全新世以来南黄海中部泥质区沉积物的源汇过程及其控制因素

谷玉, 常鑫, 孔凡兴, 兰凯, 庄光超, 刘喜停

谷玉,常鑫,孔凡兴,等. 全新世以来南黄海中部泥质区沉积物的源汇过程及其控制因素[J]. 海洋地质与第四纪地质,2024,44(5): 140-150. DOI: 10.16562/j.cnki.0256-1492.2024051401
引用本文: 谷玉,常鑫,孔凡兴,等. 全新世以来南黄海中部泥质区沉积物的源汇过程及其控制因素[J]. 海洋地质与第四纪地质,2024,44(5): 140-150. DOI: 10.16562/j.cnki.0256-1492.2024051401
GU Yu,CHANG Xin,KONG Fanxing,et al. Holocene sediment source-to-sink processes and their controlling factors in the central South Yellow Sea mud area[J]. Marine Geology & Quaternary Geology,2024,44(5):140-150. DOI: 10.16562/j.cnki.0256-1492.2024051401
Citation: GU Yu,CHANG Xin,KONG Fanxing,et al. Holocene sediment source-to-sink processes and their controlling factors in the central South Yellow Sea mud area[J]. Marine Geology & Quaternary Geology,2024,44(5):140-150. DOI: 10.16562/j.cnki.0256-1492.2024051401

全新世以来南黄海中部泥质区沉积物的源汇过程及其控制因素

基金项目: 国家自然科学基金项目“末次冰消期以来浙闽沿岸泥质沉积物内活性铁源汇过程及环境响应”(42276060);山东省优秀青年基金项目(ZR202102200364)
详细信息
    作者简介:

    谷玉(1997—),女,硕士研究生,地质学专业,E-mail:guyu5129@stu.ouc.edu.cn

    通讯作者:

    刘喜停(1983—),男,教授,从事海洋沉积学研究,E-mail:liuxiting@ouc.edu.cn

  • 中图分类号: P736

Holocene sediment source-to-sink processes and their controlling factors in the central South Yellow Sea mud area

  • 摘要:

    南黄海中部泥质区沉积了大量来自邻近河流的陆源沉积物,是研究沉积物物源的良好区域,但其沉积物的输运过程和控制因素尚不明确。本文利用南黄海中部泥质区岩芯YSCW-1中沉积物的粒度和元素组成特征,查明自全新世以来研究区沉积物的源汇过程及其控制因素。基于14C放射年龄,YSCW-1岩芯沉积物为9.3 ka以来的沉积,泥质沉积中心形成于约6.5 ka。粒度组成表明研究区沉积物主要由砂、粉砂和黏土组成。基于地球化学相关指标,研究区沉积物来源受到黄河和长江的影响。6.7 ka以前,黄河沉积物占据主导地位;6.7 ka之后长江对南黄海中部泥质区的贡献量增加,可能与黄海现代环流体系的形成有关,海洋锋面限制了黄河以及朝鲜河流沉积物向南黄海中部泥质区的输送。

    Abstract:

    The central South Yellow Sea mud area is an ideal object for the study of sediment provenance because of the large amount of terrigenous sediments discharged from neighboring rivers. However, the transport processes and controlling factors of these sediments in this area remain unclear. To understand the sediment source-to-sink processes and their controlling factors in the study area since the Holocene, the grain size and element geochemistry of sediments in core YSCW-1 from the mud area were analyzed. The AMS14C ages of core YSCW-1 indicate that the time of deposition is since 9.3 ka, and the formation of the mud depocenter occurred around 6.5 ka. The sediments are mainly composed of sandy silt, clayey silt, and silt. Relevant geochemical indices reveal that, the sediment sources in the study area are mainly from the Huanghe (Yellow) River and the Changjiang (Yangtze) River. Before 6.7 ka, sediments were mainly derived from the Hanghe River. After 6.7 ka, contribution from the Changjiang River increased, which may be related to the establishment of the modern circulation system in the Yellow Sea. Marine fronts may have limited the transport of sediments from the Huanghe River and Korean rivers to the mud area in the central South Yellow Sea.

  • 末次冰消期以来,由于全球海平面变化,中国边缘海陆架经历了剧烈的沉积环境演化,导致其沉积过程发生显著变化,并广泛发育泥质沉积区[1]。黄海作为一个典型的半封闭陆架海,由于其独特的地理位置,许多沿岸河流携带陆源物质进入黄海,其沉积物主要来自于中国大陆和朝鲜半岛的河流[2]。来自河流的陆源碎屑沉积物在洋流、海平面等控制下在黄海沉积,形成了多个泥质沉积中心[3-6]。南黄海中部泥质区是黄海最大的泥质区,自20世纪80年代以来,前人对南黄海中部泥质区开展了广泛研究,主要集中于物质来源[7-8]、沉积环境[9-10]及其形成机制[11-12]。早期沉积动力学研究认为,南黄海中部泥质区的形成与气旋环流有关[12],该气旋环流受黄海沿岸流(YSCC)和黄海暖流(YSWC)的共同控制[13]。然而越来越多的水文调查数据研究表明,YSWC的轴线位于黄海槽的西侧[14-15],对南黄海气旋环流的观点提出了挑战。数值模拟研究表明,弱潮流的存在导致了低能的环境,使细粒的黏土沉积物沉积在南黄海中部泥质区[11, 16-17]。有研究提出,洋流锋面在细粒沉积物的沉积中发挥了重要作用,如剪切锋会阻止悬浮沉积物向外输运从而导致沉积物沉积[18],跨锋输沙对于南黄海中部泥质区的形成也具有重要作用[19-20]

    全新世期间南黄海中部泥质区主要受到黄河和长江大流量的影响[21-22]。黄河和长江每年向海洋排放的悬浮泥沙分别约为1.1×109 t和5.0×108 t,约占世界河流泥沙负荷的10% [23]。由于过去几十年的气候变化和人类活动,黄河和长江的输沙量分别减少到1.5×108 t/a(2000—2005年)[24]和1.4×108 t/a(2003年以来)[25-26]。尽管如此,黄河和长江因其流量大,仍被认为是南黄海的主要沉积物来源。流经朝鲜半岛的小河流每年都会向黄海贡献少量悬浮沉积物[2]。对于南黄海中部泥质区沉积物物源的识别,多数观点倾向于该区域沉积物是多源的。在早期的研究中,许多学者普遍认为南黄海中部泥质区的沉积物来自于黄河和苏北老黄河物质[27-30]。随后,基于矿物学[8, 31]、地球化学[7, 32]、磁学[33-34]、数值模拟[35]等证据发现该地区可能是由黄河、长江和朝鲜半岛河流(如锦江、汉江等)混合而成的多源区,但是这些不同来源的相对贡献仍有争议。本文利用沉积物粒度和元素组成特征,对南黄海中部泥质区YSCW-1岩芯沉积物进行综合研究,探讨在不同沉积条件下中国河流和朝鲜半岛河流的相对贡献程度,同时结合前人研究查明全新世以来研究区沉积物的源汇过程。

    黄海是位于太平洋西北部的半封闭边缘海,面积约3.8 × 105 km2,平均水深为55 m,最大水深达100 m。黄海西靠中国,东临朝鲜半岛,南接东海,北部与渤海通过渤海海峡相接。黄海被划分为北黄海和南黄海,分界线为山东半岛成山头和朝鲜半岛长山串之间的连线(图1)。黄海陆架较为平坦,中部有一个北西-南东向的细长深槽,深度约80 m,即为黄海海槽。受东亚季风的影响,黄海的环流具有明显的季节性变化[36]。冬季,黄海西部环流由YSCC、YSWC和江苏沿岸流组成(图1)。东部,YSWC和向南流入的朝鲜沿岸流(KCC)组成一个顺时针环流(图1)。YSWC是对马暖流(TWC)的一个分支,携带高温高盐水进入黄海,其路径具有季节性和年际变化[37]。夏季,YSWC很弱甚至消失,残留的冬季水聚集在黄海槽中央底层水中保持低温,形成了现代黄海冷水团(YSCWM),具有低温高盐特征[38]。黄海中部泥质区是黄海陆架上最大的泥质区之一,其面积约为6.4×104 km2 [39],平均厚度为2~4 m,最厚处可达到约11 m [40]

    图  1  区域背景及YSCW-1岩芯位置图
    SDCC:山东沿岸流,YSCC:黄海沿岸流,YSWC:黄海暖流,CDW:长江冲淡水,KCC:朝鲜沿岸流,TWC:对马暖流,KC:黑潮。灰色区域为南黄海中部泥质区,虚线为黄海冷水团位置(YSCWM)[6, 9-10, 41];红色圆点表示YSCW-1岩芯位置。
    Figure  1.  The study area and the location of core YSCW-1
    SDCC: Shandong coastal current; YSCC: Yellow Sea coastal current; YSWC: Yellow Sea warm current; CDW: Changjiang diluted water; KCC: Korean coastal current; TWC: Tsushima warm current; KC: Kuroshio current. The gray area indicates the central South Yellow Sea mud area, and the dashed line represents the Yellow Sea Cold Water Mass (YSCWN) [6, 9-10, 41]. Core YSCW-1 is indicated by the red dot.

    岩芯YSCW-1(35°27.9′N、123°37.5′E)于2021年8月采用重力柱取样方法取自南黄海中部泥质区(图1),站位水深72.2 m。岩芯全长402 cm,按照5 cm间隔取样,共获得81个样品。

    本文从YSCW-1岩芯中挑选出4个层位的有孔虫混合样品,送往美国Beta Analyses公司进行有孔虫壳体的AMS14C年代测试。AMS14C测年数据使用Calib 8.20程序(http://calib.org/calib/)和Marine 20校正曲线转换为日历年龄(相对于公元1950年),区域海洋储库年龄ΔR=−173±88[42-45],利用线性插值法和线性外推法计算年代控制点以内及其外侧年代序列。

    取0.2 g样品,首先加入5 mL 30%的过氧化氢溶液静置24 h去除有机质,再加入5 mL盐酸(1 mol/L)静置12 h以去除碳酸盐组分,多次离心清洗沉积物至Ph值为7。最后加入5 mL六偏磷酸钠(0.1 moL/L)分散剂,并用超声波将溶液分散均匀,之后在自然资源部第一海洋研究所利用Malvern 3000激光粒度仪测试其陆源组分的粒度数据,粒度分辨率达到0.01 Φ,测量过程中的重复相对误差在3%以内。

    海洋沉积物的主量和微量元素是示踪物源的有效指标。为了分析这些元素的组成特征,首先需要把样品在60℃的环境下干燥24 h,然后经玛瑙臼和杵将样品研磨至200目以下。为避免有机质的影响,将样品在600℃高温下灼烧2 h,确保有机质燃烧充分。灼烧后,取样品粉末30~50 mg置于加热板上,加入由氢氟酸和硝酸组成的混合溶液。然后,用2%的HNO3稀释洗脱后的样品。最后,利用青岛海洋地质研究所实验测试中心的电感耦合等离子发射光谱仪IRIS Advantage对样品进行主量元素测试,微量元素通过电感耦合等离子体质谱仪VG-X7测定。在测试过程中,使用10 μg/L的铑元素作为内标以监测仪器的稳定性并减少误差。为确保分析的精密度和准确性,对国际标准物质BHVO-2,W-2a,GSP-2和GSD-9,以及空白样进行重复检测。实验结果显示,主量元素的测试精度普遍优于1%~2%,微量元素的测试精度普遍优于1%~3%。

    YSCW-1岩芯沉积物的AMS14C测年数据如表1所示。基于有孔虫壳体AMS 14C年龄模式图,YSCW-1岩芯沉积物的底部年龄为9.3 ka,为全新世以来的沉积(图2c)。岩芯整体的平均沉积速率为50 cm/ka,沉积速率变化不大,其变化范围为46.3~62.2 cm/ka(图2d),表明沉积环境稳定。

    表  1  YSCW-1岩芯沉积物AMS 14C测年数据
    Table  1.  AMS14C dating data of core YSCW-1
    深度/cm AMS14C年龄/aBP 日历年龄/aBP 2σ范围/aBP
    15~17 1940 ± 30 1521 17601289
    115~117 3690 ± 30 3654 39243384
    215~217 4940 ± 30 5262 55244969
    305~307 6720 ± 40 7205 74256984
    注:测年材料为有孔虫。
    下载: 导出CSV 
    | 显示表格
    图  2  YSCW-1岩芯沉积物粒度组成和年龄模式图
    a:粒径分布,b:平均粒径,c:AMS14C年龄,d:沉积速率。
    Figure  2.  Grain-size composition of core sediments and age model for core YSCW-1
    a: Grain-size distribution, b: mean grain size, c: AMS14C age, d: sedimentation rate.

    YSCW-1岩芯沉积物由砂、粉砂和黏土组成,粉砂占主导(平均含量为74.96%)。根据谢帕德沉积物命名法,沉积物类型为黏土质粉砂、砂质粉砂和粉砂(图2a)。粒度组成特征表明泥质沉积中心形成于约6.5 ka(图2a)。0~270 cm沉积物主要以砂质粉砂和黏土质粉砂为主,粉砂占据主导地位(平均为80.05%),砂含量低于8%,有大量贝壳碎片出现。平均粒径波动较大,变化范围为5.65~7.58 Φ,平均为6.61 Φ(图2b)。270~370 cm沉积物主要以砂质粉砂为主,底部可见少量贝壳碎片,该段沉积物的平均粒径(平均为5.65 Φ)和砂含量(平均含量为22.74%) 为整个岩芯的最高值(图2a、b),表明该单元沉积于较高能的环境。370~400 cm沉积物主要以黏土质粉砂为主(图2a),有植物碎屑出现。

    YSCW-1岩芯沉积物中Al2O3含量为11.85%~16.88%,平均含量为15.06%。Cr含量变化较大,含量为(49.7~90.4)×10−6,平均含量为76.4×10−6。Sc含量为(9.6~16.9)×10−6,平均含量为14.3×10−6;Th含量为(10.3~15.6)×10−6,平均含量为13.8×10−6。岩芯沉积物中各元素的垂向变化与粒度变化特征相似(图3),根据其变化趋势,YSCW-1岩芯可分为3个沉积阶段:U1沉积单元(9.3~8.6 ka),Al2O3、Cr、Sc和Th含量均表现为先升高后降低的趋势;U2沉积单元(8.6~6.7 ka),Al2O3、Cr、Sc和Th含量保持稳定,是整个岩芯的低值区;U3沉积单元(6.7~1.2 ka),Al2O3、Cr、Sc和Th含量升高。

    图  3  YSCW-1岩芯沉积物主量元素和微量元素随年龄变化图
    Figure  3.  Variation of major and trace elements with age of the sediments of core YSCW-1

    YSCW-1岩芯沉积物的稀土元素含量如表2所示。沉积物中轻稀土元素总量(∑LREE)为(140.48~175.16)×10−6,平均值为162.08×10−6。重稀土元素总量(∑HREE)为(14.39~19.70)×10−6,平均值为16.73×10−6。稀土元素总量(∑REE)为(154.89~192.79)×10−6,平均值为178.81×10−6,其含量高于上陆壳稀土元素总量(146.37 ×10−6[46]。与中国内陆河流相比,其含量高于长江沉积物(167×10−6),更高于黄河沉积物(137×10−6[47]。∑LREE/∑HREE比值为8.35~10.06,平均值为9.69,表明LREE相对富集,HREE表现为亏损。δEu值为0.67~0.72,表现出明显的Eu异常。δCe值为0.96~1.03,平均值为0.99,其变化区间较小,未表现出明显的Ce异常。∑REE随年龄变化总体上表现为先增大后减少的趋势(图4),与粒度变化趋势基本一致(图2),表明粒度在一定程度上影响了稀土元素的组成。

    表  2  YSCW-1岩芯沉积物稀土元素含量(10−6)及特征值
    Table  2.  Content (10−6) and characteristic values of rare earth elements in sediments of core YSCW-1
    最小值 最大值 平均值 标准偏差 变异系数
    La 32.79 40.86 37.98 2.62 0.07
    Ce 65.03 83.69 76.01 5.77 0.08
    Pr 7.88 9.64 8.95 0.55 0.06
    Nd 27.98 34.72 32.20 2.13 0.07
    Sm 5.00 6.22 5.74 0.37 0.07
    Eu 1.07 1.31 1.21 0.07 0.06
    Gd 4.35 5.59 5.01 0.33 0.07
    Tb 0.66 0.90 0.77 0.05 0.07
    Dy 3.73 5.18 4.34 0.30 0.07
    Ho 0.75 1.07 0.88 0.06 0.07
    Er 2.08 2.95 2.45 0.16 0.07
    Tm 0.33 0.47 0.39 0.02 0.06
    Yb 2.15 3.06 2.51 0.16 0.06
    Lu 0.33 0.49 0.39 0.02 0.06
    ∑LREE 140.48 175.16 162.08 11.44 0.07
    ∑HREE 14.39 19.70 16.73 1.08 0.06
    ∑REE 154.89 192.79 178.81 12.39 0.07
    ∑LREE/∑HREE 8.35 10.06 9.69 0.31 0.03
    δEu 0.67 0.72 0.69 0.01 0.02
    δCe 0.96 1.03 0.99 0.01 0.01
    下载: 导出CSV 
    | 显示表格
    图  4  YSCW-1岩芯沉积物稀土元素特征值垂向分布图
    Figure  4.  Vertical distribution of characteristic values of rare earth elements in sediments of core YSCW-1

    中国河流(长江和黄河)与朝鲜河流(如锦江、汉江、荣山江)向南黄海输送了大量的沉积物,两国河流沉积物在元素组成上具有明显的差异[47-49]。黄河沉积物在碱性和碱性稀土元素(如Na、Ca、Sr、Ba)上表现出明显的富集特征;而长江沉积物则更加富集Cu、Zn、Pb、Fe、Co、Ni、Mn、Sc和Ti等过渡金属[50]。相较之下,朝鲜河流沉积物中Ca和Sr的浓度明显低于中国河流沉积物,特别是黄河沉积物[2]。在过渡金属中,朝鲜河流沉积物中Mn的富集程度很高,其富集程度超过了黄河沉积物的10倍[2]。因此,这些不同来源的沉积物在元素组成上的显著差异为辨别南黄海中部泥质区的沉积物来源提供了重要依据。

    黄河、长江和朝鲜河流沉积物中微量元素的含量存在差异[49, 51-52],因此微量元素可以作为指示黄海沉积物物源的指标,如Sc/Al和Cr/Th等元素比值,这4种元素在沉积物形成过程中行为相对保守且在海洋沉积物中富集程度较高,Sc/Al和Cr/Th比值在长江、黄河和朝鲜河流沉积物中具有不同的值,已被广泛应用于识别南黄海沉积物来源[52-53]。本研究采用Sc/Al和Cr/Th比值来识别YSCW-1岩芯沉积物物源。

    Cr/Th-Sc/Al散点图显示,研究区的沉积物元素比值与黄河(包括现代和老黄河)和长江沉积物相似,与朝鲜半岛的河流沉积物存在明显的差异,表明YSCW-1岩芯沉积物来自于黄河和长江,并未受到朝鲜半岛河流的影响。U1沉积单元位于长江沉积物样品周围。U2沉积单元Cr/Th和Sc/Al接近于黄河沉积物样品,表明U2沉积物来自于黄河;U3沉积单元的样品集中分布于长江沉积物样品周围,表明U3单元沉积物来自于长江(图5a)。

    图  5  YSCW-1岩芯沉积物物源判别散点图
    a:Sc/Al-Cr/Th散点图,长江、黄河和朝鲜半岛河流数据来自文献[48, 49],老黄河数据来自文献[57];b:δEu - (La/Yb)N散点图,长江、黄河和朝鲜半岛河流数据来自文献[32, 58],老黄河数据来自文献[58]。
    Figure  5.  Source discrimination plots for sediments from Core YSCW-1
    a: Sc/Al - Cr/Th scatter diagram, with data for the Changjiang River, Huanghe River, and Korean rivers from references [48, 49], and data for the Old Huanghe River from reference [57]; b: δEu-(La/Yb)N scatter diagram, with data for the Changjiang River, Huanghe River, and Korean rivers from references [32, 58], and data for the Old Huanghe River from reference [58].

    稀土元素在表生环境下含量相对稳定,海相沉积物中稀土元素含量及分异特征主要受烃源岩稀土元素组成控制,搬运过程和沉积环境对其影响较小。中国河流和朝鲜半岛河流流域岩石组成和风化模式存在差异,导致其稀土元素存在很大的变化[32]。相对于中国河流,朝鲜半岛河流表现为上地壳(UCC)标准化的轻稀土元素富集,并具有明显的(La/Yb) - (Gd/Yb)UCC特征[48]。这些特征为区分不同河流体系的沉积物提供了科学依据。在以往的研究中,稀土元素已成功应用于区分中国长江与黄河的沉积物输入,证明其在物源识别中的有效性[54-56]。本文采用δEu-(La/Yb)N指标,通过将该岩芯的稀土元素特征与已知的长江、黄河及朝鲜半岛河流沉积物进行对比,判断YSCW-1岩芯沉积物与黄河、长江及朝鲜半岛河流沉积物的相似程度。

    据前文分析,YSCW-1岩芯沉积物中的稀土元素含量与粒度具有一定相关性,在细粒沉积物中,稀土元素含量高(图2图4)。因此,在利用稀土元素判别物源时,必须排除粒度的影响。利用δEu和(La/Yb)N与粒度进行相关性分析,发现其相关性较小(图6)。δEu-(La/Yb)N散点图表明,YSCW-1岩芯沉积物是黄河和长江的混合源,未受到朝鲜半岛河流的影响(图5b)。U1和U2单元沉积物的样品大部分与黄河沉积物重叠,而U3单元沉积物与长江沉积物重叠(图5b)。

    图  6  YSCW-1岩芯沉积物δEu、(La/Yb)N与平均粒径相关性
    Figure  6.  Correlation between δEu, (La/Yb)N and mean grain size of sediments in core YSCW-1

    通过Cr/Th-Sc/Al和δEu-(La/Yb)N散点图的分析,明确了YSCW-1岩芯沉积物主要来自黄河和长江,并且在不同的沉积单元中表现出明显的时间变化特征。U1单元在Cr/Th-Sc/Al图中显示为长江来源(图5a),而在δEu-(La/Yb)N图中显示为黄河来源(图5b)。考虑到U1沉积单元样品数量极少,指示的结果可能存在偶然性,因此,通过对研究区沉积历史的重建,以更准确地推断出U1沉积单元的实际物质来源。

    根据前文讨论,南黄海中部泥质区沉积物主要来自于长江和黄河。由于黄海的海洋环流具有显著的季节性变化,沉积物的输运模式也表现出明显的季节性特征,形成“夏储冬输”的输运模式,夏季河流沉积物主要沉积在河流近端的河口区,冬季向外海输送[59-61]

    U1沉积单元(9.3~8.6 ka),黄海海平面比现今海平面低约3.5~19.5 m[62]。14.2~9.0 ka,古黄河携带大量沉积物进入南黄海[63];11.6~9.6 ka,古黄河河口向渤海海峡移动,在山东半岛近岸形成了黄河水下三角洲[64];随着海平面不断上升,9.6~8.5 ka,古黄河河口向南黄海方向移动,在江苏沿岸形成水下三角洲(图7a[63]。在强潮流体系下,来自于黄河的沉积物直接排入南黄海[34]。古长江随海平面的上升向陆地后退,在全新世早期移动到南黄海[65]。由于长江浅滩的存在,使得长江泥沙可能无法向南移动[66]。此时长江沉积物大部分位于切割河谷中[67],对于南黄海中部泥质区的影响很小。因此,U1单元沉积物主要来源于黄河。

    图  7  河口移动和海洋环流对研究区周边河流沉积物输运影响示意图[75-76]
    i:黄河水下三角洲,ii:古黄河水下三角洲,iii和iv:黄河三角洲超级叶瓣,v:长江三角洲,vi,浙闽沿岸泥质区,vii:南黄海中部泥质区。SPF:山东半岛锋面,JSCF:江苏沿岸锋面,WKCF:朝鲜西部海洋锋面。橙色虚线代表黄河沉积物输运路径,蓝色虚线代表长江沉积物输运路径,黄色虚线代表朝鲜河流沉积物输运路径。
    Figure  7.  Schematic diagram of the influence of estuarine movement and ocean circulation on sediment transport in rivers around the study area[75-76]
    i: Huanghe River subaqueous delta, ii: Old Huanghe River subaqueous delta, iii and iv: Huanghe River delta superlobes, v: Changjiang River Delta, vi: Zhe-Min coastal mud area, vii: the central South Yellow Sea mud area. SPF: Shandong Peninsula Front, JSCF: Jiangsu Coastal Front, WKCF: Western Korean Coastal Front. The orange dashed line represents the sediment transport path of the Huanghe River, the blue dashed line represents the sediment transport path of the Changjiang River, and the yellow dashed line represents the sediment transport path of Korean rivers.

    U2沉积单元(8.6~6.7 ka),海平面快速上升,大约7.6 ka海平面上升到现代水平,7.5 ka时达到2.1 m高海平面[62]。古黄河口则随着海平面的不断上升而逐渐向陆后退,8.5~7.0 ka时,黄河在渤海西岸入海(图7b),因未发育黄河水下三角洲,容易造成入海沉积物的再悬浮,并将其输送至南黄海中部泥质区[64]。约8.2 ka时,黄河河口到达现在的位置(图7b[64, 68]。黄河的悬浮沉积物向东南移动,绕过山东半岛,沉积在南黄海西北部和中部[30, 69]。在此时期,由于夏季降水增加及东亚季风增强,气候湿润,导致河流径流量大[70],因此该单元沉积物的粒度最粗(图3)。在海平面不断上升的过程中,古长江浅滩被淹没,长江口从南黄海向西进一步后退至江苏沿岸(图7b[65]。在全新世中期海平面达到最高点后,现今长江三角洲地区形成了河口[65]。8 ka左右,古长江三角洲开始发育[67],长江沉积物随沿岸流向南移动(图7b)。U2沉积单元中有少量来自于长江的样品(图5),这可能是由长江冲淡水(CDW)向东北携带了一些较细的沉积物到达研究区。

    U3沉积单元(6.7~1.2 ka),沉积物粒度更细。该时期,海平面波动幅度极小[62]。6.5 ka左右,YSWC形成,标志着黄海现代环流体系的建立,黄海由此建立起海洋陆架环境[10, 34, 71]。6.7 ka以来,长江沉积物对于南黄海的供应量增加可能与黄海环流体系以及海洋锋面相关。冬季,黄海环流以YSWC为主;夏季,YSWC消失,黄海冷水团则是南黄海重要的水文特征。黄河携带的沉积物从渤海随沿岸流向东南方向移动,绕过山东半岛,进入黄海沉积[30, 69]。冬季,由于山东半岛锋面的存在(图7c),阻止了黄河沉积物从渤海跨锋面输送进入南黄海中部泥质区的供应[31]。此外,位于YSWC和YSCC之间的江苏沿岸锋面也可能中断了黄河沉积物和老黄河悬浮沉积物进入研究区[16],因此该时期黄河沉积物的供应量减少。朝鲜河流沉积物主要由KCC向南输送,大部分被朝鲜西部海洋锋截留在黄海东南泥质区中,仅有小部分被横流和YSWC向西北输送到南黄海中部泥质区[8, 72]。全新世中期东海海平面达到最高点(约7 ka),长江沉积物在东海沿岸流的作用下向南输送在东海内陆架形成了远端水下泥楔[65, 67, 73]。夏季,长江沉积物可随CDW向东北向扩散进入南黄海 [53]。长江悬浮沉积物一旦到达该区域,它们就会被冷水团捕获而沉积在南黄海中部泥质区[72, 74],导致该时期长江沉积物的贡献量增加。江苏沿岸的沉积物,包括古黄河水下三角洲沉积物和夏季沉积的长江沉积物,在冬季也可以再悬浮随YSCC向东南方向输送,然后再通过北向的YSWC输送到南黄海甚至北黄海[53]

    (1)YSCW-1岩芯沉积物为9.3 ka以来的沉积,连续的沉积速率指示沉积环境稳定。沉积物的类型为黏土质粉砂、砂质粉砂和粉砂。稳定的粒度组成表明泥质区的沉积中心形成于约6.5 ka。

    (2)Sc/Al-Cr/Th和δEu-(La/Yb)N散点图表明,YSCW-1岩芯沉积物来源于黄河和长江。9.3~6.7 ka期间,黄河沉积物是研究区的主要来源;而在6.7~1.2 ka期间,长江沉积物则成为研究区的主要来源,黄河的影响相对有限。

    (3)YSCW-1岩芯沉积物物源变化受海平面变化、洋流和海洋锋面的影响。6.7 ka之前,黄河沉积物直接沉积在南黄海。6.7 ka以来,YSWC的形成使更多的长江沉积物输送至南黄海,夏季YSCWM的存在使长江沉积物在南黄海沉积。冬季海洋锋面的存在抑制了黄河沉积物向研究区的输送,导致了黄河贡献量的减少。

  • 图  1   区域背景及YSCW-1岩芯位置图

    SDCC:山东沿岸流,YSCC:黄海沿岸流,YSWC:黄海暖流,CDW:长江冲淡水,KCC:朝鲜沿岸流,TWC:对马暖流,KC:黑潮。灰色区域为南黄海中部泥质区,虚线为黄海冷水团位置(YSCWM)[6, 9-10, 41];红色圆点表示YSCW-1岩芯位置。

    Figure  1.   The study area and the location of core YSCW-1

    SDCC: Shandong coastal current; YSCC: Yellow Sea coastal current; YSWC: Yellow Sea warm current; CDW: Changjiang diluted water; KCC: Korean coastal current; TWC: Tsushima warm current; KC: Kuroshio current. The gray area indicates the central South Yellow Sea mud area, and the dashed line represents the Yellow Sea Cold Water Mass (YSCWN) [6, 9-10, 41]. Core YSCW-1 is indicated by the red dot.

    图  2   YSCW-1岩芯沉积物粒度组成和年龄模式图

    a:粒径分布,b:平均粒径,c:AMS14C年龄,d:沉积速率。

    Figure  2.   Grain-size composition of core sediments and age model for core YSCW-1

    a: Grain-size distribution, b: mean grain size, c: AMS14C age, d: sedimentation rate.

    图  3   YSCW-1岩芯沉积物主量元素和微量元素随年龄变化图

    Figure  3.   Variation of major and trace elements with age of the sediments of core YSCW-1

    图  4   YSCW-1岩芯沉积物稀土元素特征值垂向分布图

    Figure  4.   Vertical distribution of characteristic values of rare earth elements in sediments of core YSCW-1

    图  5   YSCW-1岩芯沉积物物源判别散点图

    a:Sc/Al-Cr/Th散点图,长江、黄河和朝鲜半岛河流数据来自文献[48, 49],老黄河数据来自文献[57];b:δEu - (La/Yb)N散点图,长江、黄河和朝鲜半岛河流数据来自文献[32, 58],老黄河数据来自文献[58]。

    Figure  5.   Source discrimination plots for sediments from Core YSCW-1

    a: Sc/Al - Cr/Th scatter diagram, with data for the Changjiang River, Huanghe River, and Korean rivers from references [48, 49], and data for the Old Huanghe River from reference [57]; b: δEu-(La/Yb)N scatter diagram, with data for the Changjiang River, Huanghe River, and Korean rivers from references [32, 58], and data for the Old Huanghe River from reference [58].

    图  6   YSCW-1岩芯沉积物δEu、(La/Yb)N与平均粒径相关性

    Figure  6.   Correlation between δEu, (La/Yb)N and mean grain size of sediments in core YSCW-1

    图  7   河口移动和海洋环流对研究区周边河流沉积物输运影响示意图[75-76]

    i:黄河水下三角洲,ii:古黄河水下三角洲,iii和iv:黄河三角洲超级叶瓣,v:长江三角洲,vi,浙闽沿岸泥质区,vii:南黄海中部泥质区。SPF:山东半岛锋面,JSCF:江苏沿岸锋面,WKCF:朝鲜西部海洋锋面。橙色虚线代表黄河沉积物输运路径,蓝色虚线代表长江沉积物输运路径,黄色虚线代表朝鲜河流沉积物输运路径。

    Figure  7.   Schematic diagram of the influence of estuarine movement and ocean circulation on sediment transport in rivers around the study area[75-76]

    i: Huanghe River subaqueous delta, ii: Old Huanghe River subaqueous delta, iii and iv: Huanghe River delta superlobes, v: Changjiang River Delta, vi: Zhe-Min coastal mud area, vii: the central South Yellow Sea mud area. SPF: Shandong Peninsula Front, JSCF: Jiangsu Coastal Front, WKCF: Western Korean Coastal Front. The orange dashed line represents the sediment transport path of the Huanghe River, the blue dashed line represents the sediment transport path of the Changjiang River, and the yellow dashed line represents the sediment transport path of Korean rivers.

    表  1   YSCW-1岩芯沉积物AMS 14C测年数据

    Table  1   AMS14C dating data of core YSCW-1

    深度/cm AMS14C年龄/aBP 日历年龄/aBP 2σ范围/aBP
    15~17 1940 ± 30 1521 17601289
    115~117 3690 ± 30 3654 39243384
    215~217 4940 ± 30 5262 55244969
    305~307 6720 ± 40 7205 74256984
    注:测年材料为有孔虫。
    下载: 导出CSV

    表  2   YSCW-1岩芯沉积物稀土元素含量(10−6)及特征值

    Table  2   Content (10−6) and characteristic values of rare earth elements in sediments of core YSCW-1

    最小值 最大值 平均值 标准偏差 变异系数
    La 32.79 40.86 37.98 2.62 0.07
    Ce 65.03 83.69 76.01 5.77 0.08
    Pr 7.88 9.64 8.95 0.55 0.06
    Nd 27.98 34.72 32.20 2.13 0.07
    Sm 5.00 6.22 5.74 0.37 0.07
    Eu 1.07 1.31 1.21 0.07 0.06
    Gd 4.35 5.59 5.01 0.33 0.07
    Tb 0.66 0.90 0.77 0.05 0.07
    Dy 3.73 5.18 4.34 0.30 0.07
    Ho 0.75 1.07 0.88 0.06 0.07
    Er 2.08 2.95 2.45 0.16 0.07
    Tm 0.33 0.47 0.39 0.02 0.06
    Yb 2.15 3.06 2.51 0.16 0.06
    Lu 0.33 0.49 0.39 0.02 0.06
    ∑LREE 140.48 175.16 162.08 11.44 0.07
    ∑HREE 14.39 19.70 16.73 1.08 0.06
    ∑REE 154.89 192.79 178.81 12.39 0.07
    ∑LREE/∑HREE 8.35 10.06 9.69 0.31 0.03
    δEu 0.67 0.72 0.69 0.01 0.02
    δCe 0.96 1.03 0.99 0.01 0.01
    下载: 导出CSV
  • [1]

    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17):2141-2156.

    [2]

    Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1):93-120.

    [3] 谷玉, 刘喜停, 吴晓, 等. 山东半岛全新世近岸泥质区沉积过程与沉积记录[J]. 古地理学报, 2022, 24(1):164-179

    GU Yu, LIU Xiting, WU Xiao, et al. Sedimentary processes and records of the mud area off Shandong Peninsula[J]. Journal of Paleogeography, 2022, 24(1):164-179.]

    [4] 刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1): 13-24

    LIU Jian, LI Shaoquan, WANG Shengjie, et al. Sea level changes of the Yellow Sea and formation of the Yellow Sea Warm Current since the last deglaciation [J]. Marine Geology & Quaternary Geology, 1999, 19 (1): 1913-1924.]

    [5] 向荣, 杨作升, 郭志刚, 等. 济州岛西南泥质区粒度组分变化的古环境应用[J]. 地球科学, 2005, 30(5):582-588 doi: 10.3321/j.issn:1000-2383.2005.05.010

    XIANG Rong, YANG Zuosheng, GUO Zhigang, et al. Paleoenvironmental implications of grain-size component variations in the mud area southwest off Cheju island[J]. Earth Science, 2005, 30(5):582-588.] doi: 10.3321/j.issn:1000-2383.2005.05.010

    [6]

    Hu B Q, Yang Z S, Zhao M X, et al. Grain size records reveal variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10):1656-1668. doi: 10.1007/s11430-012-4447-7

    [7]

    Hu B Q, Li J, Zhao J T, et al. Sr–Nd isotopic geochemistry of Holocene sediments from the South Yellow Sea: Implications for provenance and monsoon variability[J]. Chemical Geology, 2018, 479:102-112. doi: 10.1016/j.chemgeo.2017.12.033

    [8]

    Koo H, Lee Y, Kim S, et al. Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud[J]. Geosciences Journal, 2018, 22(6):989-1000. doi: 10.1007/s12303-018-0019-y

    [9]

    Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea Warm Current and the Yellow Sea Cold Water Mass since the Middle Pleistocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 442:48-60. doi: 10.1016/j.palaeo.2015.11.018

    [10]

    Xiang R, Yang Z S, Saito Y, et al. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: Benthic foraminiferal and stable isotopic evidence[J]. Marine Micropaleontology, 2008, 67(1):104-119.

    [11]

    Gao F, Qiao L L, Li G X. Modelling the dispersal and depositional processes of the suspended sediment in the central South Yellow Sea during the winter[J]. Geological Journal, 2016, 51(S1):35-48. doi: 10.1002/gj.2827

    [12]

    Hu D X. Upwelling and sedimentation dynamics[J]. Chinese Journal of Oceanology and Limnology, 1984, 2(1):12-19. doi: 10.1007/BF02888388

    [13]

    Hu D X. Some Striking Features of Circulation in Huanghai Sea and East China Sea [M]//Oceanology of China Seas. Dordrecht, Springer Netherlands. 1994: 27-38.

    [14]

    Lie H J, Oh K H, Cho C H, et al. Wintertime Large Temperature inversions in the Yellow Sea Associated with the Cheju and Yellow Sea Warm Currents[J]. Journal of Geophysical Research: Oceans, 2019, 124(7):4856-4874. doi: 10.1029/2019JC015180

    [15]

    Lin X P, Yang J Y, Guo J S, et al. An asymmetric upwind flow, Yellow Sea Warm Current: 1. New observations in the western Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C04026):1-13.

    [16]

    Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3):248-258. doi: 10.1016/j.ecss.2011.04.003

    [17]

    Zhu Y, Chang R. Preliminary Study of the dynamic origin of the distribution pattern of bottom sediments on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2000, 51(5):663-680. doi: 10.1006/ecss.2000.0696

    [18]

    Gao F, Qiao L L, Li G X. Winter meso-scale shear front in the Yellow Sea and its sedimentary effects[J]. Journal of Ocean University of China, 2016, 15(1):50-56. doi: 10.1007/s11802-016-2668-7

    [19]

    Shi Y, Gao J H, Sheng H, et al. Cross-Front sediment transport induced by quick oscillation of the Yellow Sea Warm Current: Evidence from the sedimentary record[J]. Geophysical Research Letters, 2019, 46(1):226-234. doi: 10.1029/2018GL080751

    [20]

    Zhang X D, Ji Y, Yang Z S, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China Earth Sciences, 2016, 59(2):258-267. doi: 10.1007/s11430-015-5165-8

    [21]

    Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea[J]. Marine Geology, 1991, 98(1):51-72. doi: 10.1016/0025-3227(91)90035-3

    [22]

    Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1):37-45.

    [23]

    Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91:1-21. doi: 10.1086/628741

    [24]

    Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3):331-354.

    [25]

    Yang S L, Milliman J D, Xu K H, et al. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River[J]. Earth-Science Reviews, 2014, 138:469-486. doi: 10.1016/j.earscirev.2014.07.006

    [26]

    Yang S L, Xu K H, Milliman J D, et al. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes[J]. Scientific Reports, 2015, 5(1):1-14.

    [27]

    Kim D, Park B K, Shin I C. Paleoenvironmental changes of the Yellow Sea during the Late Quaternary[J]. Geo-Marine Letters, 1998, 18(3):189-194. doi: 10.1007/s003670050067

    [28]

    Lee H J, Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea[J]. Marine Geology, 1989, 87(2):195-205.

    [29]

    Milliman J D, Li F, Zhao Y Y, et al. Suspended matter regime in the Yellow Sea[J]. Progress in Oceanography, 1986, 17(3):215-227.

    [30]

    Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1):169-176.

    [31]

    Li J, Hu B Q, Wei H L, et al. Provenance variations in the Holocene deposits from the southern Yellow Sea: Clay mineralogy evidence[J]. Continental Shelf Research, 2014, 90:41-51. doi: 10.1016/j.csr.2014.05.001

    [32] 杨守业, 李从先, Lee C B, 等. 黄海周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报, 1233, 48(11):1233-1236

    YANG Shouye, LI Congxian, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Science Bulletin, 48(11): 1233, 48(11):1233-1236.]

    [33] 刘庚, 韩喜彬, 陈燕萍, 等. 南黄海沉积物磁性特征及其对物源变化的指示——以南黄海中部泥质区YSC-10孔为例[J]. 沉积学报, 2021, 39(2):383-394

    LIU Geng, HAN Xibin, CHEN Yanping, et al. Magnetic characteristics of core YSC-310 sediments in the Central Yellow Sea mud area and implications for provenance changes[J]. Acta Sedimentologica Sinica, 2021, 39(2):383-394.]

    [34]

    Wang Y H, Li G X, Zhang W G, et al. Sedimentary environment and formation mechanism of the mud deposit in the central South Yellow Sea during the past 40kyr[J]. Marine Geology, 2014, 347:123-135. doi: 10.1016/j.margeo.2013.11.008

    [35]

    Bian C W, Jiang W S, Greatbatch R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(11):5908-5923. doi: 10.1002/2013JC009116

    [36]

    Li G X, Qiao L L, Dong P, et al. Hydrodynamic condition and suspended sediment diffusion in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(8):6204-6222. doi: 10.1002/2015JC011442

    [37]

    Naimie C E, Blain C A, Lynch D R. Seasonal mean circulation in the Yellow Sea — a model-generated climatology[J]. Continental Shelf Research, 2001, 21(6):667-695.

    [38]

    Park S, Chu P C, Lee J H. Interannual-to-interdecadal variability of the Yellow Sea Cold Water Mass in 1967–2008: Characteristics and seasonal forcings[J]. Journal of Marine Systems, 2011, 87(3):177-193.

    [39] 李广雪, 杨子赓, 刘勇. 中国东部海域海底沉积环境成因研究[M]. 北京: 科学出版社, 2005: 1-44

    LI Guangxue, YANG Zigeng, LIU Yong. Formation environment of the seafloor sediment in the Eastern China Seas [M]. Beijing: Science Press, 2005: 1-44.]

    [40]

    Zhong F C, Xiang R, Zhang L L, et al. A synthesized study of the spatiotemporal evolution of Central Yellow Sea Mud depositional processes during the Holocene[J]. Frontiers in Earth Science, 2021, 9:1-16.

    [41]

    Kim J M, Kucera M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15000 years[J]. Quaternary Science Reviews, 2000, 19(11):1067-1085. doi: 10.1016/S0277-3791(99)00086-4

    [42]

    Kim H, Lee H, Lee G A. New marine reservoir correction values (ΔR) applicable to dates on Neolithic Shells from the south coast of Korea[J]. Radiocarbon, 2021, 63(4):1287-1302. doi: 10.1017/RDC.2021.45

    [43]

    Kong G S, Lee C W. Marine reservoir corrections (ΔR) for southern coastal waters of Korea [J]. 2005, 10(2): 124-128.

    [44]

    Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778

    [45]

    Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1):432-437. doi: 10.1016/j.nimb.2007.01.184

    [46]

    Taylor S R, McLennan S M. The continental crust: Its composition and evolution [M]. United States: Blackwell Scientific Publication, 1985.

    [47] 杨守业, 李从先. 长江与黄河沉积物REE地球化学及示踪作用[J]. 地球化学, 1999, 28(4):374-380

    YANG Shouye, LI Congxian. REE geochemistry and tracing application in the Yangtze River and theYellow River sediments[J]. Geochimica, 1999, 28(4):374-380.]

    [48] 杨守业, 李从先, Jung H S, 等. 中韩河流沉积物微量元素地球化学研究[J]. 海洋地质与第四纪地质, 2003, 23(2):19-24

    YANG Shouye, LI Congxian, JUNG Hoisoo, et al. Geochemistry of trace elements in Chinese and Korean river sediments[J]. Marine Geology & Quaternary Geology, 2003, 23(2):19-24.]

    [49] 杨守业, Jung H S, 李从先, 等. 黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征[J]. 地球化学, 2004, 33(1):99-105 doi: 10.3321/j.issn:0379-1726.2004.01.013

    YANG Shouye, JUNG Hoisoo, LI Congxian, et al. Major element geochemistry of sediments from Chinese and Korean rivers[J]. Geochimica, 2004, 33(1):99-105.] doi: 10.3321/j.issn:0379-1726.2004.01.013

    [50]

    Yang S Y, Li C X, Jung H S, et al. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China[J]. Marine Geology, 2002, 186(3):229-241.

    [51]

    Cho Y G, Lee C B, Choi M S. Geochemistry of surface sediments off the southern and western coasts of Korea[J]. Marine Geology, 1999, 159(1):111-129.

    [52]

    Yang S Y, Youn J S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments[J]. Marine Geology, 2007, 243(1):229-241.

    [53]

    Lu J, Li A C, Zhang J, et al. Yangtze River-derived sediments in the southwestern South Yellow Sea: Provenance discrimination and seasonal transport mechanisms[J]. Journal of Asian Earth Sciences, 2019, 176:353-367. doi: 10.1016/j.jseaes.2019.03.007

    [54] 蓝先洪, 张志珣, 李日辉, 等. 南黄海NT2孔沉积物物源研究[J]. 沉积学报, 2010, 28(6): 1182-1189

    LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Provenance study of sediments in core NT2 of the South Yellow Sea [J]. Acta Sedimentologica Sinica, 2020, 28(6): 1182-1189.]

    [55] 密蓓蓓, 张勇, 梅西, 等. 中国东部海域表层沉积物稀土元素赋存特征及物源探讨[J]. 中国地质, 2020, 47(5):1530-1541

    MI Beibei, ZHANG Yong, MEI Xi, et al. The rare earth element content in surface sediments of coastal areas in eastern China's sea areas and an analysis of material sources[J]. Geology in China, 2020, 47(5):1530-1541.]

    [56]

    Zhu Y T, Bao R, Zhu L H, et al. Investigating the provenances and transport mechanisms of surface sediments in the offshore muddy area of Shandong Peninsula: Insights from REE analyses[J]. Journal of Marine Systems, 2022, 226:1-12.

    [57]

    Rao W B, Mao C P, Wang Y G, et al. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China[J]. Marine Geology, 2015, 359:35-49. doi: 10.1016/j.margeo.2014.11.007

    [58]

    Rao W B, Mao C P, Wang Y G, et al. Using Nd-Sr isotopes and rare earth elements to study sediment provenance of the modern radial sand ridges in the southwestern Yellow Sea[J]. Applied Geochemistry, 2017, 81:23-35. doi: 10.1016/j.apgeochem.2017.03.011

    [59] 孙效功, 方明, 黄伟. 黄、东海陆架区悬浮体输运的时空变化规律[J]. 海洋与湖沼, 2000, 31(6):581-587 doi: 10.3321/j.issn:0029-814X.2000.06.001

    SUN Xiaogong, FANG Ming, HUANG Wei. 2000. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf[J]. Oceanologia et Limnologia Sinica, 2000, 31(6):581-587.] doi: 10.3321/j.issn:0029-814X.2000.06.001

    [60] 王勇智, 乔璐璐, 杨作升, 等. 近岸强海流切变锋作用下悬浮沉积物的输送和沉积——以山东半岛东端外海为例[J]. 沉积学报, 2013, 31(3):486-496

    WANG Yongzhi, QIAO Lulu, YANG Zuosheng, et al. Suspend sediment transport and deposition due to strong regional shear current front: an example from the shelf waters off eastern Shandong Peninsula[J]. Acta Sedimentologica Sinica, 2013, 31(3):486-496.]

    [61] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(1992):81-90

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. The macro pattern of the suspended body of the Yellow Sea and the East China Sea to the eastern deep sea area[J]. Acta Oceanologica Sinica, 1992, 14(1992):81-90.]

    [62]

    Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences, 2014, 111(43):15296-15303. doi: 10.1073/pnas.1411762111

    [63]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278(1):54-76.

    [64] 薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004, 26(1):48-61 doi: 10.3321/j.issn:0253-4193.2004.01.006

    XUE Chunting, ZHOU Yongqing, ZHU Xionghua. The Huanghe River course and delta from end of Late Pleistocene to the 47th century BC[J]. Acta Oceanologica Sinica, 2004, 26(1):48-61.] doi: 10.3321/j.issn:0253-4193.2004.01.006

    [65]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3):208-224.

    [66] 夏东兴, 刘振夏. 末次冰期盛期长江入海流路探讨[J]. 海洋学报, 2001, 23(5):87-94

    XIA Dongxing, LIU Zhenxia. Tracing the Changjiang River’s flowing route entering the sea during the last ice age maximum[J]. Acta Oceanologica Sinica, 2001, 23(5):87-94.]

    [67]

    Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to Late Pleistocene-Holocene sea-level changes[J]. Journal of Sedimentary Research, 2002, 72(6):884-897. doi: 10.1306/052002720884

    [68]

    Saito Y, Wei H, Zhou Y, et al. Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China[J]. Journal of Asian Earth Sciences, 2000, 18(4):489-497. doi: 10.1016/S1367-9120(99)00080-2

    [69]

    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1):45-67.

    [70]

    Yang D Y, Yu G, Xie Y B, et al. Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China[J]. Geomorphology, 2000, 33(1):73-88.

    [71]

    Li T G, Nan Q Y, Jiang B, et al. Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2):237-249. doi: 10.1007/s00343-009-9149-4

    [72]

    Zhao S Q, Zhao J T, Jia C, et al. The impact of Holocene interactions among climate, ocean current, and shear front factors on fine sediment dispersal in the central South Yellow Sea[J]. Continental Shelf Research, 2022, 246:1-9.

    [73]

    Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294:176-191. doi: 10.1016/j.margeo.2011.06.003

    [74]

    Zhong Y, Qiao L L, Song D H, et al. Impact of cold water mass on suspended sediment transport in the South Yellow Sea[J]. Marine Geology, 2020, 428:1-20.

    [75]

    Hu B Q, Yang Z S, Qiao S Q, et al. Holocene shifts in riverine fine-grained sediment supply to the East China Sea Distal Mud in response to climate change[J]. The Holocene, 2014, 24(10):1253-1268. doi: 10.1177/0959683614540963

    [76]

    Lim D, Xu Z K, Choi J Y, et al. Holocene changes in detrital sediment supply to the eastern part of the central Yellow Sea and their forcing mechanisms[J]. Journal of Asian Earth Sciences, 2015, 105:18-31. doi: 10.1016/j.jseaes.2015.03.032

图(7)  /  表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  5
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 修回日期:  2024-08-12
  • 录用日期:  2024-08-12
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回