Changes in sediment sources in the southern slope of Iceland since the Last Glacial Maximum and their response to the adjacent ice sheets
-
摘要:
冰岛南部陆坡岩芯沉积物记录的末次盛冰期以来海洋沉积物来源可以反映千年尺度的冰盖及洋流变化。本文利用冰岛南部陆坡ARC05/IS-2A岩芯沉积物浮游有孔虫AMS14C测年数据构建年代框架,并进行了粒度、颜色反射率以及高分辨率X射线荧光光谱仪元素地球化学测试。根据X射线荧光光谱仪分析结果,通过因子分析方法确定了IS-2A岩芯沉积物的主要物质来源;结合前人对冰盖及洋流变化的研究,重建了末次盛冰期以来冰岛南部陆坡沉积物来源的演化过程,讨论了沉积物来源变化及其与周边主要冰盖活动之间的关系。结果表明,末次盛冰期以来IS-2A岩芯沉积物以陆源输入为主。 其中,末次盛冰期研究区碎屑沉积物主要来自冰岛冰盖、不列颠-爱尔兰冰盖和斯堪的纳维亚冰盖。而在末次冰消期初期,陆源碎屑物质整体增加,它们主要来自近源冰岛冰盖、斯堪的纳维亚冰盖和不列颠-爱尔兰冰盖以及远端劳伦德冰盖。末次冰消期中后期,由于搬运条件的减弱,劳伦德冰盖的陆源输入有所减少,反映了冰盖活动对研究区沉积物来源的制约。进入全新世后,现代洋流体系形成,在冰岛-苏格兰溢流水和北大西洋暖流的共同作用下,沉积物主要来自冰岛和欧洲西部,拉布拉多半岛的碎屑物质也有部分输入。
Abstract:Changes of marine sedimentary environment since the Last Glacial Maximum (LGM) recorded in the core sediments of the southern slope of Iceland reflect millennial-scale changes in ice sheets and ocean currents. The age framework was established with AMS14C dating data of the ARC05/IS-2A core sediments in the southern slope of Iceland, and the grain size, color reflectance and high-resolution XRF element geochemical tests were carried out. According to the XRF spectrometer analysis results, the main material source of the IS-2A core sediment was determined through factor analysis method. Combined with previous studies on the changes of ice sheets and ocean currents in North Atlantic, the evolution of sediment sources on the southern slope of Iceland since the LGM was reconstructed, and the relationship between the changes of sediment sources and activities of the surrounding major ice sheets was discussed. Results show that the sediments of IS-2A core are mainly terrigenous since the LGM. Detritus in sediment indicate the main source areas from the Iceland Ice Sheet (IIS), the British-Irish Ice Sheet (BIIS), and the Finnoscandia Ice Sheet (FIS). In the early last deglaciation, terrigenous detritus were increased as a whole, came mainly from IIS, FIS and BIIS, as well as the distal Laurent ice sheet (LIS). In the middle and late period of the last deglaciation, due to the weakening of transport conditions, the terrestrial input of LIS decreased, reflecting the restriction of ice sheet on the sediments supply to the study area. In the Holocene, the modern ocean current system was formed. Under the combined action of the Iceland-Scotland Overflow Water and the North Atlantic Current, sediments mainly came from Iceland and western Europe, and partially from the detritus of the Labrador Peninsula.
-
Keywords:
- slope sediments /
- sediment provenance /
- factor analysis /
- southern Iceland /
- Last Glacial Maximum
-
《海洋地质与第四纪地质》是由中国地质调查局主管、青岛海洋地质研究所主办、科学出版社出版的学术性期刊。其办刊方针是:坚持以创新性、前沿性、系统性为特色,坚持“百花齐放,百家争鸣”,依靠和联系广大海洋地质工作者,探索海洋地质过程科学奥秘,聚焦基础理论研究,促进地球科学全面发展,通过报道高水平科研成果,促进海洋地质科研人才成长。
《海洋地质与第四纪地质》主要刊登海洋地质学及海陆第四纪地质学各分支学科具有前沿性、原创性和探索性的学术论文;侧重报道国家自然科学基金项目、国家重要专项以及国际合作项目的最新研究成果;突出中国海区、大洋地质以及“三极”地区研究报道特色;注重海区与大陆、区域性和全球变化对比研究。主要栏目为:沉积与环境、地球化学与地球物理、古海洋与年代地质、油气与矿产、第四纪地质、综述与评述、技术方法等。
本刊稿件一般以确定刊用的时间先后次序刊载。对于具有创新性、前沿性的研究成果和特约稿件,将优先给予刊出。
稿件的著作权:除《著作权法》另有规定之外,属于作者,文责由作者自负。稿件一经录用,各类版本的版权即由作者转让给本刊,凡不同意在电子版本(光盘版和网络版)刊载的作者,请在来稿中注明。
来稿要求及注意事项如下:
1. 《海洋地质与第四纪地质》采编平台入口网址为:jhydz.com.cn。严禁涉及泄密事宜,切忌一稿多投。一旦查出违反上述规定者,责任由作者承担。
2. 本刊接受国外或国际合作研究的英文稿件。对英文稿件的要求同中文稿件,应附有中文题目、作者及单位、中文详细摘要及关键词。
3. 编辑部在收到来稿后6个月内答复作者是否录用。作者在6个月后仍未接到本刊录用通知,可改投他刊。
4. 依照《著作权法》有关规定,本刊可对来稿进行编辑处理,对于实质性内容的修改,应征求作者同意。
5. 文稿刊用后,即付稿酬。并赠送2本样刊。
6. 来稿要求选题新颖,数据可靠,论点明确,文字简练,层次分明。
7. 来稿格式要求:一般研究性论文以8000字为宜(6~10版),书写顺序为中文题目、作者、作者单位、摘要、关键词、中图法分类号;引言;正文;讨论;结论;致谢;参考文献;英文摘要;其它说明。凡不符合来稿格式要求者,本刊将退回作者修改后再投。
8. 作者一般只列出主要参加者。第一作者须附作者简介(姓名,性别,出生年,学位,职称,所从事的专业,联系电话及E-mail),参与辅助研究者可列入致谢部分。
9. 基金资助的研究项目,请注明省部级以上基金名称和项目编号。
10. 论文题目一般不超过20个中文字,必要时可加副标题。正文标题结构层次应适宜,一般分为二级或三级,各级标题用1、2、3······;1.1、1.2、1.3······;1.1.1、1.1.2、1.1.3表示,依次类推,顶格书写。
11. 论文摘要应包括研究目的、方法、结果和结论4个部分主要内容,突出创新性成果,但不应有评价性用语。英文摘要篇幅可适当增加为一个印刷页。关键词一般5~8个。
12. 稿件中的科技名词和术语、人名和地名的译文等均应按国家标准的规定使用,计量单位必须使用国家法定计量单位。标点符号使用要准确。
13. 实验测试数据要注明测试者、测试方法、实验仪器设备、实验条件、精度及误差范围等。论文中使用的关键证据应附原始数据。
14. 图表:文中只附必要的图表,按照“文先图后”的原则在文中留出位置,一般双栏排图不宽于8 cm,通栏排图不宽于17 cm。附图要求线条均匀、清晰,线条宽度0.5~0.6mm;图中文字要求使用六号字、小五号、五号宋体字,仿宋体或楷体也可,不用黑体字;图中内容要与图注和正文叙述相符。图名用中英文对照写出并置于图的下方,图例应编号列于图名下方。凡涉及国界的图件必须严格按照中华人民共和国地图出版社最新版本地图绘制。表格尽量使用三线表,中、英文表名置于表格上方。
15. 作者应在自己的文章中,对国内外同行已发表的相关论文,特别是近5年的研究成果给予充分反映。凡引用他人的资料须在正文内标注并在文后列出参考文献,前后一一对应。参考文献著录格式采用顺序编码制,中文参考文献需同时译成相应的英文。参考文献中外国人名一律姓前名后,省略缩写点。参考文献类型以字母方式标识,如:期刊文章[J],专著[M],论文集[C],学位论文[D],报告[R],其他[Z]。
期刊:[序号] 作者姓名(不超过3人全部写出,超过者只写前3名,后加“等”或“et al”,作者之间加逗号,). 题名[J]. 刊名,年,卷(期):起止页.
专著:[序号] 作者姓名. 书名[M]. 出版地:出版者,年:起止页.
论文集:[序号] 作者姓名.析出文章题名[C]// 论文集名. 出版地:出版者,出版年:起止页.
16. 作者收到退修意见后,应及时将修改后的稿件及图件上传至本刊稿件处理系统。矢量图件按原绘图格式及栅格图像格式一并提交,所有栅格图像的分辨率建议为600dpi。论文录用前,作者须提交并上传稿件保密审查意见
17. 稿件在排印后,初校样发作者校对,除录入排版错误外,文字一般不宜再作改动。作者应及时将定稿校样返回。
中国地质调查局青岛海洋地质研究所《海洋地质与第四纪地质》编辑部
地址:青岛市福州南路62号,邮政编码:266071
联系电话:(0532)85755823
E-mail:hydzbjb@163.com
-
图 1 研究区地理位置、洋流系统和岩芯位置分布示意图
图中橙色五角星为本文研究站位IS-2A;红色实线代表暖流,蓝色实线代表寒流;灰色虚线代表LGM最大冰盖范围;图中涉及到的流系分别为表层的北大西洋暖流(NAC)、伊明格暖流(IC)、东冰岛洋流(EIC)、东格陵兰洋流(EGC);中-深层的冰岛-苏格兰溢流(ISOW)、北大西洋深层水(NADW)。洋流系根据文献[13, 29-30]重绘,最大冰盖线根据文献[13]重绘。
Figure 1. The distribution of geographical location, ocean currents, and core location in the study area
The orange pentagram marks site IS-2A. The red solid line represents warm currents, and the blue solid line for cold currents; the gray dotted line is the maximum ice cover range of LGM. The current systems shown in the diagram are surface currents, including North Atlantic Current (NAC), Iminger Current (IC), East Iceland Current (EIC), and East Greenland Current (EGC), as well as the mid-deep currents, including Iceland-Scotland Overflow Water (ISOW), and North Atlantic Deep Water (NADW). The ocean currents are redrawn from references [13, 29-30]. The maximum ice sheet line is redrawn according to reference [13].
图 4 IS-2A岩芯沉积物粒径-频率典型分布模式(a、b、c)与粒径端元EM1-3频率分布图(d)
图b中末次冰消期黄色粒度分布代表沉积物类似LGM期的单峰分布模式,紫色粒度分布代表沉积物类似全新世的多峰分布模式。
Figure 4. The typical particle size-frequency distribution patterns (a, b, c) of IS-2A sediments and the frequency distribution of particle size endmember EM1-3 (d)
The yellow lines for the last deglaciation show a unimodal distribution pattern similar to the LGM period, and the purple lines show a multimodal distribution pattern similar to the Holocene ones.
表 1 IS-2A岩芯 AMS14C测年数据及地层年代框架
Table 1 AMS14C dating data and stratigraphic age framework of IS-2A core
层位/cm AMS14C年龄/aBP 日历年龄/cal.aBP±1σ 0~2 5280 ±303225 ±15.010~12 6200 ±304280 ±32.520~22 9910 ±308401 ±64.550~52 14400 ±4014422 ±97.590~92 15700 ±5016153 ±75.5110~112 16480 ±5016960 ±61.5140~142 16640 ±5017132 ±85.0170~172 17080 ±5017687 ±93.0190~192 17480 ±5018165 ±93.5210~212 17600 ±5018306 ±91.5230~232 17870 ±5018632 ±83.5250~252 18270 ±5019127 ±114.5270~272 18350 ±5019246 ±91.5290~292 18950 ±5019538 ±107.5350~352 19980 ±6020660 ±103.5450~452 20910 ±6021790 ±116表 2 IS-2A岩芯主成分及方差分析
Table 2 Principal component and variance analysis for IS-2A sediments
元素 F1 F2 F3 F4 Al 0.894 −0.050 0.162 −0.073 Si 0.932 −0.047 0.151 −0.115 S 0.001 0.095 0.069 0.941 K 0.711 −0.596 −0.044 −0.097 Ca 0.502 0.031 0.769 −0.036 Ti −0.136 0.939 0.139 −0.002 Mn −0.723 0.089 −0.280 0.031 Fe 0.011 0.937 −0.170 0.013 Ni 0.354 0.006 0.718 0.042 Sr −0.045 −0.038 0.875 −0.066 Cl −0.490 −0.144 −0.261 0.629 方差贡献 30.303 19.629 19.316 11.965 累计方差贡献 30.303 49.932 69.248 81.213 -
[1] Larsen H C, Saunders A D, Clift P D, et al. Seven Million Years of Glaciation in Greenland[J]. Science, 1994, 264(5161):952-955. doi: 10.1126/science.264.5161.952
[2] Jansen E, Sjøholm J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea[J]. Nature, 1991, 349(6310):600-603. doi: 10.1038/349600a0
[3] Flesche K H, Jansen E, Fronval T, et al. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma) -ice-rafted detritus evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(3):213-223.
[4] Maslin M A, Li X S, Loutre M F, et al. The Contribution of Orbital Forcing to the Progressive Intensification of Northern Hemisphere Glaciation[J]. Quaternary Science Reviews, 1998, 17(4):411-426.
[5] Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region[J]. Nature, 1984, 307(5952):620-623. doi: 10.1038/307620a0
[6] Hodell D, Channell J. Mode transitions in Northern Hemisphere glaciation: Co-evolution of millennial and orbital variability in Quaternary climate[J]. Climate of the Past, 2016, 12(9):1805-1828. doi: 10.5194/cp-12-1805-2016
[7] Stein R, Fahl K, Müller J. Proxy Reconstruction of Cenozoic Arctic Ocean Sea-Ice History - from IRD to IP25-[J]. Polarforschung, 2012, 82(1):37-71.
[8] Justwan A, Koc N, Jennings A E. Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions[J]. Quaternary Science Reviews, 2008, 27(15):1571-1582.
[9] Revel M, Cremer M, Grousset F E, et al. Grain-size and Sr Nd isotopes as tracer of paleo-bottom current strength, Northeast Atlantic Ocean[J]. Marine Geology, 1996, 131(3):233-249.
[10] Clarke G, Marshall S, Hillarire-M C, et al. Mechanisms of Global Climate Change at Millennial Time Scales[M]. 1999:243-262.
[11] Andrews J T, Cooper T A, Jennings A E, et al. Late Quaternary iceberg-rafted detritus events on the Denmark Strait-Southeast Greenland continental slope (~65°N): related to North Atlantic Heinrich events?[J]. Marine Geology, 1998, 149(1):211-228.
[12] Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2):142-152. doi: 10.1016/0033-5894(88)90057-9
[13] Struve T, Roberts N L, Frank M, et al. Ice-sheet driven weathering input and water mass mixing in the Nordic Seas during the last 25, 000 years[J]. Earth and Planetary Science Letters, 2019, 514(15):108-118.
[14] 赵嵩, 董林森, 王湘芹, 等. 北冰洋门捷列夫海岭富锰棕色层稀土元素组成特征与来源初步分析[J]. 海洋学报(中文版), 2020, 42(7):78-92 ZHAO Song, DONG Linsen, WANG Xiangqin, et al. Composition and provenance analysis of rare-earth elements in the manganese-rich brown layers of the Mendeleev Ridge, Arctic Ocean[J]. Haiyang Xuebao, 2020, 42(7):78-92.]
[15] Leone S, Palcu D V, Srevastava P, et al. Changing sediment supply during glacial-interglacial intervals in the North Atlantic revealed by particle size characterization and environmental magnetism[J]. Global and Planetary Change, 2023, 220(12):104022.
[16] 陈漪馨, 刘焱光, 姚政权, 等. 末次盛冰期以来挪威海北部陆源物质输入对气候变化的响应[J]. 海洋地质与第四纪地质, 2015, 35(3):95-108 CHEN Yixin, LIU Yanguang, YAO Zhenquan, DONG Linsen, LI Chaoxin. Response of Terrigenous Input to the Climatic Changes of Northern Norwegian Sea since the Last Glacilal Maximum[J]. Marine Geology & Quaternary Geology, 2015, 35(3):95-108.]
[17] Depaolo D J, Maher K, Christensen J N, et al. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984[J]. Earth and Planetary Science Letters, 2006, 248(1):394-410.
[18] Hemming S R, Broecker W S, Sharp W D, et al. Provenance of Heinrich layers in core V28-82, northeastern Atlantic: 40Ar/39Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd-Sr-Pb isotopes in the fine sediment fraction[J]. Earth and Planetary Science Letters, 1998, 164(1):317-333.
[19] Grousset F, Labeyrie L, Sinko J, et al. Patterns of Ice-Rafted Detritus in the Glacial North Atlantic (40-55°N)[J]. Paleoceanography, 1993, 8(2):175-192. doi: 10.1029/92PA02923
[20] Grousset F, Pujol C, Labeyrie L, et al. Were the North Atlantic Heinrich events triggered by the behaviour of the European Ice Sheets?[J]. Geology, 2000, 28(2):123-126. doi: 10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2
[21] Schmitz W J, Mccartney M S. On the North Atlantic Circulation[J]. Reviews of Geophysics, 1993, 31(1):29-49. doi: 10.1029/92RG02583
[22] Ferreira D C, Luiza M, Kerr, et al. Source water distribution and quantification of North Atlantic Deep Water and Antarctic Bottom Water in the Atlantic Ocean[J]. Progress in Oceanography, 2017, 153:66-83. doi: 10.1016/j.pocean.2017.04.003
[23] Bourgeois O, Dauteuil O, Vliet-L B V. Geothermal control on flow patterns in the Last Glacial Maximum ice sheet of Iceland[J]. Earth Surface Processes and Landforms, 2000, 25(1):59-76. doi: 10.1002/(SICI)1096-9837(200001)25:1<59::AID-ESP48>3.0.CO;2-T
[24] Pini R, Furlanetto G, Vallé F, et al. Linking North Atlantic and Alpine Last Glacial Maximum climates via a high-resolution pollen-based subarctic forest steppe record[J]. Quaternary Science Reviews, 2022, 294(15):1-18.
[25] Swift J H. The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(11):1339-1355. doi: 10.1016/0198-0149(84)90005-0
[26] Farmer G L, Barber D, Andrews J. Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence[J]. Earth and Planetary Science Letters, 2003, 209(1):227-243.
[27] Hemming S. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1):1-43.
[28] Jenner K A, Campbell D C, Piper D J W. Along-slope variations in sediment lithofacies and depositional processes since the Last Glacial Maximum on the northeast Baffin margin, Canada[J]. Marine Geology, 2018, 405(1):92-107.
[29] Mao L, Piper D J W, Saint-A F, et al. Labrador Current fluctuation during the last glacial cycle[J]. Marine Geology, 2018, 395:234-246. doi: 10.1016/j.margeo.2017.10.012
[30] Xiao X, Zhao M, Knudsen K L, et al. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes[J]. Earth and Planetary Science Letters, 2017, 472(15):14-24.
[31] Thornalley D J, Elderfield H, McCave I. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21, 000 years[J]. Paleoceanography, 2010, 25(1):1211-1226.
[32] 吴东, 刘焱光, Eiríksson J, 等. 3万年以来挪威海南部冰岛-苏格兰溢流变化及其对海冰活动的响应[J]. 第四纪研究, 2019, 39(4):845-862 doi: 10.11928/j.issn.1001-7410.2019.04.06 WU Dong, LIU Yanguang, Eiríksson Jón, et al. Changes of Iceland-Scotland overflow water in Southern Norwegian Sea and the responses to sea ice activities since 30 kaBP[J]. Quaternary Sciences, 2019, 39(4):845-862.] doi: 10.11928/j.issn.1001-7410.2019.04.06
[33] 朱爱美, 刘季花, 邹建军, 等. 亚北极太平洋边缘海表层沉积物地球化学特征[J]. 海洋科学进展, 2019, 37(4):601-612 ZHU Aimei, LIU Jihua, ZOU Jianjun, et al. Characteristics of Sedimentary Geochemistry of Surface Sediments in the Subarctic Pacific Marginal Seas.[J]. Advances in Marine Science, 2019, 37(4):601-612.]
[34] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085
[35] Mccave I N. Chapter 8: Size Sorting During Transport and Deposition of Fine Sediments: Sortable Silt and Flow Speed[M]. 2008: 121-142.
[36] 豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3):690-703 doi: 10.11928/j.issn.1001-7410.2020.03.08 DOU Ruxi, ZOU Jianjun, SHI Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30000 years[J]. Quaternary Sciences, 2020, 40(3):690-703.] doi: 10.11928/j.issn.1001-7410.2020.03.08
[37] 王昆山, 石学法, 王国庆. 南黄海陆架沉积物颜色反射率的初步研究[J]. 海洋科学进展, 2006, 24(1): 30-38 WANG Kunshan, SHI Xuefa, WANG Guoqing, A Preliminary Study on the Sediment Color Reflectancein the Southern Yellow Sea Shelf Area[J]. Advances in Marine Science, 2006, 24(1): 29-38.]
[38] Rad U, Schaaf M, Michels K, et al. A 5000-yr Record of Climate Change in Varved Sediments from the Oxygen Minimum Zone off Pakistan, Northeastern Arabian Sea[J]. Quaternary Research, 1999, 51(1):39-53. doi: 10.1006/qres.1998.2016
[39] Kïg I, Drodt M, Suess E, et al. Iron reduction through the tan-green color transition in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8):1679-1683. doi: 10.1016/S0016-7037(97)00007-0
[40] Chen P, Li F, Wu C. Research on Intrusion Detection Method Based on Pearson Correlation Coefficient Feature Selection Algorithm[J]. Journal of Physics: Conference Series, 2021, 1757(1):12010-12054. doi: 10.1088/1742-6596/1757/1/012010
[41] Ziegler C L, Murray R W. Geochemical evolution of the central Pacific Ocean over the past 56 Myr[J]. Paleoceanography, 2007, 22(2):2203-2224.
[42] Reimann C, Filzmoser P, Garrett R G. Factor analysis applied to regional geochemical data: problems and possibilities[J]. Applied Geochemistry, 2002, 17(3):185-206. doi: 10.1016/S0883-2927(01)00066-X
[43] 姚政权, 刘焱光, 王昆山, 等. 日本海末次冰期千年尺度古环境变化的地球化学记录[J]. 矿物岩石地球化学通报, 2010, 29(2):119-126 doi: 10.3969/j.issn.1007-2802.2010.02.002 YAO Zhengquan, LIU Yanguang, WANG Kunshan, et al. Millennial-scale Paleoenvironment Change During the Last GIacial Period Recorded by Geochemical Variations in the Japan Sea[J]. Bulletin of MineraIogy, Petrology and Geochcmistry, 2010, 29(2):119-126.] doi: 10.3969/j.issn.1007-2802.2010.02.002
[44] Ballini M, Kissel C, Colin C, et al. Deep-water mass source and dynamic associated with rapid climatic variations during the last glacial stage in the North Atlantic: A multiproxy investigation of the detrital fraction of deep-sea sediments[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2):1-16.
[45] Richter T O, Van D G S, Koster B, et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments[J]. Geological Society London Special Publications, 2006, 267(1):39-50. doi: 10.1144/GSL.SP.2006.267.01.03
[46] Yao Z, Liu Y, Shi X, et al. Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: indications from high-resolution X-ray fluorescence core scanning[J]. Journal of Quaternary Science, 2012, 27(9):932-940. doi: 10.1002/jqs.2583
[47] Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5):1-6.
[48] Andrews J T, Eberl D D. Determination of sediment provenance by unmixing the mineralogy of source-area sediments: The “SedUnMix” program[J]. Marine Geology, 2012, 291-294(1):24-33.
[49] Andrews J T, Kirby M E, Aksu A, et al. Late Quaternary Detrital Carbonate (DC-) Layers in Baffin Bay Marine Sediments (67°-74°N): Correlation with Heinrich Events in the North Atlantic?[J]. Quaternary Science Reviews, 1998, 17(12):1125-1137. doi: 10.1016/S0277-3791(97)00064-4
[50] Patton H, Hubbard A, Bradwell T, et al. The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet[J]. Earth-Science Reviews, 2017, 166:223-245. doi: 10.1016/j.earscirev.2017.02.001
[51] Spagnolo M, Clark C. A geomorphological overview of glacial landforms on the Icelandic continental shelf[J]. Journal of Maps, 2008, 5(1):37-52.
[52] Rørvik K L, Laberg J S, Hald M, et al. Behavior of the northwestern part of the Fennoscandian Ice Sheet during the Last Glacial Maximum-A response to external forcing[J]. Quaternary Science Reviews, 2010, 29(17):2224-2237.
[53] Peck V L, Hall I R, Zahn R, et al. High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation[J]. Earth and Planetary Science Letters, 2006, 243(3):476-488.
[54] Revel M, Sinko J A, Grousset F E, et al. Sr and Nd isotopes as tracers of North Atlantic lithic particles: Paleoclimatic implications[J]. Paleoceanography, 1996, 11(1):95-113. doi: 10.1029/95PA03199
[55] You D, Stein R, Fahl K, et al. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea[J]. Communications Earth & Environment, 2023, 4(1):1-13.
[56] Argenio C, Flores J A, Balestra B, et al. Surface water mass dynamics at IODP Site U1313 through Principal Component Analysis: Evidence from coccolith assemblages in the ~25-7 kyr interval[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 635(1):111960.
[57] Jackson R, Frederichs T, Schulz H, et al. Chronology of detrital carbonate events in Baffin Bay reveals different timing but similar average recurrence time of North American-Arctic and Laurentide ice sheet collapse events during MIS 3[J]. Earth and Planetary Science Letters, 2023, 613:1-10.
[58] Ezat M M, Rasmussen T L, Thornalley D J R, et al. Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates[J]. Paleoceanography, 2017, 32(2):172-181. doi: 10.1002/2016PA003053
[59] Sejrup H P, Clark C D, Hjestuen B O. Rapid ice sheet retreat triggered by ice stream debuttressing: Evidence from the North Sea[J]. Geology, 2016, 44(5):37651-37652.
[60] Lekens W A H, Sejrup H P, Haflidason H, et al. Laminated sediments preceding Heinrich event 1 in the Northern North Sea and Southern Norwegian Sea: Origin, processes and regional linkage[J]. Marine Geology, 2005, 216(1):27-50.
[61] Hjelstuen B O, Sejrup H P, Haflidason H. , et al. Late Quaternary seismic stratigraphy and geological development of the south Vøring margin, Norwegian Sea[J]. Quaternary Science Reviews, 2004, 23:1847-1865. doi: 10.1016/j.quascirev.2004.03.005
[62] Marcott S A, Clark P U, Padman L, et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events[J]. Proc Natl Acad Sci U S A, 2011, 108(33):13415-13419. doi: 10.1073/pnas.1104772108
[63] Becker L W, Hjelstuen, B O, Støren E W, et al. Automated counting of sand‐sized particles in marine records[J]. Sedimentology: Journal of the International Association of Sedimentologists, 2018, 65(3):842-850.
[64] Scourse J D, Haapaniemi A I, Colmenero-H E, et al. Growth, dynamics and deglaciation of the last British–Irish ice sheet: the deep-sea ice-rafted detritus record[J]. Quaternary Science Reviews, 2009, 28(27):3066-3084.
[65] Peck V L, Hall I R, Zahn R, et al. The relationship of Heinrich events and their European precursors over the past 60 ka BP: a multi-proxy ice-rafted debris provenance study in the North East Atlantic[J]. Quaternary Science Reviews, 2007, 26(7-8):862-875. doi: 10.1016/j.quascirev.2006.12.002
[66] Patton H, Hubbard A, Andreassen K, et al. Deglaciation of the Eurasian ice sheet complex[J]. Quaternary Science Reviews, 2017, 169(1):148-172.
[67] Max L, Nürnberg D, Chiessi C M, et al. Subsurface ocean warming preceded Heinrich Events[J]. Nature Communications, 2022, 13(1):4217. doi: 10.1038/s41467-022-31754-x
[68] Souchez R. Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature, 1993, 364(6434):203-207. doi: 10.1038/364203a0
[69] Eiríksson J, Karen K, Hafidi H, et al. Late-glacial and Holocene paleoceanography of the North Iceland Shelf[J]. Journal of Quaternary Science, 2000, 15(1):23-42. doi: 10.1002/(SICI)1099-1417(200001)15:1<23::AID-JQS476>3.0.CO;2-8
[70] Dyke A. An outline of North American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2:373-424.
[71] Barber D C, Dyke A, Hillaire-M C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400(6742):344-348. doi: 10.1038/22504
[72] Bini A, Andreson R, Briner J. Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord[J]. Nature Geoscience, 2009, 2(7):496-499. doi: 10.1038/ngeo556
[73] Clark P, Carlson A. Ice Sheet Sources of Sea Level Rise and Freshwater Discharge during the Last Deglaciation[J]. AGU Fall Meeting Abstracts, 2010, 50(4):371-443.
[74] Kutzbach J, Gallimore R, Harrison S, et al. Climate and biome simulations for the past 21, 000 years[J]. Quaternary Science Reviews, 1998, 17(6):473-506.
[75] Thornalley D J R, Blaschek M, Davies F J, et al. Long-term variations in Iceland–Scotland overflow strength during the Holocene[J]. Climate of the Past, 2013, 9(5):2073-2084. doi: 10.5194/cp-9-2073-2013
[76] Knudsen K L, Jiang H, Jansen E, et al. Environmental changes off North Iceland during the deglaciation and the Holocene: foraminifera, diatoms and stable isotopes[J]. Marine Micropaleontology, 2004, 50(3):273-305.