Progress in marine oil and gas survey in Qingdao Institute of Marine Geology over the past 45 Years
-
摘要:
石油和天然气资源是重要的能源矿产和战略性资源,海洋蕴含着丰富的油气资源,青岛海洋地质研究所(简称青岛所)自1979年重建始,便开启了海域油气资源调查、研究与评价工作的序幕。45年来,青岛所持续开展了海域及邻区含油气盆地对比、黄东海新区新层系油气资源调查评价、中国海域和海丝路海域油气勘探开发形势分析,并于2019和2021年开展了2个航次的北印度洋重点海域联合地质科学考查。本文回顾了45年以来青岛所海域油气调查与研究历史,梳理了取得的主要进展,重点介绍了海域新区新层系油气资源调查技术、东部海域新区新层系油气地质新认识、印度扇近海盆地的科学考查发现与认识、海域油气资源勘探开发总体形势与战略性方向,梳理了面临的主要挑战,同时展望了油气调查主要领域和方向,这对进一步摸清海域油气资源家底、服务海域油气矿政管理和国家能源资源安全保障具有重要意义。
Abstract:Oil and natural gas resources are important energy minerals and strategic resources. The ocean contains abundant oil and gas resources. Since its reconstruction in 1979, the Qingdao Institute of Marine Geology (the Qingdao Institute in short) has begun the investigation, research, and evaluation of marine oil and gas resources. Over the past 45 years, the Qingdao Institute has been continuing to carry out the studies in the correlation of oil and gas bearing basins in the sea area and adjacent areas, the investigation and evaluation of oil and gas resources in new area and new strata in the Yellow Sea and the East China Sea, the analysis of oil and gas exploration and development situation in China's sea area and the Sea Silk Road sea area, and the joint geological and scientific survey of key marine areas in the North Indian Ocean. This article reviews the 45-year history of oil and gas exploration and research in the sea area by the Qingdao Institute, summarizes the main achievement, and focuses on introducing the investigation techniques for oil and gas resources in the new areas and new strata, the new geological understanding of oil and gas in the new areas and new strata of the eastern sea area, the scientific research findings and understanding of the Indus Fan basin, the exploration and development situation, and strategic direction of oil and gas resources in the sea area; and puts forward the main challenges faced. At the same time, it looks forward to the main fields and directions of future oil and gas investigation, which is of great significance for further understanding of the wealth of oil and gas resources in the sea area, serving the management of oil and gas mining in the sea area, and ensuring national energy security.
-
南黄海构造上是扬子板块在海域的延伸,是下扬子的主体。南黄海盆地是由中-古生界海相沉积盆地和中-新生界陆相沉积盆地叠加而成的大型含油气沉积盆地。南黄海盆地由南往北为勿南沙隆起、青岛坳陷、崂山隆起、烟台坳陷和千里岩隆起,为“两坳三隆”的构造格局[1-3](图 1)。
经过40多年的油气勘探认为, 南黄海中-古生界海相碳酸盐岩沉积层分布广、埋藏深、厚度大,具有良好的油气前景,是重要的油气勘探远景区[3-5]。由于碳酸盐岩地层具有很强的纵、横向非均质性,对地震波场产生很强的散射和屏蔽作用,地层间物性差异小、反射能量弱,造成深部目的层地震频带窄、低频能量不够丰富,多次波发育,资料品质差,地震成像困难;剖面上目标层有效波能量弱、连续性差、分辨率和信噪比低,难以横向对比追踪[6-10]。
针对上述问题,地震采集参数不断改进:电缆长度从3000m增大到8100m、震源容量从2940in3增大到6420in3、记录长度从6s延长到12s,地震成像质量得到一定的改善,但深层的地震资料仍存在信噪比不高、分辨率较低、连续性较差等问题[11, 12]。
目前常用的气枪等深组合震源能够很好地消除气枪震源的气泡效应;随着技术的发展,工业界开始采用上下源或者多层深度气枪阵列延时激发技术来压制陷波效应,拓宽频带,以PGS公司GeoSource[13]技术和CGG公司BroadSource[14]技术为代表。结合国内外气枪组合震源设计技术,有必要针对该区特殊地震地质条件开展气枪组合震源的精细设计。
本文在以往南黄海地震地质条件分析的基础上,梳理了南黄海浅层、中深层地震地质条件,重点分析、探讨了南黄海崂山隆起中-古生界反射层成像质量差的原因;针对深层设计了2组低频成分丰富、能量强的气枪组合震源方案,使得激发产生的震源子波信号穿透性更强;通过外业试验,优选了低频更强的平面组合震源作为地震采集震源方案;与以往地震资料进行了对比,本次采集的地震资料能量衰减较慢,深层能量更强,整体改善了T2不整合面下伏反射层的成像质量,为该区的深层油气勘探奠定基础。
1. 地震地质条件
根据南黄海钻井资料及邻区资料,陈建文等认为南黄海叠合盆地发育碎屑岩和碳酸盐岩两种类型的沉积建造。不同沉积建造因成分和结构的差异具有不同的速度和密度特征;不同时代的同一沉积建造经历了不同的成岩和地质演化过程,速度和密度也有差异[15-17]。
因不同时代和不同岩性的地层界面存在波阻抗,南黄海盆地在地震剖面上存在T2、T4、T7、T7-1、T7-2、T8、T9、T10、T11、T11-1、T12、T13和Tg等13个主要反射界面,其中T2、T8和Tg为3个区域不整合面的反映[15]。各界面上下地层的地质属性及其岩性组合特征如表 1所示。
表 1 南黄海盆地地震反射界面以及地质属性(据陈建文等,2016年)Table 1. The seismic reflection interfaces and their geological properties1.1 浅层地震地质条件
南黄海水深0~103m,水深50m以浅表层沉积物以粉砂质砂、砂质粉砂为主[18],容易在海底与海面之间产生多次反射。如图 2所示,南黄海某海域近道剖面海底多次波影响振幅能量强,中深反射层也受其影响,影响范围大。
虽然地震处理技术可压制海底多次波[19, 20],但采集设计时,在考虑深层反射能量足够的情况下,应避免气枪组合震源能量过大,增强低频成分,以减少海底多次波或其他类型干扰波的影响。
1.2 中深层地震地质条件
南黄海盆地烟台坳陷和青岛坳陷浅部存在两个主要的强反射界面,分别是T2和T8。在崂山隆起和勿南沙隆起,缺失了古近系和陆相中生界,新近系和下三叠统海相碳酸盐岩或更老的地层直接接触,T2和T8为同一界面[21]。
当浅部地层存在强反射界面时,反射波临界角比较小,很小的入射角就可能产生全反射[22],纵波很难透射,形成能量屏蔽作用,减小深层反射波的能量;反射回来的那部分能量容易在海底和海面等强反射界面形成多次反射波、折射波等干扰波,进而影响深层反射波的信噪比。
南黄海海相中-古生界发育3套碳酸盐岩地层,由上往下分别是下三叠统青龙组、下二叠统栖霞组-中上石炭统和中上寒武统。碳酸盐岩地层结构较为均匀、厚度较大、速度和密度梯度小,在地震剖面上其内部反射能量偏弱,没有清晰的反射波同相轴[21]。
图 3是南黄海某海域叠前时间偏移叠加剖面,同为深层反射(双程旅行时4s附近),A区和B区地震反射波特征差异较大。A区为新生界地层,其岩性以砂泥岩为主,因经历的构造运动简单,沉积压实作用时间较短,造成不同反射界面波阻抗差异较大,反射波能量较强,同相轴连续性较好;B区为中-古生界地层,如上所述,存在较厚的碳酸盐岩地层,并经历了复杂的构造运动,很难形成较强的波阻抗界面,反射波能量较弱,深层反射的信噪比较差。
近些年针对T2强反射界面、下三叠统青龙组等碳酸盐岩较厚高速层造成中-古生界地层反射波能量弱的问题,立体电缆、大容量震源、长电缆等针对性地震采集技术开始试验、探讨,成像质量得到一定的改善,但仍存在一定问题。为了进一步提高成像质量,需要震源子波信号能量大、穿透性强。
2. 气枪组合震源设计
根据地震地质条件分析,本文气枪组合震源的设计目标是激发能量强(主峰值大)、低频段能量强(特别是60Hz以内频段[15])、有效频段频谱光滑。
通过气枪组合震源理论研究及模拟分析,认识到:不同容量大小的单个气枪所激发出来的子波信号主频不同,通常大容量气枪偏低频,小容量气枪偏高频;在气枪组合震源中,大容量气枪起主要作用,决定了整个气枪阵列的能量和偏低频成分,小容量气枪对子波信号主要起修饰作用,使子波更光滑,偏高频成分更丰富,不能一味用小容量气枪,同样也不能一味用大容量气枪,需要大小容量气枪合理组合,设计时就是将这些不同频率的子波信号有效地组合成用于地震勘探的高能量宽频率的子波信号,其中还需要考虑对第一气泡效应的压制,这中间牵涉到相干组合和调谐组合,并且依此需要确定合理地相干间距和调谐间距[23-27]。
基于以上认识以及针对南黄海深部地层的设计目标,结合发现6号物探船现有气枪类型、容量、吊点长度以及备件等情况,设计了20余组气枪组合震源,并从中优选出总容量为6390in3的气枪组合震源(4子阵),图 4为其气枪平面排布示意图。
6390in3气枪组合震源分别沉放6、8、10、12m,受虚反射陷波效应影响,其远场子波各参数统计见表 2,远场子波波形、频谱对比见图 5和图 6。随着沉放深度的增加,优势频宽快速变窄,沉放12m相比沉放6m远场子波优势频宽减小约52.7%;低频段(6~20Hz)振幅能量逐渐增加,沉放12m相比沉放6m的远场子波频谱6~20Hz低频段振幅能量增加4~5dB;地震资料的频带宽度过窄会影响其分辨率,沉放12m时,远场子波的优势频宽(-6dB)仅为44Hz,初泡比为13.8,低于行业规范15以上的要求;沉放10m时,远场子波的优势频宽(-6dB)提升到60Hz,初泡比19.9,满足行业规范,且相比沉放12m远场子波频谱6~20Hz低频段振幅能量略有降低,主峰值略高,相比沉放8、6m低频段优势明显。
表 2 气枪组合震源(6390in3)不同沉放深度模拟远场子波参数统计Table 2. The far-field seismic wavelet parameters on 6390in3 source in different depths沉放深度/m 主峰值/(bar·m) 峰-峰值/(bar·m) 初泡比 低截频/(-6dB,Hz) 高截频/(-6dB,Hz) 优势频宽/(-6dB,Hz) 主频/(-6dB,Hz) 6 113.0 234.7 26.1 6 99 93 52.5 8 107.7 222.2 19.8 6 89 83 47.5 10 110.6 228.0 19.9 6 66 60 36 12 106.9 220.3 13.8 6 50 44 28 综合考虑虚反射第一个陷波频段、气枪组合震源(6390in3)不同沉放深度远场子波优势频宽、低频段振幅能量、主峰值,确定本次平面气枪组合震源沉放深度10m。
在此基础上,考虑到4子阵震源能量分布的对称性及虚反射陷波效应[28-33],设计1组两个深度值气枪立体组合震源,受制于硬件条件,最深沉放深度为10m,另一个较浅深度分别设计为5.5、7和8.5m,沉放10m的子阵列相比较浅深度的子阵列分别延迟3、2和1ms。其远场子波各参数统计见表 3,远场子波波形、频谱对比见图 7和图 8。
表 3 气枪立体组合震源(6390in3)不同沉放深度模拟远场子波参数统计Table 3. The far-field seismic wavelet parameters on 6390in3 source in different depths沉放深度/m 主峰值/
(bar·m)峰-峰值/
(bar·m)初泡比 低截频/
(-6dB,Hz)高截频/
(-6dB,Hz)优势频宽/
(-6dB,Hz)主频/
(-6dB,Hz)5.5/10 109.1 183.5 20.1 6 70 64 38.0 7/10 112.6 182.5 20.6 6 70 64 38.0 8.5/10 108.4 206.7 20.8 6 69 63 37.5 3种深度组合其频谱在70Hz以内相差不大;其主峰值占比(主峰值/峰-峰值)相差较大,分别为59.5%、61.7%和52.4%,由表 2可计算均沉放10m的气枪平面组合震源其主峰值占比为48.5%,主峰值占比越高,说明对鬼波的压制效果也好,由此选择7、10m这2个深度值进行气枪立体组合。
进一步模拟分析7、10m两个深度值所组成的不同形状气枪立体组合震源,其远场子波各参数统计见表 4。不同组合形状其频谱在70Hz以内相差不大,主峰值或峰-峰值差别也较小;第1组“倒梯形”相比第2组“正梯形”、第3组“N形”初泡比较高,据此确定本次气枪立体组合震源采用“倒梯形”。
表 4 气枪立体组合震源(6390in3)不同组合形状模拟远场子波参数统计Table 4. The seismic wavelet parameters of 6390in3 multi-level source in different shapes序号 震源沉放
深度/m主峰值/
(bar·m)峰-峰值/
(bar·m)初泡比 低截频/
(-6dB,Hz)高截频/
(-6dB,Hz)优势频宽/
(-6dB,Hz)主频/
(-6dB,Hz)1 倒梯形7-10-10-7 112.6 182.5 20.6 6 70 64 38.0 2 正梯形10-7-7-10 112.1 178.0 18.0 6 70 64 38.0 3 N形10-7-10-7 112.4 178.6 15.3 6 70 64 38.0 2012年发现2号物探船采用气枪立体组合震源(总容量5040in3)进行地震勘探,南黄海中深层地震成像效果有了较大的改善[34],其远场子波主峰值82.8bar·m。6390in3平面组合震源相比5040in3立体组合震源主峰值约提高34%,65Hz以内频段振幅能量提高3~5dB,65~82Hz频段因虚反射陷波的影响,差于5040in3立体组合震源(图 9、图 10);6390in3“倒梯形”立体组合震源相比5040in3立体组合震源主峰值约提高36%,200Hz以内频段振幅能量提高2~5dB(图 11、图 12);考虑到本次勘探目的,6390in3平面和立体组合震源远场子波性能均优于5040in3立体组合震源。
6390in3气枪平面组合震源和“倒梯形”立体组合震源远场子波波形及频谱对比见图 13、图 14。主峰值相差不大,峰-峰值相差较大,立体组合相比平面组合震源峰-峰值降低45.5bar.m,这是因为立体组合震源对虚反射有一定压制作用。两者远场子波频谱各有特点,在50Hz以内频段平面组合相比立体组合震源振幅能量提高0.5~1.5dB;50~85Hz频段,平面组合震源在此频段内陷波效应明显,特别是75Hz左右,几乎得不到有效信号,立体组合震源改善了虚反射陷波效应的影响,频谱相对光滑。所以确定平面组合震源性能最优沉放10m和立体组合震源最优“倒梯形”(7m-10m-10m-7m)这2组震源方案进行外业试验,根据实际效果进一步优选出后续地震勘探所用的气枪组合震源。
3. 试验方案对比
本次地震采集针对震源类型、电缆沉放深度进行试验,具体试验方案见表 5,在试验线进行4次同方向施工。试验方案1为平面组合震源沉放10m,电缆沉放16m;试验方案2为平面组合震源沉放10m,电缆沉放20m;试验方案3为“倒梯形”立体组合震源(7m-10m-10m-7m),电缆沉放20m;试验方案4为“倒梯形”立体组合震源(7m-10m-10m-7m),电缆沉放16m。
表 5 地震数据采集参数试验方案Table 5. 4 test plans for acquisition of parameters试验方案 震源类型 震源沉放深度/m 电缆沉放深度/m 1 平面组合震源 10 16 2 平面组合震源 10 20 3 “倒梯形”立体组合震源 7-10-10-7 20 4 “倒梯形”立体组合震源 7-10-10-7 16 在试验采集完成后,对试验数据进行了处理分析。图 15、图 16分别是4组试验方案初叠剖面及目的层段(双程旅行时1.5~3s)频谱分析。
对4组试验方案进行处理分析,因现场条件限制,通过相同的处理流程只做到初叠剖面。初步对比分析4组试验方案的初叠剖面,T2不整合面下伏反射层反射波信号,4组试验方案反射波组能量、连续性等特征相差不大;试验方案1相比其他试验方案反射波组能量略强,连续性略好。分析双程旅行时1.5~3s反射波组的频谱特征,如图 16所示,在6~40Hz频段,试验方案1相比其他试验方案振幅能量更强,并且在45Hz以内频段无明显陷波点。综上,现场确定试验方案1,即平面组合震源沉放10m、电缆沉放16m作为本次地震采集方案。
为了进一步分析本次地震采集的效果,将试验方案1和试验方案4采集的地震资料进行相同的精细处理,处理过程主要包括低切滤波、去干扰波、SRME、Taup反褶积、Radon去多次波、DMO叠加、叠后偏移等,处理过程中使用了相同的速度和切除。如图 17所示,电缆沉放深度均为16m,平面组合震源沉放10m相比“倒梯形”立体组合震源(7m-10m-10m-7m)所获得的地震剖面,1.6s附近的有效反射无论在能量还是连续性上都有优势[25]。
图 13、图 14为6390in3气枪平面组合震源沉放10m和“倒梯形”立体组合震源远场子波波形及频谱对比图。主峰值相差不大,在50Hz以内频段平面组合相比立体组合震源振幅能量提高0.5~1.5dB。电缆沉放16m,如前所述,因电缆接收的反射波信号已经过大地滤波,模拟分析时为了更接近实际采集的地震波信号,根据南黄海地层地球物理特征,针对双程旅行时3s的反射层,赋值地层吸收衰减因子Q=110,对比分析6390in3气枪平面组合震源沉放10m和“倒梯形”立体组合震源电缆沉放16m时子波波形及频谱(图 18、图 19),平面组合震源沉放10m的子波能量较强,40Hz以内(特别是6~20Hz)振幅能量增加明显,更利于中、深层地震勘探。
4. 与以往资料对比
分析平面组合震源沉放10m、电缆沉放16m采集的单炮记录浅、中、深层(双程旅行时分别为0.6~1.4、1.6~2.6、2.8~3.8s)均方根振幅,并与以往相邻位置采集的单炮记录进行对比,如图 20所示,以往采集的单炮记录中、深层均方根振幅相对浅层均方根振幅能量占比分别为28%、23%,而本次新采集的单炮记录中、深层均方根振幅相对浅层均方根振幅能量占比分别为41%、36%,即本次采集的地震资料能量衰减较慢,深层能量更强。
选取相邻位置以往采集的地震资料与本次新采集的地震资料进行处理,并做叠前时间偏移,处理流程及选用的速度参数等相同,其叠加剖面如图 21所示。相比以往采集的地震资料,处理后本次采集的地震剖面,T2不整合面及下伏反射界面的断点更加清晰;1s左右(箭头所示)的反射波组能量更强,连续性更好;中、深层(1.5~2.5s)反射波组能量、连续性得到一定程度的改善,也使得背斜构造特征更加明显。综上,本次采集增强了T2不整合面下伏反射波能量,改善了反射波组的连续性,使下伏地层的构造特征更加清晰,整体改善了T2不整合面下伏反射层的成像质量,达到了本次勘探的目的。
5. 结论
(1) 南黄海中-古生界地层经历长期的压实作用及复杂的构造运动之后,波阻抗差异变小,构造特征更为复杂,使得深层有效的地震反射信号较弱,地震波场复杂;浅部存在T2强反射界面及多套碳酸盐岩高速层,进一步减弱中深部反射波能量,且易形成多次波,进而降低中深部反射信号的信噪比。为了改善中-古生界反射波成像质量,优化设计出6390in3富低频、强能量的气枪组合震源;
(2) 气枪组合震源的设计影响因素较多,针对勘探目的优选组合参数是关键。设计好气枪容量组合方案后,气枪沉放深度就是主要优选的参数。气枪沉放深度浅高频能量占优,低频能量较弱;为增强低频能量,通常会加深气枪沉放深度,在低频能量增强的同时,优势频带变窄,激发能量减弱。为了改善中-古生界反射波成像质量,需要激发能量和低频能量均强的气枪组合震源。根据物探船现有气枪类型、容量、吊点长度以及模拟分析等情况,沉放深度10m是一个较好的平衡点。通过外业试验验证了沉放10m的平面组合震源比“倒梯形”立体组合震源(4子阵沉放深度分别为7、10、10、7m)低频能量较强,地层吸收衰减后激发能量也较强;
(3) 与以往地震资料进行了对比,本次采集的地震资料能量衰减较慢,深层能量更强,整体改善了T2不整合面下伏反射层的成像质量,为该区的深层油气勘探奠定基础。
-
图 1 南黄海海相中—古生界地震层序及地质属性标定图
据参考文献[39]修改。S1—S7为海相中—古生界地震层序,T2相当于新近系底界,B1—B3为三套典型地震反射标志层组.
Figure 1. Paleozoic-Mesozoic seismic sequence and geological attributes correlation in the South Yellow Sea
Modified from reference [39]. S1 to S7 are the seismic sequences of marine Paleozoic-Mesozoic. T2 is the bottom boundary of Neogene. The B1 to B3 are the three typical seismic marker layers.
图 5 东海盆地南部中生代构造单元[87]
Figure 5. Mesozoic tectonic units in the southern part of the East China Sea Basin
图 6 东海盆地南部地震解释剖面[87]
Figure 6. Seismic interpretation profile of the southern part of the East China Sea Basin
-
[1] 杨有星, 高永进, 周新桂, 等. 新疆地区公益性油气调查进展与主要成果[J]. 中国地质调查, 2023, 10(3):1-15 YANG Youxing, GAO Yongjin, ZHOU Xingui, et al. Progress and main achievements of public welfare oil and gas survey in Xinjiang[J]. Geological Survey of China, 2023, 10(3):1-15.]
[2] 姜亭, 周俊林, 牛亚卓, 等. 西北公益性油气地质调查进展和展望[J]. 西北地质, 2022, 55(3):64-80 JIANG Ting, ZHOU Junlin, NIU Yazhuo, et al. Progress and prospect of public petroleum geological survey in Northwest China[J]. Northwestern Geology, 2022, 55(3):64-80.]
[3] 王海明. 全球海洋油气勘探开发特征及前景[J]. 化学工程与装备, 2022(12):212-213,167 WANG Haiming. Characteristics and prospects of global offshore oil and gas exploration and development[J]. Chemical Engineering & Equipment, 2022(12):212-213,167.]
[4] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29 CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(6):1-29.]
[5] 蔡乾忠. 论鲁东地体的形成机制及其归属[J]. 海洋地质与第四纪地质, 1989, 9(1):5-15 CAI Qianzhong. Formation mechanism of Ludong (eastern Shandong province) terrane and its actual subordinativeness[J]. Marine Geology & Quaternary Geology, 1989, 9(1):5-15.]
[6] 蔡乾忠. 中国东部与朝鲜大地构造单元对应划分[J]. 海洋地质与第四纪地质, 1995, 15(1):7-24 CAI Qianzhong. Corresponding division of geotectonic units of eastern China and Korea[J]. Marine Geology & Quaternary Geology, 1995, 15(1):7-24.]
[7] 陈国威. 中国海域含油气盆地的基本特征[J]. 海洋地质与第四纪地质, 1986, 6(4):31-36 CHEN Guowei. Main characteristics of hydrocarbon-bearing basins in China seas[J]. Marine Geology & Quaternary Geology, 1986, 6(4):31-36.]
[8] 彭世福. 中国近海早第三纪海侵层序及地层对比[J]. 海洋地质与第四纪地质, 1992, 12(1):41-56 PENG Shifu. Tertiary transgressive sequences and stratigraphic correlation in China offshore area[J]. Marine Geology & Quaternary Geology, 1992, 12(1):41-56.]
[9] 彭世福. 浅析中国近海第三纪海侵及其与油气关系[J]. 海洋地质与第四纪地质, 1986, 6(4):67-78 PENG Shifu. Preliminary study on relation between tertiary transgression and hydrocarbon in China offshore[J]. Marine Geology & Quaternary Geology, 1986, 6(4):67-78.]
[10] 郭振轩. 中国近海新生代沉积盆地生油层发育特征[J]. 海洋地质与第四纪地质, 1986, 6(4):79-85 GUO Zhenxuan. Characteristics of source beds for the major Cenozoic sedimentary basin in China offshore[J]. Marine Geology & Quaternary Geology, 1986, 6(4):79-85.]
[11] 蔡乾忠. 中国海域及邻区主要含油气盆地与成藏地质条件[J]. 海洋地质与第四纪地质, 1998, 18(4):1-10 CAI Qianzhong. Primary hydrocarbon bearing basins and the pool forming conditions in China seas and adjacent regions[J]. Marine Geology & Quaternary Geology, 1998, 18(4):1-10.]
[12] 戴春山. 中国海域含油气盆地群和早期评价技术[M]. 北京: 海洋出版社, 2011 DAI Chunshan. Oil Gas Basin Group of China Seas and Early Resource Assessment Techniques[M]. Beijing: Ocean Press, 2011.]
[13] 戴春山, 刘伊克, 陈建文, 等. 海上油气资源区域快速综合评价技术[J]. 海洋地质与第四纪地质, 2001, 21(4):79-82 DAI Chunshan, LIU Yike, CHEN Jianwen, et al. Fast comprehensive assessment techniques for offshore hydrocarbon resources[J]. Marine Geology & Quaternary Geology, 2001, 21(4):79-82.]
[14] Dai C S, Lin F, Chen J W, et al. Techniques for Quick, Comprehensive Assessment of Offshore Petroleum Resources, in Offshore Geology of China[M]. Beijing: China Ocean Press, 2003: 173-178.
[15] 陈建文. 南黄海北部油气资源评价研究[R]. 青岛: 青岛海洋地质研究所, 2004 CHEN Jianwen. Petroleum and gas evaluation of northern South Yellow Sea basin[R]. Qingdao: Qingdao Institute of Marine Geology, 2004.]
[16] 彭世福, 郭振轩. 中国海域油气勘探开发形势图说明书[R]. 青岛: 地质矿产部海洋地质研究所, 1984 PENG Shifu, GUO Zhenxuan. Specification of situation map of oil and gas exploration and development in the China sea[R]. Qingdao: Institute of Marine geology, Ministry of Geology and Mineral Resources, 1984.]
[17] 郭振轩. 新生代盆地图[M]//刘光鼎. 中国海区及邻域地质地球物理图集. 北京: 科学出版社, 1993: 74-75 GUO Zhenxuan. Cenozoic basin maps[M]//LIU Guangding. Geological and Geophysical Maps in China Sea and around Area. Beijing: Science Press, 1993: 74-75.]
[18] 肖国林. 应用GIS建立中国海域油气资源地理信息系统的思路[J]. 海洋地质动态, 1999(4):1-3,5 XIAO Guolin. The thinking of geographic information system of oil and gas resources with GIS in China seas[J]. Marine Geology Letters, 1999(4):1-3,5.]
[19] 肖国林. 基于GIS技术的中国海域油气资源可视化数据库的设计与实现: 以黄海盆地油气勘查可视化数据库为例[J]. 海洋地质动态, 2002, 18(11):39-42 XIAO Guolin. Design and realization of visualized dataset of China sea area petroleum resources on the basis of GIS technique[J]. Marine Geology Letters, 2002, 18(11):39-42.]
[20] 陈建文, 肖国林, 刘守全, 等. 中国海域油气资源勘查战略研究[J]. 海洋地质与第四纪地质, 2003, 23(4):77-82 CHEN Jianwen, XIAO Guolin, LIU Shouquan, et al. Strategy of oil and gas resources explorations in China seas[J]. Marine Geology & Quaternary Geology, 2003, 23(4):77-82.]
[21] 蔡乾忠, 刘守全, 莫杰. 寻找海相油气新领域: 从南海北部“残留特提斯”谈起[J]. 中国海上油气(地质), 2000, 14(3):157-162 CAI Qianzhong, LIU Shouquan, MO Jie, et al. Search for new domains of marine-origin petroleum: "remained Tethys" in the northern South China Sea[J]. China Offshore Oil and Gas (Geology), 2000, 14(3):157-162.]
[22] 蔡乾忠. 特提斯与海相油气: 开拓我国海域油气新领域[J]. 海洋地质动态, 1999(7):1-7 CAI Qianzhong. Tethys and marine oil and gas-opening up a new area of oil and gas in China's sea area[J]. Marine Geological Performance, 1999(7):1-7.]
[23] 蔡乾忠. “残留特提斯”的猜想: 从中国近海域发现海相中生界: 古新统谈起[J]. 中国地质, 1998(4):39-41 CAI Qianzhong. The conjecture of "residual Tethys" begins with the discovery of the Mesozoic Paleocene Series in the waters near China[J]. Geology of China, 1998(4):39-41.]
[24] 简晓玲, 刘金萍, 王改云. 北黄海东部次盆地中新生代原型盆地分析[J]. 中国海上油气, 2019, 31(1):22-31 JIAN Xiaoling, LIU Jinping, WANG Gaiyun. Analysis of Meso-Cenozoic prototype basins in the East Sub-basin, northern Yellow Sea[J]. China Offshore Oil and Gas, 2019, 31(1):22-31.]
[25] 刘金萍, 王改云, 王嘹亮, 等. 北黄海东部次盆地油气成藏主控因素[J]. 石油与天然气地质, 2015, 36(6):888-896 LIU Jinping, WANG Gaiyun, WANG Liaoliang, et al. Main controlling factors of hydrocarbon accumulation in the eastern Sub-basin, North Yellow Sea[J]. Oil & Gas Geology, 2015, 36(6):888-896.]
[26] 蔡来星, 肖国林, 董贺平, 等. 北黄海盆地东部坳陷中生界烃源岩特征及其指示的油气勘探方向[J]. 地球科学, 2020, 45(2):583-601 CAI Laixing, XIAO Guolin, DONG Heping, et al. Characteristics of Mesozoic source rocks and exploration direction of oil and gas in the eastern depression, North Yellow Sea Basin[J]. Earth Science, 2020, 45(2):583-601.]
[27] 肖国林, 蔡来星, 郭兴伟, 等. 北黄海盆地东部坳陷勘探突破对我国近海残留“黑色侏罗系”油气勘探的启示[J]. 吉林大学学报:地球科学版, 2019, 49(1):115-130 XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Exploration enlightenment on residual “black Jurassic” in Chinese offshore from exploration breakthrough in eastern sag of the North Yellow Sea Basin[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1):115-130.]
[28] 王改云, 刘金萍, 简晓玲, 等. 北黄海盆地中生界沉积充填及有利生储盖组合[J]. 地质与勘探, 2016, 52(1):191-198 WANG Gaiyun, LIU Jinping, JIAN Xiaoling, et al. Sedimentary filling and favorable source-reservoir-seal rock assemblage of Mesozoic in the North Yellow Sea Basin[J]. Geology and Exploration, 2016, 52(1):191-198.]
[29] 陈建文, 张异彪, 刘俊, 等. 南黄海“高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17 CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The “HRS” seismic exploration technology and its application in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2016, 32(10):9-17.]
[30] 张敏强, 漆滨汶, 高顺莉, 等. 南黄海中古生界勘探进展及油气潜力[J]. 海洋地质前沿, 2016, 32(3):7-15 ZHANG Minqiang, QI Binwen, GAO Shunli, et al. New exploration progress and hydrocarbon potential of the Meso-Paleozoic systems in the South Yellow Sea[J]. Marine Geology Frontiers, 2016, 32(3):7-15.]
[31] 陈建文. 南黄海前第三系油气前景研究项目设计书(2005年)[R]. 青岛: 青岛海洋地质研究所, 2005 CHEN Jianwen. Project design document of oil and gas prospects of Pre-Tertiary in South Yellow Sea (2005)[R]. Qingdao: Qingdao Institute of Marine Geology, 2005.]
[32] 陈建文, 吴志强, 李慧君, 等. 南黄海前第三系油气前景研究2006年工作总结[R]. 青岛: 青岛海洋地质研究所, 2007 CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. 2006 work summary of oil and gas prospects of Pre-tertiary in South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2007.]
[33] 雷宝华, 陈建文, 梁杰, 等. 印支运动以来南黄海盆地的构造变形与演化[J]. 海洋地质与第四纪地质, 2018, 38(3):45-54 LEI Baohua, CHEN Jianwen, LIANG Jie, et al. Tectonic deformation and evolution of the South Yellow Sea basin since Indosinian movement[J]. Marine Geology & Quaternary Geology, 2018, 38(3):45-54.]
[34] 陈建文, 吴志强, 李慧君, 等. 南黄海前第三系油气前景研究2007年工作总结[R]. 青岛: 青岛海洋地质研究所, 2008 CHEN Jianwen, WU Zhiqiang, LI Huijun, et al. 2007 work summary of oil and gas prospects of Pre-tertiary in South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2008.]
[35] 陈春峰, 施剑, 徐东浩, 等. 南黄海崂山隆起形成演化及对油气成藏的影响[J]. 海洋地质与第四纪地质, 2018, 38(3):55-65 CHEN Chunfeng, SHI Jian, XU Donghao, et al. Formation and tectonic evolution of Laoshan uplift of South Yellow Sea basin and its effect on hydrocarbon accumulation[J]. Marine Geology & Quaternary Geology, 2018, 38(3):55-65.]
[36] 张海啟, 陈建文, 李刚, 等. 地震调查在南黄海崂山隆起的发现及其石油地质意义[J]. 海洋地质与第四纪地质, 2009, 29(3):107-113 ZHANG Haiqi, CHEN Jianwen, LI Gang, et al. Discovery from seismic survey in Laoshan uplift of the south Yellow Sea and the significance[J]. Marine Geology & Quaternary Geology, 2009, 29(3):107-113.]
[37] 陈建文, 梁杰, 施剑, 等. 南黄海海相中-古生界地震探测技术突破技术瓶颈[J]. 中国地质调查成果快讯, 2016, 3(4):18-21 CHEN Jianwen, LIANG Jie, SHI Jian, et al. Breakthrough of the seismic exploration technology of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin[J]. Results Express of China Geological Survey, 2016, 3(4):18-21.]
[38] 陈建文, 施剑, 张异彪, 等. 地震调查技术突破南黄海海相中—古生界成像技术瓶颈[J]. 地球学报, 2017, 38(6):847-858 CHEN Jianwen, SHI Jian, ZHANG Yibiao, et al. The application of “HRS” seismic exploration technology to making breakthrough of the seismic imaging “Bottleneck” of the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin[J]. Acta Geoscientica Sinica, 2017, 38(6):847-858.]
[39] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23 CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(3):1-23.]
[40] 陈建文. 南黄海海相中生界—古生界具有形成大型油气田的物质基础[J]. 中国地质调查成果快讯, 2016, 2(12):6-10 CHEN Jianwen. Material base of great resources in marine Mesozoic-Paleozoic in the South Yellow Sea Basin[J]. Results Express of China Geological Survey, 2016, 2(12):6-10.]
[41] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7 CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2016, 32(1):1-7.]
[42] 陈建文, 何玉华, 肖国林, 等. 南黄海海域油气资源普查成果报告[R]. 青岛: 青岛海洋地质研究所, 2017 CHEN Jianwen, HE Yuhua, XIAO Guolin, et al. Oil and gas resource general survey of the South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2017.]
[43] 陈建文. 南黄海崂山隆起海相中—古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70 CHEN Jianwen. Many large trap structures develop in the marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2016, 32(4):69-70.]
[44] 陈建文, 何玉华, 肖国林, 等. 南黄海海域油气资源调查成果报告[R]. 青岛: 青岛海洋地质研究所, 2017 CHEN Jianwen, HE Yuhua, XIAO Guolin, et al. Oil and gas resource survey of the South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2017.]
[45] 陈建文, 何玉华, 肖国林, 等. 南黄海海域油气资源调查成果报告[R]. 青岛: 青岛海洋地质研究所, 2019 CHEN Jianwen, HE Yuhua, XIAO Guolin, et al. Oil and gas resource survey of the South Yellow Sea[R]. Qingdao: Qingdao Institute of Marine Geology, 2019.]
[46] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70 CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. The inclusion evidences of multi-accumulation of Paleozoic in South Yellow Sea[J]. Marine Geology Frontiers, 2018, 34(2):69-70.]
[47] 陈建文, 张银国, 欧光习. 南黄海崂山隆起志留系古油藏的深部烃源证据[J]. 海洋地质前沿, 2019, 35(1):74-76 CHEN Jianwen, ZHANG Yinguo, OU Guangxi. Evidence of deep hydrocarbon sources from the Silurian Paleo-reservoir in the Laoshan uplift of the South Yellow Sea[J]. Marine Geology Frontiers, 2019, 35(1):74-76.]
[48] Zhang Y G, Chen J W, Liang J, et al. Evidence of the existence of paleo reservoirs in Laoshan Uplift of the South Yellow Sea Basin[J]. China Geology, 2018, 1(4):566-567. doi: 10.31035/cg2018067
[49] 李刚, 龚建明, 杨长清, 等. “大东海”中生代地层分布: 值得关注的新领域[J]. 海洋地质与第四纪地质, 2012, 32(3):97-104 LI Gang, GONG Jianming, YANG Changqing, et al. Stratigraphic features of the Mesozoic “great East China Sea”: a new exploration field[J]. Marine Geology & Quaternary Geology, 2012, 32(3):97-104.]
[50] 杨长清, 杨传胜, 孙晶, 等. 东海陆架盆地南部中生代演化与动力学转换过程[J]. 吉林大学学报: 地球科学版, 2019, 49(1):139-153 YANG Changqing, YANG Chuansheng, SUN Jing, et al. Mesozoic evolution and dynamics transition in southern Shelf Basin of the East China Sea[J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1):139-153.]
[51] 金春爽, 乔德武, 须雪豪, 等. 东海陆架盆地南部油气资源前景与选区[J]. 中国地质, 2015, 42(5):1601-1609 JIN Chunshuang, QIAO Dewu, XU Xuehao, et al. Oil and gas potential and target selection in southern East China Sea Shelf Basin[J]. Geology in China, 2015, 42(5):1601-1609.]
[52] 龚建明, 李刚, 杨传胜, 等. 东海陆架盆地南部中生界分布特征与油气勘探前景[J]. 吉林大学学报: 地球科学版, 2013, 43(1):20-27 GONG Jianming, LI Gang, YANG Chuansheng, et al. Hydrocarbon prospecting of Mesozoic Strata in southern East China Sea Shelf Basin[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(1):20-27.]
[53] 杨长清, 李刚, 龚建明, 等. 中国东南海域中生界油气地质条件与勘探前景[J]. 吉林大学学报: 地球科学版, 2015, 45(1):1-12 YANG Changqing, LI Gang, GONG Jianming, et al. Petroleum geological conditions and exploration prospect of the Mesozoic in southeast China sea area[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(1):1-12.]
[54] 杨长清, 韩宝富, 杨艳秋, 等. 东海陆架盆地中生界油气调查进展与面临的挑战[J]. 海洋地质前沿, 2017, 33(4):1-8 YANG Changqing, HAN Baofu, YANG Yanqiu, et al. Oil and gas exploration in the Mesozoic of East China Sea Shelf Basin: progress and challenges[J]. Marine Geology Frontiers, 2017, 33(4):1-8.]
[55] 杨传胜, 杨长清, 李刚, 等. 东海陆架盆地中—新生界油气勘探研究进展与前景分析[J]. 海洋地质与第四纪地质, 2018, 38(2):136-147 YANG Chuansheng, YANG Changqing, LI Gang, et al. Prospecting of Meso-Cenozoic hydrocarbon in the East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(2):136-147.]
[56] 江凯禧, 姚长华, 郭清正, 等. 印度扇深水区古—始新统烃源岩特征及发育模式[J]. 沉积学报, 2016, 34(4):785-793 JIANG Kaixi, YAO Changhua, GUO Qingzheng, et al. Characteristics and depositional model of Paleocene and Eocene Source Rocks in Deepwater Area of Indus Fan[J]. Acta Sedimentologica Sinica, 2016, 34(4):785-793.]
[57] Gong J M, Liao J, Liang J, et al. Exploration prospects of oil and gas in the northwestern part of the Offshore Indus Basin, Pakistan[J]. China Geology, 2020, 3(4):633-642. doi: 10.31035/cg2020051
[58] 龚建明, 廖晶, Khalid M, 等. 巴基斯坦海域油气勘探方向探讨[J]. 海洋地质前沿, 2019, 35(11):1-6 GONG Jianming, LIAO Jing, Khalid M, et al. Preliminary study on the oil and gas exploration targets in offshore pakistan[J]. Marine Geology Frontiers, 2019, 35(11):1-6.]
[59] Chen J W, Xu M, Lei B H, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea[J]. China Geology, 2019, 2(1):67-84. doi: 10.31035/cg2018072
[60] 李双林, 董贺平, 赵青芳, 等. 海洋油气地球化学勘查技术及其应用实践[M]. 北京: 地质出版社, 2022 LI Shuanglin, DONG Heping, ZHAO Qingfang, et al. Offshore Oil and Gas Geochemical Exploration Technology and Its Application[M]. Beijing: Geological Publishing House, 2022.]
[61] 李双林, 赵青芳, 王建强, 等. 南黄海盆地崂山隆起中南部海底沉积物饱和烃类地球化学特征于热成因烃类输入[J]. 地质通报, 2023, 42(5):669-679 LI Shuanglin, ZHAO Qingfang, WANG Jianqiang, et al. Geochemistry of saturated hydrocarbons and thermogenic hydrocarbon input in seabed sediments from the south central Laoshan Uplift in South Yellow Sea Basin[J]. Geological Bulletin of China, 2023, 42(5):669-679.]
[62] 李双林, 赵青芳, 董贺平, 等. 南黄海盆地崂山隆起CSDP-2井中—古生界海相地层吸附烃类气体成因类型与源区特征[J]. 地质通报, 2021, 40(2-3):209-218 LI Shuanglin, ZHAO Qingfang, DONG Heping, et al. Genetic types and source characteristics of hydrocarbon gases adsorbed by Mesozoic-Paleozoic marine strata in well CSDP- 2, Laoshan uplift, South Yellow Sea Basin[J]. Geological Bulletin of China, 2021, 40(2-3):209-218.]
[63] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(1-2):117-128. doi: 10.1016/j.precamres.2009.07.004
[64] 周新民, 邹海波, 杨杰东, 等. 安徽歙县伏川蛇绿岩套的Sm-Nd等时线年龄及其地质意义[J]. 科学通报, 1989(16):1243-1245 ZHOU Xinmin, ZOU Haibo, YANG Jiedong, et al. Sm-Nd isochron age and its geological significance of the Fuchuan ophiolite suite in Shexian County, Anhui Province[J]. Chinese Science Bulletin, 1989(16):1243-1245.]
[65] 王存智, 黄志忠, 邢光福, 等. 赣东北蛇绿岩地幔橄榄岩岩石成因及其地质意义[J]. 中国地质, 2016, 43(4):1178-1188 WANG Cunzhi, HUANG Zhizhong, XING Guangfu, et al. The origin of the mantle peridotite from ophiolitite in northeast Jiangxi and its geological implications[J]. Geology in China, 2016, 43(4):1178-1188.]
[66] 邢光福, 姜杨, 陈志洪, 等. 钦杭结合带首次发现加里东期榴闪岩[J]. 资源调查与环境, 2013, 34(4):208 XING Guangfu, JIANG Yang, CHEN Zhihong, et al. Caledonian eclogite amphibolite was discovered for the first time in the Qinhang joint belt[J]. Resources Survey & Environment, 2013, 34(4):208.]
[67] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186:262-286. doi: 10.1016/j.earscirev.2018.10.003
[68] 张银国, 梁杰. 南黄海盆地二叠系至三叠系沉积体系特征及其沉积演化[J]. 吉林大学学报: 地球科学版, 2014, 44(5):1406-1418 ZHANG Yinguo, LIANG Jie. Sedimentary system characteristics and their sedimentary evolution from the Permian to Triassic in the southern Yellow Sea Basin[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5):1406-1418.]
[69] 郭兴伟, 朱晓青, 牟林, 等. 南黄海中部隆起二叠纪-三叠纪菊石的发现及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3):121-128 GUO Xingwei, ZHU Xiaoqing, MU Lin, et al. Discovery of Permian-Triassic ammonites in the central uplift of the South Yellow Sea and its geological implications[J]. Marine Geology & Quaternary Geology, 2017, 37(3):121-128.]
[70] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中-古生界沉积相及烃源岩特征: 以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046 CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in central uplift of south Yellow Sea: a case study of CSDP-2 coring well[J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4):1030-1046.]
[71] 肖国林, 蔡来星, 郭兴伟, 等. 南黄海中部隆起CSDP-2井中—古生界烃源岩精细评价[J]. 海洋地质前沿, 2017, 33(12):24-36 XIAO Guolin, CAI Laixing, GUO Xingwei, et al. Detailed assessment of Meso-Paleozoic hydrocarbon source rocks: implications from well Csdp-2 on the central uplift of the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2017, 33(12):24-36.]
[72] 张银国, 陈清华, 陈建文, 等. 下扬子海相中—古生界烃源岩发育的控制因素[J]. 海洋地质前沿, 2016, 32(1):8-12 ZHANG Yinguo, CHEN Qinghua, CHEN Jianwen, et al. Controlling factors on the Mesozoic-Paleozoic marine source rocks in the Lower Yangtze platform[J]. Marine Geology Frontiers, 2016, 32(1):8-12.]
[73] 贾东, 胡文瑄, 姚素平, 等. 江苏省下志留统黑色页岩浅井钻探及其页岩气潜力分析[J]. 高校地质学报, 2016, 22(1):127-137 JIA Dong, HU Wenxuan, YAO Suping, et al. Shallow borehole drilling of the lower Silurian black shale in Jiangsu Province and the Shale Gas potential analysis[J]. Geological Journal of China Universities, 2016, 22(1):127-137.]
[74] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中—古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202,212 YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison[J]. Petroleum Geology & Experiment, 2017, 39(2):195-202,212.]
[75] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3):278-293 ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3):278-293.]
[76] 罗志立, 韩建辉, 罗超, 等. 四川盆地工业性油气层的发现、成藏特征及远景[J]. 新疆石油地质, 2013, 34(5):504-514,495 LUO Zhili, HAN Jianhui, LUO Chao, et al. The discovery, characteristics and prospects of commercial oil and gas layers/reservoirs in Sichuan Basin[J]. Xinjiang Petroleum Geology, 2013, 34(5):504-514,495.]
[77] 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 2019, 46(1):1-13 doi: 10.1016/S1876-3804(19)30001-1 MA Xinhua, YANG Yu, WEN Long, et al. Distribution and exploration direction of medium- and large-sized Marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1):1-13.] doi: 10.1016/S1876-3804(19)30001-1
[78] 刘辉, 韩嵩, 叶茂, 等. 四川盆地大中型气田分布特征及勘探前景[J]. 天然气勘探与开发, 2018, 41(2):55-62 LIU Hui, HAN Song, YE Mao, et al. Medium to large gas fields in Sichuan Basin: distribution characteristics and exploration prospects[J]. Natural Gas Exploration and Development, 2018, 41(2):55-62.]
[79] 韩克猷, 孙玮. 四川盆地海相大气田和气田群成藏条件[J]. 石油与天然气地质, 2014, 35(1):10-18 doi: 10.11743/ogg20140102 HAN Keyou, SUN Wei. Conditions for the formation of large Marine gas fields and gas field clusters in Sichuan Basin[J]. Oil & Gas Geology, 2014, 35(1):10-18.] doi: 10.11743/ogg20140102
[80] 杨长清, 杨艳秋, 孙晶, 等. 东海陆架盆地西部和东南部油气资源调查[R]. 青岛: 青岛海洋地质研究所, 2019 YANG Changqing, YANG Yanqiu, SUN Jing, et al. Oil and gas resources survey in the west and southeast of East China Sea Shelf basin[R]. Qingdao: Qingdao Institute of Marine Geology, 2019.]
[81] 龚建明, 徐立明, 杨艳秋, 等. 从海陆对比探讨东海南部中生代油气勘探前景[J]. 世界地质, 2014, 33(1):171-177,189 doi: 10.3969/j.issn.1004-5589.2014.01.018 GONG Jianming, XU Liming, YANG Yanqiu, et al. Discussion on Mesozoic hydrocarbon potential of sourthern East China Sea based on comparision between offshore and onshore areas[J]. Global Geology, 2014, 33(1):171-177,189.] doi: 10.3969/j.issn.1004-5589.2014.01.018
[82] 陈建文, 杨长清, 张莉, 等. 中国海域前新生代地层分布及其油气勘查方向[J]. 海洋地质与第四纪地质, 2022, 42(1):1-25 CHEN Jianwen, YANG Changqing, ZHANG Li, et al. Distribution of Pre-Cenozoic strata and petroleum prospecting directions in China Seas[J]. Marine Geology & Quaternary Geology, 2022, 42(1):1-25.]
[83] 刘建华, 黎明碧, 方银霞. 东海陆架盆地海相中生界及其与邻近古海洋关系探讨[J]. 热带海洋学报, 2005, 24(2):1-7 doi: 10.3969/j.issn.1009-5470.2005.02.001 LIU Jianhua, LI Mingbi, FANG Yinxia. Mesozoic strata in East China Sea Shelf Basin and their relationship with adjacent Palaeo-seas[J]. Journal of Tropical Oceanography, 2005, 24(2):1-7.] doi: 10.3969/j.issn.1009-5470.2005.02.001
[84] 唐建. 东海及邻近地区中生代沉积地层展布研究[D]. 上海: 同济大学, 2007 TANG Jian. Study on the Mesozoic sedimentary strata distribution of East China and adjacent areas[D]. Shanghai: Tongji University, 2007.]
[85] Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China block: new insights from basin analysis[J]. Journal of Asian Earth Sciences, 2009, 34(3):376-391. doi: 10.1016/j.jseaes.2008.06.004
[86] 杨艳秋, 李刚, 戴春山. 东海陆架盆地西部坳陷带中生界分布特征及其有利区探讨[J]. 世界地质, 2011, 30(3):396-403 YANG Yanqiu, LI Gang, DAI Chunshan. Characteristics of Mesozoic distribution and discussion on its favourable area in western depression zone of East China Sea Shelf Basin[J]. Global Geology, 2011, 30(3):396-403.]
[87] 杨长清, 杨传胜, 杨艳秋, 等. 东海陆架盆地南部深部地层格架与油气资源潜力[J]. 海洋地质与第四纪地质, 2022, 42(5):158-171 YANG Changqing, YANG Chuansheng, YANG Yanqiu, et al. Deep stratigraphic framework and hydrocarbon resource potential in the Southern East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(5):158-171.]
[88] 杨长清, 孙晶, 杨传胜, 等. 东海盆地南部中生界油气成藏模式[J]. 海洋地质前沿, 2021, 37(8):89-92 YANG Changqing, SUN Jing, YANG Chuansheng, et al. The Mesozoic hydrocarbon accumulation model in the southern East China Sea basin[J]. Marine Geology Frontiers, 2021, 37(8):89-92.]
[89] Calvès G, Schwab A M, Huuse M, et al. Thermal regime of the northwest Indian rifted margin – comparison with predictions[J]. Marine and Petroleum Geology, 2010, 27(5):1133-1147. doi: 10.1016/j.marpetgeo.2010.02.010
[90] Calvès G, Schwab A M, Huuse M, et al. Seismic volcanostratigraphy of the western Indian rifted margin: the pre-Deccan igneous province[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1):B01101.
[91] Carmichael S M, Akhter S, Bennett J K, et al. Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan[J]. Petroleum Geoscience, 2009, 15(2):107-116. doi: 10.1144/1354-079309-826
[92] 刘金萍, 王改云, 简晓玲, 等. 巴基斯坦印度扇近海盆地油气地质条件分析[J]. 地质学刊, 2022, 46(4):351-357 LIU Jinping, WANG Gaiyun, JIAN Xiaoling, et al. Analysis of petroleum geological condition in offshore Indus Basin, Pakistan[J]. Journal of Geology, 2022, 46(4):351-357.]
[93] 陈旭, 刘彩芹, 王红梅, 等. 印度河盆地T区块构造特征与油气成藏[J]. 石油地球物理勘探, 2017, 52(6):1305-1314 CHEN Xu, LIU Caiqin, WANG Hongmei, et al. Tectonic characteristics and hydrocarbon accumulation in the Block T, Indus River Basin[J]. Oil Geophysical Prospecting, 2017, 52(6):1305-1314.]
[94] 廖晶, 龚建明, 陈建文, 等. 印度扇近海盆地重力滑动构造新发现[J]. 海洋地质前沿, 2020, 36(6):76-79 LIAO Jing, GONG Jianming, CHEN Jianwen, et al. New discovery of gravity slip structure in India Fan offshore basin[J]. Marine Geology Frontiers, 2020, 36(6):76-79.]
[95] Rodriguez M, Chamot-Rooke N, Huchon P, et al. The Owen Ridge uplift in the Arabian Sea: implications for the sedimentary record of Indian monsoon in Late Miocene[J]. Earth and Planetary Science Letters, 2014, 394:1-12. doi: 10.1016/j.jpgl.2014.03.011
[96] Shahzad K, Betzler C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (Offshore Indus Basin)[J]. Marine and Petroleum Geology, 2019, 101:519-539. doi: 10.1016/j.marpetgeo.2018.12.025
[97] 郑民, 李建忠, 吴晓智, 等. 我国主要含油气盆地油气资源潜力及未来重点勘探领域[J]. 地球科学, 2019, 44(3):833-847 ZHENG Min, LI Jianzhong, WU Xiaozhi, et al. Potential of oil and gas resources of main Hydrocarbon-Bearing basins and key exploration fields in China[J]. Earth Science, 2019, 44(3):833-847.]
[98] 吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6):146-155 WU Xiaozhi, LIU Zhuangxiaoxue, WANG Jian, et al. Petroleum resource potential, distribution and key exploration fields in China[J]. Earth Science Frontiers, 2022, 29(6):146-155.]
[99] 何家雄, 姚永坚, 于俊峰, 等. 中国近海盆地油气地质特征及勘探开发进展[J]. 海洋地质前沿, 2022, 38(11):1-17 HE Jiaxiong, YAO Yongjian, YU Junfeng, et al. Petroleum geological characteristics and progress of exploration and development in offshore basins of China[J]. Marine Geology Frontiers, 2022, 38(11):1-17.]
[100] 谢玉洪. 中国海洋石油总公司油气勘探新进展及展望[J]. 中国石油勘探, 2018, 23(1):26-35 doi: 10.3969/j.issn.1672-7703.2018.01.003 XIE Yuhong. New progress and prospect of oil and gas exploration of China national offshore oil corporation[J]. China Petroleum Exploration, 2018, 23(1):26-35.] doi: 10.3969/j.issn.1672-7703.2018.01.003
[101] 徐长贵, 赖维成, 张新涛, 等. 中国海油油气勘探新进展与未来勘探思考[J]. 中国海上油气, 2023, 35(2):1-12 XU Changgui, LAI Weicheng, ZHANG Xintao, et al. New progress and future exploration thinking of CNOOC oil and gas exploration[J]. China Offshore Oil and Gas, 2023, 35(2):1-12.]
[102] 谢玉洪, 高阳东. 中国海油近期国内勘探进展与勘探方向[J]. 中国石油勘探, 2020, 25(1):20-30 doi: 10.3969/j.issn.1672-7703.2020.01.003 XIE Yuhong, GAO Yangdong. Recent domestic exploration progress and direction of CNOOC[J]. China Petroleum Exploration, 2020, 25(1):20-30.] doi: 10.3969/j.issn.1672-7703.2020.01.003
[103] 谢玉洪. 中国海油“十三五”油气勘探重大成果与“十四五”前景展望[J]. 中国石油勘探, 2021, 26(1):43-54 XIE Yuhong. Major achievements in oil and gas exploration of CNOOC in the 13th Five-Year Plan period and prospects in the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2021, 26(1):43-54.]
[104] 米立军, 周守为, 谢玉洪, 等. 南海北部深水区油气勘探进展与未来展望[J]. 中国工程科学, 2022, 24(3):58-65 doi: 10.15302/J-SSCAE-2022.03.007 MI Lijun, ZHOU Shouwei, XIE Yuhong, et al. Deep-Water oil and gas exploration in northern South China Sea: progress and outlook[J]. Strategic Study of CAE, 2022, 24(3):58-65.] doi: 10.15302/J-SSCAE-2022.03.007
[105] 杨海风, 牛成民, 柳永军, 等. 渤海垦利6-1新近系大型岩性油藏勘探发现与关键技术[J]. 中国石油勘探, 2020, 25(3):24-32 doi: 10.3969/j.issn.1672-7703.2020.03.003 YANG Haifeng, NIU Chengmin, LIU Yongjun, et al. Discovery and key exploration technology of KL6-1 large lithologic oil reservoir of Neogene in the Bohai Bay Basin[J]. China Petroleum Exploration, 2020, 25(3):24-32.] doi: 10.3969/j.issn.1672-7703.2020.03.003
[106] 王昕, 周心怀, 徐国胜, 等. 渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素[J]. 石油与天然气地质, 2015, 36(2):262-270 doi: 10.11743/ogg20150211 WANG Xin, ZHOU Xinhuai, XU Guosheng, et al. Characteristics and controlling factors of reservoirs in Penglai 9-1 large-scale oilfield in buried granite hills, Bohai Sea[J]. Oil & Gas Geology, 2015, 36(2):262-270.] doi: 10.11743/ogg20150211
[107] IHS Markit. IHS energy: EDIN[EB/OL]. (2023-01-01)[2023-04-31].
[108] 王兆明, 温志新, 贺正军, 等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探, 2022, 27(2):27-37 doi: 10.3969/j.issn.1672-7703.2022.02.003 WANG Zhaoming, WEN Zhixin, HE Zhengjun, et al. Characteristics and enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration, 2022, 27(2):27-37.] doi: 10.3969/j.issn.1672-7703.2022.02.003
[109] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1):1-34,55 doi: 10.7623/syxb201901001 ZHANG Gongcheng, QU Hongjun, ZHANG Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment[J]. Acta Petrolei Sinica, 2019, 40(1):1-34,55.] doi: 10.7623/syxb201901001
[110] 叶德燎. 东南亚石油资源与勘探潜力[J]. 中国石油勘探, 2005, 10(1):55-60,64 doi: 10.3969/j.issn.1672-7703.2005.01.008 YE Deliao. Petroleum resources and exploration potential in Southeast Asia[J]. China Petroleum Exploration, 2005, 10(1):55-60,64.] doi: 10.3969/j.issn.1672-7703.2005.01.008
[111] 王建强, 赵青芳, 梁杰, 等. 海上丝绸之路沿线深水油气资源勘探方向[J]. 地质通报, 2021, 40(2):219-232 WANG Jianqiang, ZHAO Qingfang, LIANG Jie, et al. Exploration guide of deepwater oil and gas resources along the Maritime Silk Road[J]. Geological Bulletin of China, 2021, 40(2):219-232.]
[112] 张义娜, 蔡文杰, 杨松岭, 等. 巴布亚盆地侏罗系陆架边缘三角洲沉积特征及其油气勘探方向[J]. 地学前缘, 2021, 28(1):167-176 ZHANG Yina, CAI Wenjie, YANG Songling, et al. Sedimentary characteristics of the Jurassic shelf-edge delta and oil and gas exploration in the Papuan Basin[J]. Earth Science Frontiers, 2021, 28(1):167-176.]
[113] 康玉柱. 中国古生代海相大油气田形成条件及勘探方向[J]. 新疆石油地质, 2007, 28(3):263-265 doi: 10.3969/j.issn.1001-3873.2007.03.001 KANG Yuzhu. Conditions and explorative directions of marine giant oil-gas fields of Paleozoic in China[J]. Xinjiang Petroleum Geology, 2007, 28(3):263-265.] doi: 10.3969/j.issn.1001-3873.2007.03.001
[114] 徐长贵, 周家雄, 杨海风, 等. 渤海海域油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1):163-182 doi: 10.7623/syxb202401010 XU Changgui, ZHOU Jiaxiong, YANG Haifeng, et al. New fields, new types and resource potentials of oil-gas exploration in Bohai Sea[J]. Acta Petrolei Sinica, 2024, 45(1):163-182.] doi: 10.7623/syxb202401010
[115] 李威, 李友川. 渤海海域渤中19-6构造带油气纵向连续分布形成机理研究[J]. 中国海上油气, 2022, 34(1):74-83 doi: 10.11935/j.issn.1673-1506.2022.01.009 LI Wei, LI Youchuan. Study on formation mechanism of oil and gas longitudinal continuous distribution of BZ19-6 structural belt, Bohai Sea[J]. China Offshore Oil and Gas, 2022, 34(1):74-83.] doi: 10.11935/j.issn.1673-1506.2022.01.009
[116] 薛永安. 认识创新推动渤海海域油气勘探取得新突破: 渤海海域近年主要勘探进展回顾[J]. 中国海上油气, 2018, 30(2):1-8 XUE Yongan. New breakthroughs in hydrocarbon exploration in the Bohai Sea area driven by understanding innovation: a review of major exploration progresses of Bohai Sea are in recent year[J]. China Offshore Oil and Gas, 2018, 30(2):1-8.]
[117] 陈建文, 龚建明, 张银国, 等. 扬子陆域地质考察及其对南黄海油气勘探的启示[M]. 北京: 地质出版社, 2023: 143-170 CHEN Jianwen, GONG Jianming, ZHANG Yinguo, et al. Geological Survey of Yangtze Land Area and Its Inspiration to Oil and Gas Exploration in South Yellow Sea[M]. Beijing: Geology Press, 2023: 143-170.]
[118] 邹才能, 邱振. 中国非常规油气沉积学新进展: “非常规油气沉积学”专辑前言[J]. 沉积学报, 2021, 39(1):1-9 ZOU Caineng, QIU Zhen. Preface: new advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica, 2021, 39(1):1-9.]
-
期刊类型引用(3)
1. 陈凤英,王祥春,孙健,李灿苹,任小庆. 坡折带区立体震源与平面震源资料对比分析. 物探与化探. 2024(02): 461-469 . 百度学术
2. 黄福强,陈建文,李斌,张异彪,杨佳佳,李珂. 南黄海强屏蔽层下富低频强能量气枪震源设计及应用. 物探与化探. 2024(05): 1294-1301 . 百度学术
3. 张鹏,焦叙明,吴旭光,刘兴达,张明强,陈磅,刘旭明. 中古生界火成岩复杂构造波场特征分析与对策. 工程地球物理学报. 2021(06): 816-821 . 百度学术
其他类型引用(0)