On seismic monitoring of the scope of CO2 storage in the seabed saline aquifers: Taking the Sleipner CCS project as an example
-
摘要:
咸水层封存占CO2封存潜力的98%,过去针对CO2海底咸水层波及范围四维地震监测的研究多是通过时延地震资料之间的差异性进行定性分析,缺少测井资料的约束。本文基于Sleipner咸水层CO2封存项目采集的测井和四维地震资料,对CO2海底咸水层封存波及范围地震监测方法进行研究。通过岩石物理建模,应用井控地震属性分析技术研究CO2注入过程中CO2-盐水两相介质变化引起的各向异性响应特征,优选对CO2饱和度变化敏感的地震属性,通过地震正反演相结合的多属性分析实现对时移CO2咸水层封存波及范围监测。研究发现随着CO2饱和度的增加,饱和岩石的体积模量、体积密度、纵波速度和横波速度均有所下降,正演模拟结果中总体振幅升高,且随着CO2注入量的增加,其振幅变化幅度减小,均方根振幅属性对CO2饱和度变化最为敏感。在注入期间,CO2在层内主要沿SSW-NNE运移,并在构造高部位聚集;垂向上,CO2从注入点向上层运移,下层达到最大波及范围的时间早于上层,结合储层性质和构造解释结果,CO2在储层内的波及范围主要受各项异性渗透率和构造高低控制。
-
关键词:
- CO2海底咸水层封存 /
- 地震监测 /
- 正演模拟 /
- 属性分析
Abstract:CO2 saline aquifer sequestration accounts for 98% of the total sequestration potential. In the past, most of the studies on 4D seismic monitoring of the CO2 seabed saline aquifer spread range were qualitatively analyzed by the variability of time-delayed seismic data, which lacked the constraints of well-logging data. Therefore, seismic monitoring methods for the spread range of CO2 seabed saline aquifer storage based on the logging and 4D seismic data collected by the Sleipner Saline Aquifer CO2 Sequestration Project in Norway were investigated. Based on the logging and 4D seismic data collected in the project, the anisotropic response characteristics caused by the change of the CO2-saline two-phase medium in the process of CO2 injection were studied by rock physics modelling, the technique of well control seismic attribute analysis was applied, the seismic attributes that are sensitive to the change of the saturation degree of CO2 were selected, and the seismic forward and inverse analysis were combined to better understand the time-shifted CO2 saline aquifer spread range. Results show that the bulk modulus, bulk density, primary wave velocity, and shear wave velocity of the saturated rocks decreased with the increase of CO2 saturation, the overall amplitude increased in the forward simulation results, the amplitude changes decreased with the increase of CO2 injection, and the root-mean-square (RMS) amplitude attribute was the most sensitive to the change of CO2 saturation. During the injection period, CO2 was mainly transported along the SSW-NNE and accumulates in the higher part of the tectonic structure. Vertically, CO2 was transported from the injection point to the upper layer, and the lower layer reached the maximum spread range earlier than the upper layer. Combined with the nature of the reservoir and the structural interpretation results, the spreading range of CO2 in the reservoir was controlled by mainly the anisotropic permeability and the structural high or low levels.
-
-
表 1 15/9-A-16井不同深度岩芯样本主要岩石和碎屑成分百分比
Table 1 Percentage of major rock and debris compositions in core samples from Wells 15/9-16 at different depths
碎屑含量/% 850~860 m 890~900 m 1000 ~1010 m石英 50.7 66.7 76.7 长石 7.3 3.7 2.7 方解石 18 17 7.7 页岩 4.3 1 4.7 表 2 储层中矿物成分和流体的弹性模量及密度
Table 2 Elastic modulus and density of mineral components and fluids in reservoirs
体积模量/GPa 剪切模量/GPa 密度/(g/cm3) 石英 37.00 44.00 2.65 长石 37.50 15.00 2.70 方解石 76.80 32.00 2.71 盐水 2.30 0 1.03 CO2 0.075 0 0.70 -
[1] IPCC. 2023: Summary for policymakers[C]//Core Writing Team, Lee H, Romero J. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2023:1-34.
[2] Herzog H, Eliasson B, Kaarstad O. Capturing greenhouse gases[J]. Scientific American, 2000, 282(2):72-79. doi: 10.1038/scientificamerican0200-72
[3] Bachu S. CO2 storage in geological media: Role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2):254-273. doi: 10.1016/j.pecs.2007.10.001
[4] 赵改善. 二氧化碳地质封存地球物理监测: 现状、挑战与未来发展[J]. 石油物探, 2023, 62(2):194-211 doi: 10.3969/j.issn.1000-1441.2023.02.002 ZHAO Gaishan. Geophysical monitoring for geological carbon sequestration: present status, challenges, and future developments[J]. Geophysical Prospecting for Petroleum, 2023, 62(2):194-211.] doi: 10.3969/j.issn.1000-1441.2023.02.002
[5] 张国良, 战明君. 板块俯冲和岩浆过程中碳循环及深部碳储库[J]. 海洋地质与第四纪地质, 2019, 39(5):36-45 ZHANG Guoliang, ZHAN Mingjun. Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology, 2019, 39(5):36-45.]
[6] 李海燕, 彭仕宓, 许明阳, 等. CO2在深部咸水层中的埋存机制研究进展[J]. 科技导报, 2013, 31(2):72-79 doi: 10.3981/j.issn.1000-7857.2013.02.010 LI Haiyan, PENG Shimi, XU Mingyang, et al. CO2 storage mechanism in deep saline aquifers[J]. Science and Technology Review, 2013, 31(2):72-79.] doi: 10.3981/j.issn.1000-7857.2013.02.010
[7] Falcon-Suarez I, Papageorgiou G, Chadwick A, et al. CO2-brine flow-through on an Utsira Sand core sample: experimental and modelling. Implications for the Sleipner storage field[J]. International Journal of Greenhouse Gas Control, 2018, 68:236-246. doi: 10.1016/j.ijggc.2017.11.019
[8] Williams G A, Chadwick R A. Influence of reservoir-scale heterogeneities on the growth, evolution and migration of a CO2 plume at the Sleipner Field, Norwegian North Sea[J]. International Journal of Greenhouse Gas Control, 2021, 106:103260. doi: 10.1016/j.ijggc.2021.103260
[9] 李福来, 刘立, 曲希玉, 等. CO2注入砂岩后的典型自生矿物组合[J]. 海洋地质与第四纪地质, 2009, 29(6):103-109 LI Fulai, LIU Li, QU Xiyu, et al. Typical authigenic mineral assemblages after CO2 injected into sandstone[J]. Marine Geology & Quaternary Geology, 2009, 29(6):103-109.]
[10] Zhao M X, Liu H S, Wang W Q, et al. Numerical study on mechanical properties and instability characteristics of sandy reservoir containing hydrate interlayer[J]. Ocean Engineering, 2023, 286:115694. doi: 10.1016/j.oceaneng.2023.115694
[11] Liu H W, Liu H S, Li Q Q, et al. A first-arrival wave recognition method based on the optimal dominant energy spectrum[J]. Geophysical Prospecting, 2024, 72(4):1322-1334. doi: 10.1111/1365-2478.13297
[12] Lin H R, Xu J, Xing L, et al. Random noise attenuation of ocean bottom seismometers based on a substep deep denoising autoencoder[J]. Geophysical Prospecting, 2024, 72(4):1428-1441. doi: 10.1111/1365-2478.13302
[13] Xing L, Li Y, Li Q Q, et al. Prediction of shale gas pressure based on multi‐channel seismic inversion in Fuling[J]. Acta Geologica Sinica‐English Edition, 2022, 96(4):1237-1245. doi: 10.1111/1755-6724.14778
[14] Sambo C, Iferobia C C, Babasafari A A, et al. The role of time lapse (4D) seismic technology as reservoir monitoring and surveillance tool: A comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2020, 80:103312. doi: 10.1016/j.jngse.2020.103312
[15] Huang F, Bergmann P, Juhlin C, et al. The first post‐injection seismic monitor survey at the Ketzin pilot CO2 storage site: results from time‐lapse analysis[J]. Geophysical Prospecting, 2018, 66(1):62-84. doi: 10.1111/1365-2478.12497
[16] Chadwick R A, Noy D J. History-matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume[M]//Vining B A, Pickering S C. Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. London: The Geological Society, 2010:1171-1182.
[17] Roach L A N, White D J. Evolution of a deep CO2 plume from time-lapse seismic imaging at the Aquistore storage site, Saskatchewan, Canada[J]. International Journal of Greenhouse Gas Control, 2018, 74:79-86. doi: 10.1016/j.ijggc.2018.04.025
[18] Fawad M, Mondol N H. Monitoring geological storage of CO2: A new approach[J]. Scientific Reports, 2021, 11(1):5942. doi: 10.1038/s41598-021-85346-8
[19] Cavanagh A J, Haszeldine R S. The Sleipner storage site: Capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation[J]. International Journal of Greenhouse Gas Control, 2014, 21:101-112. doi: 10.1016/j.ijggc.2013.11.017
[20] Wierzchowska M, Alnes H, Oukili J, et al. Broadband processing improves 4D repeatability and resolution at the Sleipner CO2 storage project, North Sea[C]//82nd EAGE Annual Conference & Exhibition. Amsterdam: European Association of Geoscientists & Engineers, 2021:1-5.
[21] Arts R, Brevik I, Eiken O, et al. Geophysical methods for monitoring marine aquifer CO2 storage–Sleipner experiences[C]//5th Int Conf. on Greenhouse Gas Control Technologies. Australia: Cairns, 2000.
[22] Chadwick R A, Arts R, Eiken O. 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea[M]//Doré A G, Vining B A. Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference. London: The Geological Society, 2005:1385-1399.
[23] Pelemo-Daniels D, Nwafor B O, Stewart R R. CO2 Injection monitoring: enhancing time-lapse seismic inversion for injected volume estimation in the Utsira Formation, Sleipner Field, North Sea[J]. Journal of Marine Science and Engineering, 2023, 11(12):2275. doi: 10.3390/jmse11122275
[24] Pelemo-Daniels D, Stewart R R. Petrophysical property prediction from seismic inversion attributes using rock physics and machine learning: Volve Field, North Sea[J]. Applied Sciences, 2024, 14(4):1345. doi: 10.3390/app14041345
[25] Baklid A, Korbol R, Owren G. Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer[C]//SPE Annual Technical Conference and Exhibition. Colorado: SPE, 1996.
[26] Chadwick R A, Holloway S, Kirby G A, et al. The Utsira Sand, Central North Sea–an assessment of its potential for regional CO2 disposal[C]//Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies (GHGT-5). Collingwood: CSIRO Publishing, 2000: 349-354.
[27] Zweigel P, Arts R, Lothe A E, et al. Reservoir geology of the Utsira Formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea)[J]. Geological Society, London, Special Publications, 2004, 233:165-180. doi: 10.1144/GSL.SP.2004.233.01.11
[28] Boait F C, White N J, Bickle M J, et al. Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B3):B03309.
[29] Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. California: Cambridge University Press, 2020.
[30] Furre A K, Eiken O. Dual sensor streamer technology used in Sleipner CO2 injection monitoring[J]. Geophysical Prospecting, 2014, 62(5):1075-1088. doi: 10.1111/1365-2478.12120
[31] Lindeberg E. Calculation of thermodynamic properties of CO2, CH4, H2O and their mixtures also including salt with the Excel macro “CO2 Thermodynamics”[J]. SINTEF Report, 2013.
[32] Ghaderi A, Landrø M. Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data[J]. Geophysics, 2009, 74(2):O17-O28. doi: 10.1190/1.3054659
[33] Williams G A, Chadwick R A. An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects[J]. Energy Procedia, 2017, 114:2856-2870. doi: 10.1016/j.egypro.2017.03.1406
[34] Chadwick R A, Holloway S, Brook M S, et al. The case for underground CO2 sequestration in northern Europe[J]. Geological Society, London, Special Publications, 2004, 233(1):17-28. doi: 10.1144/GSL.SP.2004.233.01.03
[35] Xing L, Liu X Q, Liu H S, et al. Research on the construction of a petrophysical model of a heterogeneous reservoir in the hydrate test area in the Shenhu area of the South China Sea (SCS)[J]. Geofluids, 2021, 2021(1):5586118.
[36] Xu S Y, White R E. A new velocity model for clay‐sand mixtures[J]. Geophysical Prospecting, 1995, 43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x
[37] Kuster G T, Toksöz M N. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations[J]. Geophysics, 1974, 39(5):587-606. doi: 10.1190/1.1440450
[38] Voigt W. Lehrbuch der Kristallphysik: (Mit Ausschluss der Kristalloptik)[M]. London: B. G. Teubner, 1910:253-253.
[39] Hill R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society. Section A, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307
[40] Brie A, Pampuri F, Marsala A F, et al. Shear sonic interpretation in gas-bearing sands[C]//SPE Annual Technical Conference and Exhibition. Texas: SPE, 1995.
[41] 沙志彬, 梁金强, 郑涛, 等. 地震属性在天然气水合物预测中的应用[J]. 海洋地质与第四纪地质, 2013, 33(5):185-192 SHA Zhibin, LIANG Jinqiang, ZHENG Tao, et al. The application of seismic attributes to the prediction of gas hydrates[J]. Marine Geology & Quaternary Geology, 2013, 33(5):185-192.]
[42] 靳佳澎, 王秀娟, 陈端新, 等. 基于测井与地震多属性分析神狐海域天然气水合物分布特征[J]. 海洋地质与第四纪地质, 2017, 37(5):122-130 JIN Jiapeng, WANG Xiujuan, CHEN Duanxin, et al. Distribution of gas hydrate in Shenhu area: identified with well log and seismic multi-attributes[J]. Marine Geology & Quaternary Geology, 2017, 37(5):122-130.]
[43] 李旭彤, 吴志强, 张训华. 地震属性分析在南黄海盆地北部坳陷白垩系油气地质特征研究中的应用[J]. 海洋地质与第四纪地质, 2015, 35(6):119-126 LI Xutong, WU Zhiqiang, ZHANG Xunhua. Petroleum Geology of the Cretaceous in the northern Depression of South Yellow Sea Basin: evidence from seismic attribute analysis[J]. Marine Geology & Quaternary Geology, 2015, 35(6):119-126.]
-
期刊类型引用(4)
1. Zhongyan QIU,Yejian WANG,Xiqiu HAN,Honglin LI,Xing YU,Ruyong CUI,Mou LI,Xuegang CHEN,Jiqiang LIU. Discovery and characterization of a new hydrothermal field at 2°N on the slow-spreading Carlsberg Ridge. Journal of Oceanology and Limnology. 2024(04): 1106-1118 . 必应学术
2. Jin Liang,Chunhui Tao,Xiangxin Wang,Cheng Su,Wei Gao,Yadong Zhou,Weikun Xu,Xiaohe Liu,Zhongjun Ding. Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge. Acta Oceanologica Sinica. 2023(09): 62-70 . 必应学术
3. Shengyi Mao,Hongxiang Guan,Lihua Liu,Xiqiu Han,Xueping Chen,Juan Yu,Yongge Sun,Yejian Wang. Lipid biomarker composition in surface sediments from the Carlsberg Ridge near the Tianxiu Hydrothermal Field. Acta Oceanologica Sinica. 2021(08): 53-64 . 必应学术
4. 沈芳,韩喜球,李洪林,王叶剑. 海底多金属硫化物资源预测:方法与思考. 中国有色金属学报. 2021(10): 2682-2695 . 百度学术
其他类型引用(1)