青岛海洋地质研究所海岸带地质工作进展与展望

陈斌, 徐刚, 周良勇, 赵广明, 曹珂, 高茂生, 叶思源, 刘健, 侯国华, 段晓勇, 陈小英, 印萍

陈斌,徐刚,周良勇,等. 青岛海洋地质研究所海岸带地质工作进展与展望[J]. 海洋地质与第四纪地质,2024,44(3): 23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901
引用本文: 陈斌,徐刚,周良勇,等. 青岛海洋地质研究所海岸带地质工作进展与展望[J]. 海洋地质与第四纪地质,2024,44(3): 23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901
CHEN Bin,XU Gang,ZHOU Liangyong,et al. Progress and prospects of coastal geological work at Qingdao Institute of Marine Geology[J]. Marine Geology & Quaternary Geology,2024,44(3):23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901
Citation: CHEN Bin,XU Gang,ZHOU Liangyong,et al. Progress and prospects of coastal geological work at Qingdao Institute of Marine Geology[J]. Marine Geology & Quaternary Geology,2024,44(3):23-39. DOI: 10.16562/j.cnki.0256-1492.2024040901

青岛海洋地质研究所海岸带地质工作进展与展望

基金项目: 海洋地质调查项目“我国重点海域海洋自然资源综合调查与评价”(DD20230071),“重点海域海洋自然资源调查成果集成及示范区调查评价”(DD20230410),“杭州湾海洋自然资源综合调查评价”(DD20230409);自然资源部华东海岸带野外科学观测研究站项目(ORSECCZ2022102)
详细信息
    作者简介:

    陈斌(1979—),男,博士,正高级工程师,主要从事海洋自然资源调查与研究工作,E-mail:chenbin1007@hotmail.com

    通讯作者:

    印萍(1971—),女,博士,研究员,主要从事海洋地质调查与研究工作,E-mail:1419685757@qq.com

  • 中图分类号: P736

Progress and prospects of coastal geological work at Qingdao Institute of Marine Geology

  • 摘要:

    海岸带是地球多圈层交互带内地质作用最活跃、人类活动最密集的地带,是开展综合地质调查与研究、推动经济社会高质量发展的关键区域。青岛海洋地质研究所的海岸带地质工作自建所以来,一直按照支撑国家需求和服务经济社会发展为导向,主要经历了萌芽发展、快速发展、蓬勃发展3个阶段。作为中国地质调查局海岸带工作的主要牵头单位之一,组织实施了一系列海岸带地质调查工作,特别是在辽东湾、渤海湾西岸、黄河三角洲、莱州湾、山东半岛、江苏沿岸、长江三角洲、闽浙沿岸等海岸带地区开展了重大比例尺的调查,大幅提高了我国海岸带调查程度,提升了海岸带基础地质认知水平,充分发挥了地质工作基础性、公益性、战略性的作用,为国家重大战略实施和经济社会高质量发展提供了有力支撑。新时代条件下,我们应大力加强海岸带地质科技创新能力,全面提高海岸带基础地质调查程度,加快建设海岸带地质综合监测体系,快速提升海岸带工作公益服务水平,推动海岸带地质工作高质量发展。

    Abstract:

    The coastal zone is the most active geological zone within the Earth’s multiple lithospheric interactions and the most densely populated area with frequent human activities. It is a key region for conducting comprehensive geological surveys and research, and promoting high-quality economic and social development. Since the establishment of the coastal geological work in the institute, it has always been guided to support national needs from economic and social development, and has mainly gone through three stages of initial development, rapid development, and vigorous development. As one of the main leading units of the coastal zone work of the China Geological Survey, a series of coastal geological surveys and mappings in different scales have been organized and implemented, especially in coastal areas in Liaodong Bay, the western coast of Bohai Bay, the Yellow River Delta, Laizhou Bay, Shandong Peninsula, Jiangsu coast, Yangtze River Delta, and the coast of Fujian and Zhejiang provinces. Significant large-scale surveys have been conducted, greatly improving the level of coastal geological surveys in China, enhancing the basic geological understanding of the coastal zone, fully playing the fundamental, public welfare, and strategic roles of geological work, and providing strong supports for the implementation of major national strategies and high-quality economic and social development. In the new era, we should vigorously strengthen the geological scientific and technological innovation capabilities for the coastal zones, comprehensively improve the level of basic geological surveys in China’s coastal zones, accelerate the construction of a comprehensive geological monitoring system in the national coastal areas, rapidly enhance the public welfare service level of coastal zone works, and promote the high-quality development of geological work in the coastal regions of China.

  • 图  1   浙闽沿岸泥质体细粒物质运移机制

    注:YRDW为长江冲淡水,NKBC 为黑潮近岸分支,ZMCC为浙闽沿岸流,TWC为台湾暖流,TCC为台湾沿岸流,ORDW为瓯江冲淡水,ZICF为舟山群岛峡道流,KC为黑潮。改自文献 [42]。

    Figure  1.   Mechanism of fine-grained sediment transport along the Zhejiang and Fujian coast

    Modified after reference [42].

    图  2   江苏北部近岸海区中-晚全新世水下楔形体及上覆的老黄河三角洲演化示意图

    a: 在约7 ka全新世中期出现最大海泛面时,海岸线位于西岗贝壳堤附近,淮河三角洲和西岗砂堤开始发育;b: 约7 ka至 1128AD期间,淮河三角洲逐渐发育向海进积,形成近岸三角洲和水下楔形体(主要物源来自淮河和长江),同时在潮流和波浪作用下形成东岗砂堤;c: 1128-1855AD,黄河夺淮自苏北入海,形成了具有“双楔形体”结构的老黄河三角洲。改自文献 [46]。

    Figure  2.   Schematic diagram showing the development of the Middle-Late Holocene clinoform and the overlying Old Yellow River Delta

    a: The coastline was located near the embryonic Xigang Chenier during the Middle Holocene maximum flooding at ~7.0 ka, which marked the initiation of development of the Huaihe River delta and the Xigang Chenier; b: During the period from ~7.0 ka to 1128 AD, the Huaihe River delta and a subaqueous clinoform were developed, and sediments were supplied from mainly the Huaihe and Yangtze rivers. The Donggang Chenier began to form at 3.5 ka and continued to develop until 1128 AD; c: During the period from 1128 to 1855 AD, the Old Yellow River discharged into the South Yellow Sea, forming the Old Yellow River Delta, a subaerial-subaqueous delta. Modified after reference [46].

    图  3   辽河三角洲钻孔沉积记录与各区气候替代性指标对比

    改自文献[51]。

    Figure  3.   Comparison of drilled sedimentary records with climate substitution indicators in different regions of the Liaohe Delta

    Modified after reference [51].

    图  4   钻孔沉积物各物理化学指标对应关系

    改自文献[53]。

    Figure  4.   Correspondence between various physical and chemical indicators of borehole sediments

    Modified after reference [53].

    图  5   滨海湿地不同水体和植被的δD和δ18O关系

    Figure  5.   The relationship between δD and δ18O in different water bodies and vegetation in coastal wetlands

    图  6   剖面地下水Cl浓度变化和地下水流向趋势变化[60]

    Figure  6.   Changes in Cl concentration in groundwater and trend of groundwater flow[60]

    图  7   盐城增温观测站甲烷监测对比实验(左),以及净生态系统二氧化碳交换(NEE)、生态系统呼吸(Reco)、甲烷(CH4)通量的季节性变化

    Figure  7.   Results of comparison experiment on methane monitoring at Yancheng Warming Observation Station (left), as well as seasonal changes in net ecosystem carbon dioxide exchange, ecosystem respiration, and methane flux

    图  8   近海松散沉积物中甲烷可能导致的危害和影响[65]

    Figure  8.   Possible hazards and impacts of methane in loose sediments near coast [65]

  • [1] 贾建军, 于谦, 高抒. 海岸分类的回顾与展望[J]. 海洋通报, 2023, 42(6):601-616

    JIA Jianjun, YU Qian, GAO Shu. Review and prospect of coastal classification[J]. Marine Science Bulletin, 2023, 42(6):601-616.]

    [2] 陈吉余, 陈沈良. 中国河口海岸面临的挑战[J]. 海洋地质动态, 2002, 18(1):1-5 doi: 10.3969/j.issn.1009-2722.2002.01.001

    CHEN Jiyu, CHEN Shenliang. Estuarine and coastal challenges in China[J]. Marine Geology Letters, 2002, 18(1):1-5.] doi: 10.3969/j.issn.1009-2722.2002.01.001

    [3] 骆永明. 中国海岸带可持续发展中的生态环境问题与海岸科学发展[J]. 中国科学院院刊, 2016, 31(10):1133-1142

    LUO Yongming. Sustainability associated coastal eco-environmental problems and coastal science development in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1133-1142.]

    [4] 何起祥. 我国海岸带面临的挑战与综合治理[J]. 海洋地质动态, 2002, 18(4):1-5 doi: 10.3969/j.issn.1009-2722.2002.04.001

    HE Qixiang. Challenges to the integrated coastal zone management in China[J]. Marine Geology Letters, 2002, 18(4):1-5.] doi: 10.3969/j.issn.1009-2722.2002.04.001

    [5] 徐谅慧, 李加林, 李伟芳, 等. 人类活动对海岸带资源环境的影响研究综述[J]. 南京师大学报: 自然科学版, 2014, 37(3):124-131

    XU Lianghui, LI Jialin, LI Weifang, et al. Progress in impact of human activities on coastal resource and environment[J]. Journal of Nanjing Normal University: Natural Science Edition, 2014, 37(3):124-131.]

    [6] 李萍, 李培英, 徐兴永, 等. 人类活动对海岸带灾害环境的影响[J]. 海岸工程, 2004, 23(4):45-49 doi: 10.3969/j.issn.1002-3682.2004.04.007

    LI Ping, LI Peiying, XU Xingyong, et al. Influence of human activities on the coastal disaster environment[J]. Coastal Engineering, 2004, 23(4):45-49.] doi: 10.3969/j.issn.1002-3682.2004.04.007

    [7] 张训华, 孙晓明, 印萍, 等. 推进海岸带综合地质调查, 为社会经济持续发展提供支撑[J]. 海洋地质前沿, 2015, 31(1):1-8

    ZHANG Xunhua, SUN Xiaoming, YIN Ping, et al. Sustainable development of coastal zone based on integrated geological investigation[J]. Marine Geology Frontiers, 2015, 31(1):1-8.]

    [8] 王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1):1-10

    WANG Yanxin, GAN Yiqun, DENG Yamin, et al. Land-ocean interactions and their eco-environmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1):1-10.]

    [9] 肖国强, 王福, 印萍, 等. 我国海岸带地质调查工作回顾与展望[J]. 华北地质, 2022, 45(1):92-100

    XIAO Guoqiang, WANG Fu, YIN Ping, et al. Review and prospect of the coastal geological survey of Chinese mainland[J]. North China Geology, 2022, 45(1):92-100.]

    [10] 印萍, 林良俊, 陈斌, 等. 中国海岸带地质资源与环境评价研究[J]. 中国地质, 2017, 44(5):842-856 doi: 10.12029/gc20170502

    YIN Ping, LIN Liangjun, CHEN Bin, et al. Coastal zone geo-resources and geo-environment in China[J]. Geology in China, 2017, 44(5):842-856.] doi: 10.12029/gc20170502

    [11]

    Clark J C, Brabb E E. Geology of Point Reyes national seashore and vicinity, California: a digital database[R]. Reston: U. S. Geological Survey, 1997.

    [12]

    Hapke C J, Reid D, Richmond B M, et al. National assessment of shoreline change part 3: historical shoreline change and associated coastal land loss along sandy shorelines of the California coast[R]. Reston: U. S. Geological Survey, 2006.

    [13]

    Johnson S Y, Dartnell P, Golden N E, et al. California state waters map series—offshore of Tomales Point, California[R]. Reston: U. S. Geological Survey.

    [14]

    Matsumoto D. 1: 200, 000 Marine geological map along the coastal zone around Fukuoka with explanatory notes[R]. Geological Survey of Japan, AIST, 2013.

    [15]

    Van der Meulen M J, Doornenbal J C, Gunnink J L, et al. 3D geology in a 2D country: Perspectives for geological surveying in the Netherlands[J]. Netherlands Journal of Geosciences, 2013, 92(4):217-241.

    [16] 杜晓敏, 周平, 常勇, 等. 美国海岸带综合地质调查进展及其对中国海岸带研究的启示[J]. 地质通报, 2020, 39(2-3):414-423

    DU Xiaomin, ZHOU Ping, CHANG Yong, et al. A review on coastal and marine geology program of U. S. Geological Survey and some suggestions on coastal studies in China[J]. Geological Bulletin of China, 2020, 39(2-3):414-423.]

    [17] 姜海平. 中国的海岸带调查和管理现状[J]. 海洋地质与第四纪地质, 1990, 10(1):79-80

    JIANG Haiping. Status of coastal zone investigation and management in China[J]. Marine Geology & Quaternary Geology, 1990, 10(1):79-80.]

    [18] 徐渡. 1958~1960年: 全国海洋综合调查[J]. 海洋科学, 2010, 34(4): 109-110

    XU Du. 1958-1960: national marine comprehensive survey[J]. Marine Sciences, 2010, 34(4): 109-119.]

    [19] 全国海岸带和海涂资源综合调查成果编委会. 中国海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1991

    Editorial Committee for the Comprehensive Survey Results of Coastal Zones and Beach Resources in China. A Comprehensive Survey Report on China's Coastal Zone and Tidal Flat Resources[M]. Beijing: China Ocean Press, 1991.]

    [20] 国家海洋局. 我国近海海洋综合调查与评价专项综合报告[M]. 北京: 海洋出版社, 2012

    State Oceanic Administration. A Comprehensive Survey Report on China's Coastal Zone and Tidal Flat Resources[M]. Beijing: China Ocean Press, 2012.]

    [21] 综合调查海洋资源环境推动中国海洋事业发展: “我国近海海洋综合调查与评价”成果简介[J]. 科技成果管理与研究, 2012(2): 83-88

    Comprehensive investigation of marine resources and environment to promote the development of China's marine industry-Introduction to the achievements of comprehensive survey and evaluation of China's offshore oceans[J]. Management and Research on Scientific & Technological Achievements, 2012(2): 83-88.]

    [22] 丁冬. 从高原走向海洋, 奔跑与奋斗: 我与海地所的故事, 青岛海洋地质研究所[R]. 2022: 177-181

    DING Dong. From the plateau to the ocean, running and struggling - My story with Qingdao institute of marine geology, Qingdao institute of marine geology[R]. 2022: 177-181.]

    [23] 彭轩明. 承先启后 继往开来 为我国海洋地质事业发展再立新功: 庆祝青岛海洋地质研究所恢复重建三十周年[J]. 海洋地质与第四纪地质, 2009, 29(1): Ⅰ-Ⅵ

    PENG Xuanming. Carrying forward the past and opening up the future, making new achievements for the development of China's marine geology -- celebrating the 30th anniversary of the restoration and reconstruction of Qingdao institute of marine geology[J]. Marine Geology & Quaternary Geology, 2009, 29(1): Ⅰ-Ⅵ.]

    [24] 青岛海洋地质研究所编委会. 青岛海洋地质研究所大事记[R]. 2009: 1-485

    Editorial Board of Qingdao Institute of Marine Geology. Major events of Qingdao institute of marine geology[R]. 2009: 1-485.]

    [25] 朱银奎. 冀东油田海洋工程地质勘察与数字滩海, 奔跑与奋斗: 我与海地所的故事, 青岛海洋地质研究所[R]. 2022: 165-171

    ZHU Yinkui. Marine engineering geological survey and digital beach in Jidong Oilfield, running and struggling - My story with Qingdao institute of marine geology, Qingdao Institute of Marine Geology[R]. 2022, 165-171.]

    [26] 叶思源, Smith G J, 高茂生, 等. 黄河三角洲滨海湿地健康条件评价概念模型[J]. 地质论评, 2009, 55(4):545-551 doi: 10.3321/j.issn:0371-5736.2009.04.010

    YE Siyuan, Smith G J, GAO Maosheng, et al. A conceptual model for the assessment of coastal wetlands health in the Yellow River Delta[J]. Geological Review, 2009, 55(4):545-551.] doi: 10.3321/j.issn:0371-5736.2009.04.010

    [27] 尹延鸿. 对河北唐山曹妃甸浅滩大面积填海的思考[J]. 海洋地质动态, 2007, 23(3):1-10 doi: 10.3969/j.issn.1009-2722.2007.03.001

    YIN Yanhong. Some questions about large-area marine reclamation land in Caofeidian Bank, Tangshan of Hebei province[J]. Marine Geology Letters, 2007, 23(3):1-10.] doi: 10.3969/j.issn.1009-2722.2007.03.001

    [28] 张光威. "海岸带地质与可持续发展"学术研讨会学术报告综述[J]. 海洋地质与第四纪地质, 2002, 22(3): 68, 76

    ZHANG Guangwei. Symposium on coastal geology and sustainable development was held in Qingdao[J]. Marine Geology & Quaternary Geology, 2002, 22(3): 68, 76.]

    [29]

    Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144:1-15. doi: 10.1016/j.quascirev.2016.05.025

    [30]

    Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~ 3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications[J]. Marine Geology, 2018, 399:47-65. doi: 10.1016/j.margeo.2017.11.005

    [31] 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366

    YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron[J]. Acta Geologica Sinica, 1993, 67(4):357-366.]

    [32]

    Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~ 1.9 Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451:84-96. doi: 10.1016/j.palaeo.2016.03.012

    [33] 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪: 第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43

    LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the Late Neogene to Quaternary sequence on the central uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5):25-43.]

    [34]

    Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing?[J]. Quaternary Science Reviews, 2019, 216:74-88. doi: 10.1016/j.quascirev.2019.06.002

    [35]

    Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007, 236(3-4):165-187. doi: 10.1016/j.margeo.2006.10.031

    [36]

    Qiu J D, Liu J, Saito Y, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the southern Shandong Peninsula in the western South Yellow Sea[J]. Journal of Ocean University of China, 2014, 13(5):747-760. doi: 10.1007/s11802-014-2227-z

    [37]

    Xue C T, Qin Y C, Ye S Y, et al. Evolution of Holocene ebb-tidal clinoform off the Shandong Peninsula on East China Sea shelf[J]. Earth-Science Reviews, 2018, 177:478-496. doi: 10.1016/j.earscirev.2017.12.012

    [38]

    Liu J, Qiu J D, Saito Y, et al. Late Pleistocene to Holocene facies architecture and sedimentary evolution of the Zhejiang coast, East China Sea[J]. Marine Geology, 2023, 459:107027. doi: 10.1016/j.margeo.2023.107027

    [39]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278(1-4):54-76. doi: 10.1016/j.margeo.2010.09.003

    [40]

    Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze Shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China[J]. Marine Geology, 2020, 423:106080. doi: 10.1016/j.margeo.2019.106080

    [41]

    Zhang X, Liu J, Wang Y X, et al. Timing of sedimentary evolution and transgressions in the Bohai Sea during the Last ~200 ka: constraints from luminescence dating of a core from the Yellow River Delta[J]. Frontiers in Earth Science, 2022, 10:865761. doi: 10.3389/feart.2022.865761

    [42]

    Xu G, Bi S P, Gugliotta M, et al. Dispersal mechanism of fine-grained sediment in the modern mud belt of the East China Sea[J]. Earth-Science Reviews, 2023, 240:104388. doi: 10.1016/j.earscirev.2023.104388

    [43] 薛春汀. 现代黄河三角洲叶瓣的划分和识别[J]. 地理研究, 1994, 13(2):59-66

    XUE Chunting. Division and recorgnition of modern Yellow River Delta Lobes[J]. Geographical Research, 1994, 13(2):59-66.]

    [44]

    Xue C T. Historical changes in the Yellow River delta, China[J]. Marine Geology, 1993, 113(3-4):321-330. doi: 10.1016/0025-3227(93)90025-Q

    [45]

    He L, Xue C T, Ye S Y, et al. New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex[J]. Quaternary Science Reviews, 2019, 214:117-138. doi: 10.1016/j.quascirev.2019.05.003

    [46]

    An Y H, Feng X L, Liu J, et al. Development of a Middle–Late Holocene subaqueous clinoform in the northern Jiangsu coastal zone, western South Yellow Sea[J]. Geomorphology, 2023, 439:108853. doi: 10.1016/j.geomorph.2023.108853

    [47]

    Liu J, Kong X H, Saito Y, et al. Subaqueous deltaic formation of the Old Yellow River (AD 1128-1855) on the western South Yellow Sea[J]. Marine Geology, 2013, 344:19-33. doi: 10.1016/j.margeo.2013.07.003

    [48]

    Liu J, Saito Y, Kong X H, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last ~13, 000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Science Reviews, 2010, 29(17-18):2424-2438. doi: 10.1016/j.quascirev.2010.06.016

    [49]

    Yang S X, Song B, Ye S Y, et al. Large-scale pollen distribution in marine surface sediments from the Bohai Sea, China: insights into pollen provenance, transport, deposition, and coastal-shelf paleoenvironment[J]. Progress in Oceanography, 2019, 178:102183. doi: 10.1016/j.pocean.2019.102183

    [50]

    Yang S, Song B, Ye S, et al. Regional-scale distributions of pollen and spore assemblages in alluvium around the Bohai Sea: an essential step toward understanding marine palynological sources in China[J]. Marine Geology, 2019, 415:105968. doi: 10.1016/j.margeo.2019.105968

    [51]

    Yang S X, Li J, Ye S Y, et al. Pollen distribution and transportation patterns in surface sediments of Liaodong bay, China[J]. Science of the Total Environment, 2021, 771:144883. doi: 10.1016/j.scitotenv.2020.144883

    [52]

    Ye S, Laws E A, Yuknis N, et al. Carbon sequestration and soil accretion in coastal wetland communities of the Yellow River Delta and Liaohe Delta, China[J]. Estuaries and Coasts, 2015, 38(6):1885-1897. doi: 10.1007/s12237-014-9927-x

    [53]

    Zhao G M, Ye S Y, He L, et al. Historical change of carbon burial in Late Quaternary sediments of the ancient Yellow River delta on the west coast of Bohai Bay, China[J]. CATENA, 2020, 193:104619. doi: 10.1016/j.catena.2020.104619

    [54]

    Pei L X, Ye S Y, Yuan H M, et al. Glomalin-related soil protein distributions in the wetlands of the Liaohe Delta, Northeast China: implications for carbon sequestration and mineral weathering of coastal wetlands[J]. Limnology and Oceanography, 2020, 65:979-991. doi: 10.1002/lno.11364

    [55]

    Lu Q Y, Pei L X, Ye S Y, et al. Negative feedback by vegetation on soil organic matter decomposition in a Coastal Wetland[J]. Wetlands, 2020, 40(6):2785-2797. doi: 10.1007/s13157-020-01350-0

    [56]

    Zhang Y, Meng X W, Xia P, et al. High-frequency mangrove degradation events during the Holocene climatic optimum in the Maowei Sea of tropical China[J]. Journal of Sea Research, 2023, 194:102390. doi: 10.1016/j.seares.2023.102390

    [57]

    Ye S Y, Pei L X, He L, et al. Wetlands in China: evolution, carbon sequestrations and services, threats, and preservation/restoration[J]. Water, 2022, 14(7):1152. doi: 10.3390/w14071152

    [58] 何磊, 叶思源, 赵广明, 等. 海岸带滨海湿地蓝碳管理的研究进展[J]. 中国地质, 2023, 50(3):777-794 doi: 10.12029/gc20201106001

    HE Lei, YE Siyuan, ZHAO Guangming, et al. Research progress on blue carbon management in coastal wetland ecotones[J]. Geology in China, 2023, 50(3):777-794.] doi: 10.12029/gc20201106001

    [59]

    Zhou P, Ye S Y, Xie L J, et al. Tidal restriction likely has greater impact on the carbon sink of coastal wetland than climate warming and invasive plant[J]. Plant and Soil, 2023, 492(1-2):135-156. doi: 10.1007/s11104-023-06160-x

    [60]

    Sun Q M, Gao M S, Wen Z, et al. Reactive transport modeling for the effect of pumping activities on the groundwater environment in muddy coasts[J]. Journal of Hydrology, 2023, 621:129614. doi: 10.1016/j.jhydrol.2023.129614

    [61]

    Sun Q M, Gao M S, Wen Z, et al. Hydrochemical evolution processes of multiple-water quality interfaces (fresh/saline water, saline water/brine) on muddy coast under pumping conditions[J]. Science of the Total Environment, 2023, 857:159297. doi: 10.1016/j.scitotenv.2022.159297

    [62]

    Brix H, Ye S Y, Laws E A, et al. Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China[J]. Ecological Engineering, 2014, 73:760-769. doi: 10.1016/j.ecoleng.2014.09.099

    [63] 段晓勇, 印萍, 谢永清, 等. 中国近海浅层气调查研究进展[J]. 海洋地质与第四纪地质, 2024, doi: 10.16562/j.cnki.0256-1492.2024010801

    DUAN Xiaoyong, YIN Ping, XIE Yongqing, et al. Progress in investigation and research on shallow gas in China's offshore areas[J]. Marine Geology & Quaternary Geology, 2024, doi: 10.16562/j.cnki.0256-1492.2024010801.]

    [64] 段晓勇, 印萍, 曹珂, 等. 中国地质调查局舟山海洋地质灾害野外科学观测研究站进展与成果[J]. 海洋地质前沿, 2022, 38(6):88-92

    DUAN Xiaoyong, YIN Ping, CAO Ke, et al. Introduction of Zhoushan marine geologic hazards field scientific observation and research station, China Geological Survey[J]. Marine Geology Frontiers, 2022, 38(6):88-92.]

    [65]

    Duan X Y, Yin P, Tsona N, et al. Biogenic methane in coastal unconsolidated sediment systems: a review[J]. Environmental Research, 2023, 227:115803. doi: 10.1016/j.envres.2023.115803

  • 期刊类型引用(1)

    1. 林金鑫,吴建中,赵卿. 越南红河三角洲地面沉降防治对策研究. 海洋地质前沿. 2025(04): 27-36 . 百度学术

    其他类型引用(0)

图(8)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-04-22
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-06-20

目录

    /

    返回文章
    返回