Abstract:
Changes of marine sedimentary environment since the Last Glacial Maximum (LGM) recorded in the core sediments of the southern slope of Iceland reflect millennial-scale changes in ice sheets and ocean currents. The age framework was established with AMS
14C dating data of the ARC05/IS-2A core sediments in the southern slope of Iceland, and the grain size, color reflectance and high-resolution XRF element geochemical tests were carried out. According to the XRF spectrometer analysis results, the main material source of the IS-2A core sediment was determined through factor analysis method. Combined with previous studies on the changes of ice sheets and ocean currents in North Atlantic, the evolution of sediment sources on the southern slope of Iceland since the LGM was reconstructed, and the relationship between the changes of sediment sources and activities of the surrounding major ice sheets was discussed. Results show that the sediments of IS-2A core are mainly terrigenous since the LGM. Detritus in sediment indicate the main source areas from the Iceland Ice Sheet (IIS), the British-Irish Ice Sheet (BIIS), and the Finnoscandia Ice Sheet (FIS). In the early last deglaciation, terrigenous detritus were increased as a whole, came mainly from IIS, FIS and BIIS, as well as the distal Laurent ice sheet (LIS). In the middle and late period of the last deglaciation, due to the weakening of transport conditions, the terrestrial input of LIS decreased, reflecting the restriction of ice sheet on the sediments supply to the study area. In the Holocene, the modern ocean current system was formed. Under the combined action of the Iceland-Scotland Overflow Water and the North Atlantic Current, sediments mainly came from Iceland and western Europe, and partially from the detritus of the Labrador Peninsula.