顶界发育以Tk40为代表的角度不整合界面,界面之下地层褶皱、抬升剥蚀明显。

    进入早白垩世,古太平洋板块俯冲角度逐渐变陡,导致地幔上涌、板片后撤,中国东部构造应力体制发生了根本性的转折,由NW-SE向挤压应力环境转换为区域性拉张应力环境,此时南黄海盆地东北凹开始进入裂陷阶段,发育白垩系和古近系沉积地层。直到渐新世末,随着古太平洋板块俯冲速率的加大[20],南黄海盆地东北凹经历了第二次构造反转(三垛运动),以T20角度不整合界面为代表,界面之下地层发生明显的隆升、剥蚀,缺失始新统上部和渐新统沉积。

    新近纪以来,随着海水的侵入和地壳的均衡沉降,南黄海盆地东北凹整体进入区域沉降阶段。

    (1)南黄海盆地东北凹经历了多期构造运动的叠加改造,在凹陷内发育伸展构造(犁式正断层、顺向断层、反向断层)、走滑构造(负花状)和反转构造等多种构造组合样式。

    (2)东北凹经历两期构造反转:①中—晚侏罗世沉积后,东北凹经历第一期构造反转,对应晚侏罗世仪征运动,以Tk40角度不整合界面为代表,界面之下地层褶皱、抬升剥蚀明显;②渐新统沉积后,东北凹经历第二期构造反转,对应渐新世末三垛运动,以T20角度不整合界面为代表,界面之下地层发生明显的隆升、剥蚀,缺失始新统上部和渐新统。

    (3)平衡剖面恢复和伸缩率计算结果表明:①晚三叠世、早侏罗世,东北凹整体处于弱伸展阶段,且早侏罗世伸展强度大于晚三叠世;②中—晚侏罗世,东北凹整体转为收缩阶段,对应第一次构造反转(仪征运动);③白垩纪和古新世—始新世,东北凹再次处于伸展状态,且从白垩纪到古新世—始新世,伸展作用逐渐增强;④渐新世,东北凹再次发生明显收缩,对应第二次构造反转(三垛运动)。

    (4)南黄海盆地东北凹的构造演化与区域应力场特征息息相关,是对“晚中生代以来,古太平洋板块相对欧亚板块俯冲汇聚速率和方向的改变”的局部响应。相应地将南黄海盆地东北凹的构造演化大体划分为3个阶段:晚三叠世—侏罗纪的初始断陷阶段、白垩纪—古近纪的裂陷-反转阶段、新近纪—第四纪的区域沉降阶段。

  • 图  1   全球热盐环流示意图 [3]

    红色箭头代表温暖的表层水及其暖水路径,蓝色箭头代表上层冷水流动及其冷水路径,白色箭头代表深层水及其路径。

    Figure  1.   The global thermohaline circulation[3]

    Red arrows represent warm surface water and warm water path, blue arrows are upper cold water flow and cold water path, and white arrows indicate deep water and the path.

    图  2   MMCO地形

    Figure  2.   The topography in the MMCO

    图  3   各试验模拟的北大西洋经圈流函数

    正值表示海流顺时针流动。MMCO试验中的6°N和34°N至40°N的两处紫色阴影框分别表示巴拿马海道和特提斯海道所在位置。

    Figure  3.   The simulated Atlantic Meridional Overturning Circulation in each experiment

    Positive value represent the clockwise rotation. The purple shaded region at 6°N represents the Panama Seaway, and that in 34°~40°N represents the Tethys Seaway in MMCO experiments.

    图  4   大西洋地区相关断面的上层1380 m的海水体积输送垂直廓线

    a:布罗陀海峡断面,其位置在PI和MMCO各试验中分别位于10°W和9°W;b:巴拿马海道断面位于6°N;c:北大西洋断面位置在PI和MMCO各试验中均位于25°N;d:南大西洋断面位置在PI和MMCO各试验中分别位于34°S和37°S。

    Figure  4.   The profiles of the upper 1380 volume transport at the relevant sections in the Atlantic

    a: The sections of the Gibraltar Strait are located at 10°W for PI and at 9°W for all MMCO experiments; b: the section of the Panama Seaway is located at 6°N; c: the section of the North Atlantic is located at 25°N; d: the sections of the South Atlantic are located at 34°S for PI and at 37°S for all the MMCO experiments.

    图  5   年平均海表温度和海表盐度差异

    a-c:海表温度差异,d-f:海表盐度差异。

    Figure  5.   The annual mean sea surface temperature and sea surface salinity differences

    a-c show the sea surface temperature (SST) differences; d-f show the sea surface salinity (SSS) differences.

    表  1   试验设计

    Table  1   The experiment design.

    试验 PI MMCO_400 MMCO_B1 MMCO_B2
    CO2浓度/10−6 280 400 400 400
    陆地海拔 现代 中中新世 中中新世 中中新世
    海洋水深 现代 中中新世 中中新世 中中新世
    特提斯海道 关闭 开放 关闭 关闭
    巴拿马海道 关闭 开放 开放 关闭
    陆地植被 现代 中中新世 中中新世 中中新世
    偏心率 0.016724 与PI相同
    轨道倾角 23.446°
    岁差 102.04°
    下载: 导出CSV

    表  2   各试验的北大西洋淡水收支中的各项

    Table  2   The freshwater budget of the North Atlantic in each experiment /(109 kg/s)

    参数 PI MMCO_400 MMCO_B1 MMCO_B2
    $ \dfrac{\mathrm{d}\mathrm{F}\mathrm{W}\mathrm{C}}{\mathrm{d}t} $ −0.092 −0.095 −0.067 −0.086
    FWF 0.175 −0.265 −0.215 −0.262
    FWTE −0.015 −0.392 −0.161 −0.163
    FWTN 0.026 0.084 0.066 0.076
    FWTS −0.230 0.410 0.123 0.163
    FWres −0.048 0.068 0.120 0.100
    AMOC强度 45.06 57.73 51.46 54.97
    FWTS 0-1000m −0.947 −0.617 −0.611 −1.160
    FWTS 1000−5000m 0.717 1.027 0.734 1.323
    注:淡水含量的时间倾向($ \dfrac{\mathrm{d}\mathrm{F}\mathrm{W}\mathrm{C}}{\mathrm{d}t} $)、淡水通量(FWF)、东边界(直布罗陀海峡)处的淡水输运(FWTE)、南北边界处的淡水输运(FWTS和FWTN)和残差项(FWres)。AMOC强度(北大西洋500 m以下的经圈流函数最大值,单位:Sv)和北大西洋南边界上层1000 m和1000 m至海底的淡水输运。
    下载: 导出CSV
  • [1]

    Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2):79-89. doi: 10.5670/oceanog.1991.07

    [2]

    Speich S, Blanke B, Madec G. Warm and cold water routes of an O. G. C. M. thermohaline conveyor belt[J]. Geophysical Research Letters, 2001, 28(2):311-314. doi: 10.1029/2000GL011748

    [3]

    Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research: Oceans, 1986, 91(C4):5037-5046. doi: 10.1029/JC091iC04p05037

    [4]

    Coxall H K, Huck C E, Huber M, et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation[J]. Nature Geoscience, 2018, 11(3):190-196. doi: 10.1038/s41561-018-0069-9

    [5]

    Hague A M, Thomas D J, Huber M, et al. Convection of North Pacific deep water during the early Cenozoic[J]. Geology, 2012, 40(6):527-530. doi: 10.1130/G32886.1

    [6]

    McKinley C C, Thomas D J, Levay L J, et al. Nd isotopic structure of the Pacific Ocean 40-10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma[J]. Earth and Planetary Science Letters, 2019, 521:139-149. doi: 10.1016/j.jpgl.2019.06.009

    [7]

    Thomas D J, Korty R, Huber M, et al. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world[J]. Paleoceanography, 2014, 29(5):454-469. doi: 10.1002/2013PA002535

    [8]

    Frigola A, Prange M, Schulz M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11(4):1607-1626. doi: 10.5194/gmd-11-1607-2018

    [9]

    Herold N, Seton M, Müller R D, et al. Middle Miocene tectonic boundary conditions for use in climate models[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10):Q10009.

    [10]

    Steinthorsdottir M, Coxall H K, de Boer A M, et al. The miocene: the future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4):e2020PA004037. doi: 10.1029/2020PA004037

    [11]

    Butzin M, Lohmann G, Bickert T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26(1):PA1203.

    [12]

    Lunt D J, Valdes P J, Haywood A, et al. Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation[J]. Climate Dynamics, 2008, 30(1):1-18.

    [13]

    Rögl F. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview)[J]. Geologica Carpathica, 1999, 50(4):339-349.

    [14]

    Torfstein A, Steinberg J. The Oligo-Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea[J]. Scientific Reports, 2020, 10(1):13817. doi: 10.1038/s41598-020-70652-4

    [15]

    Hamon N, Sepulchre P, Lefebvre V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition (ca. 14 Ma)[J]. Climate of the Past, 2013, 9(6):2687-2702. doi: 10.5194/cp-9-2687-2013

    [16]

    Frigola A, Prange M, Schulz M. A dynamic ocean driven by changes in CO2 and Antarctic ice-sheet in the middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 579:110591. doi: 10.1016/j.palaeo.2021.110591

    [17]

    Herold N, Huber M, Müller R D. Modeling the miocene climatic optimum. Part I: land and atmosphere[J]. Journal of Climate, 2011, 24(24):6353-6372. doi: 10.1175/2011JCLI4035.1

    [18]

    Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition[J]. Nature Geoscience, 2014, 7(5):376-381. doi: 10.1038/ngeo2119

    [19]

    Krapp M, Jungclaus J H. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model[J]. Climate of the Past, 2011, 7(4):1169-1188. doi: 10.5194/cp-7-1169-2011

    [20]

    Nisancioglu K H, Raymo M E, Stone P H. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway[J]. Paleoceanography, 2003, 18(1):1006.

    [21]

    Steph S, Tiedemann R, Prange M, et al. Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway[J]. Paleoceanography, 2006, 21(4):PA4221.

    [22]

    Wei J L, Liu H L, Zhao Y, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617:111509. doi: 10.1016/j.palaeo.2023.111509

    [23]

    Kirillova V, Osborne A H, Störling T, et al. Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation[J]. Nature Communications, 2019, 10(1):4025. doi: 10.1038/s41467-019-12034-7

    [24]

    Li L J, Yu Y Q, Tang Y L, et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(9):e2019MS002012. doi: 10.1029/2019MS002012

    [25]

    Lin P F, Zhao B W, Wei J L, et al. The super-large ensemble experiments of CAS FGOALS-g3[J]. Advances in Atmospheric Sciences, 2022, 39(10):1746-1765. doi: 10.1007/s00376-022-1439-1

    [26]

    Zheng W P, Yu Y Q, Luan Y H, et al. CAS-FGOALS datasets for the two interglacial epochs of the holocene and the last interglacial in PMIP4[J]. Advances in Atmospheric Sciences, 2020, 37(10):1034-1044. doi: 10.1007/s00376-020-9290-8

    [27]

    Li L J, Dong L, Xie J B, et al. The GAMIL3: model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15):e2020JD032574. doi: 10.1029/2020JD032574

    [28]

    Lin P F, Yu Z P, Liu H L, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3):239-249. doi: 10.1007/s00376-019-9208-5

    [29]

    Xie Z H, Wang L H, Wang Y, et al. Land surface model CAS-LSM: model description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12):e2020MS002339. doi: 10.1029/2020MS002339

    [30]

    Hunke E C, Lipscomb W H. CICE: the Los Alamos sea ice model documentation and software user's manual version 4.1 LA-CC-06-012[R]. Los Alamos: Los Alamos National Laboratory, 2010.

    [31]

    Craig A P, Vertenstein M, Jacob R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1[J]. The International Journal of High Performance Computing Applications, 2012, 26(1):31-42. doi: 10.1177/1094342011428141

    [32]

    Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5):1937-1958. doi: 10.5194/gmd-9-1937-2016

    [33]

    Beerling D J, Fox A, Anderson C W. Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves[J]. American Journal of Science, 2009, 309(9):775-787. doi: 10.2475/09.2009.01

    [34]

    Burls N J, Bradshaw C D, De Boer A M, et al. Simulating miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1)[J]. Paleoceanography and Paleoclimatology, 2021, 36(5):e2020PA004054. doi: 10.1029/2020PA004054

    [35]

    Ji S C, Nie J S, Lechler A, et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene[J]. Earth and Planetary Science Letters, 2018, 499:134-144. doi: 10.1016/j.jpgl.2018.07.011

    [36]

    Steinthorsdottir M, Jardine P E, Rember W C. Near-future pCO2 during the hot miocene climatic optimum[J]. Paleoceanography and Paleoclimatology, 2021, 36(1):e2020PA003900. doi: 10.1029/2020PA003900

    [37]

    Stoll H M, Guitian J, Hernandez-Almeida I, et al. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy[J]. Quaternary Science Reviews, 2019, 208:1-20. doi: 10.1016/j.quascirev.2019.01.012

    [38]

    Allen M B, Armstrong H A. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1-2):52-58. doi: 10.1016/j.palaeo.2008.04.021

    [39]

    Sun J M, Sheykh M, Ahmadi N, et al. Permanent closure of the Tethyan Seaway in the northwestern Iranian Plateau driven by cyclic sea-level fluctuations in the late Middle Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 564:110172. doi: 10.1016/j.palaeo.2020.110172

    [40]

    Hüsing S K, Zachariasse W J, van Hinsbergen D J J, et al. Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway[J]. Geological Society, London, Special Publications, 2009, 311(1):107-132. doi: 10.1144/SP311.4

    [41]

    Bialik O M, Frank M, Betzler C, et al. Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean[J]. Scientific Reports, 2019, 9(1):8842. doi: 10.1038/s41598-019-45308-7

    [42]

    Brierley C M, Fedorov A V. Comparing the impacts of Miocene-Pliocene changes in inter-ocean gateways on climate: central American Seaway, Bering Strait, and Indonesia[J]. Earth and Planetary Science Letters, 2016, 444:116-130. doi: 10.1016/j.jpgl.2016.03.010

    [43]

    Hu A X, Meehl G A, Han W Q, et al. Effects of the Bering Strait closure on AMOC and global climate under different background climates[J]. Progress in Oceanography, 2015, 132:174-196. doi: 10.1016/j.pocean.2014.02.004

    [44]

    Steele M, Morley R, Ermold W. PHC: a global ocean hydrography with a high-quality Arctic Ocean[J]. Journal of Climate, 2001, 14(9):2079-2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2

    [45]

    de Vries P, Weber S L. The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation[J]. Geophysical Research Letters, 2005, 32(9):L09606.

    [46]

    Deshayes J, Curry R, Msadek R. CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic[J]. Journal of Climate, 2014, 27(9):3298-3317. doi: 10.1175/JCLI-D-12-00700.1

    [47]

    Jüling A, Zhang X, Castellana D, et al. The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans[J]. Ocean Science, 2021, 17(3):729-754. doi: 10.5194/os-17-729-2021

  • 期刊类型引用(3)

    1. 王首良,李元昊,马婷钰,段祎乐. 滨里海盆地早二叠世孔谷期盐构造特征及其形成机制. 海洋地质前沿. 2024(01): 65-78 . 百度学术
    2. 韩续,索艳慧,李三忠,丁雪松,宋双双,田子晗,付新建. 新近纪以来华北东部古地貌演化数值模拟及陆架海沉降控制. 古地理学报. 2024(01): 192-207 . 百度学术
    3. 陈念楠,李满根,关宝文,宋志杰,段建兵,李西得,刘武生,刘颖,范鹏飞. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究. 物探与化探. 2022(05): 1149-1156 . 百度学术

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  8
  • PDF下载量:  46
  • 被引次数: 3
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-07-25
  • 刊出日期:  2024-08-25

目录

/

返回文章
返回