末次盛冰期以来冰岛南部陆坡沉积物来源变化及其对周边冰盖消涨的响应

孙舒玮, 赵嵩, 刘焱光, 吴东, 胡宁静

孙舒玮,赵嵩,刘焱光,等. 末次盛冰期以来冰岛南部陆坡沉积物来源变化及其对周边冰盖消涨的响应[J]. 海洋地质与第四纪地质,2025,45(1): 93-108. DOI: 10.16562/j.cnki.0256-1492.2024031801
引用本文: 孙舒玮,赵嵩,刘焱光,等. 末次盛冰期以来冰岛南部陆坡沉积物来源变化及其对周边冰盖消涨的响应[J]. 海洋地质与第四纪地质,2025,45(1): 93-108. DOI: 10.16562/j.cnki.0256-1492.2024031801
SUN Shuwei,ZHAO Song,LIU Yanguang,et al. Changes in sediment sources in the southern slope of Iceland since the Last Glacial Maximum and their response to the adjacent ice sheets[J]. Marine Geology & Quaternary Geology,2025,45(1):93-108. DOI: 10.16562/j.cnki.0256-1492.2024031801
Citation: SUN Shuwei,ZHAO Song,LIU Yanguang,et al. Changes in sediment sources in the southern slope of Iceland since the Last Glacial Maximum and their response to the adjacent ice sheets[J]. Marine Geology & Quaternary Geology,2025,45(1):93-108. DOI: 10.16562/j.cnki.0256-1492.2024031801

末次盛冰期以来冰岛南部陆坡沉积物来源变化及其对周边冰盖消涨的响应

基金项目: 国家自然科学基金“末次间冰期以来北欧海南部洋流变动对大西洋经向翻转流及气候的影响:陆源与自生组分钕同位素证据”(41676053),“晚始新世以来北极重大冰增事件及其演进过程:基于北欧海西部海域的沉积物地球化学记录”(42076079)
详细信息
    作者简介:

    孙舒玮(1999—),女,硕士研究生,海洋地质专业,E-mail:sunshuwei726@fio.org.cn

    通讯作者:

    胡宁静(1975—),女,研究员,主要从事地球化学研究,E-mail:huningjing@fio.org.cn

  • 中图分类号: P736

Changes in sediment sources in the southern slope of Iceland since the Last Glacial Maximum and their response to the adjacent ice sheets

  • 摘要:

    冰岛南部陆坡岩芯沉积物记录的末次盛冰期以来海洋沉积物来源可以反映千年尺度的冰盖及洋流变化。本文利用冰岛南部陆坡ARC05/IS-2A岩芯沉积物浮游有孔虫AMS14C测年数据构建年代框架,并进行了粒度、颜色反射率以及高分辨率X射线荧光光谱仪元素地球化学测试。根据X射线荧光光谱仪分析结果,通过因子分析方法确定了IS-2A岩芯沉积物的主要物质来源;结合前人对冰盖及洋流变化的研究,重建了末次盛冰期以来冰岛南部陆坡沉积物来源的演化过程,讨论了沉积物来源变化及其与周边主要冰盖活动之间的关系。结果表明,末次盛冰期以来IS-2A岩芯沉积物以陆源输入为主。 其中,末次盛冰期研究区碎屑沉积物主要来自冰岛冰盖、不列颠-爱尔兰冰盖和斯堪的纳维亚冰盖。而在末次冰消期初期,陆源碎屑物质整体增加,它们主要来自近源冰岛冰盖、斯堪的纳维亚冰盖和不列颠-爱尔兰冰盖以及远端劳伦德冰盖。末次冰消期中后期,由于搬运条件的减弱,劳伦德冰盖的陆源输入有所减少,反映了冰盖活动对研究区沉积物来源的制约。进入全新世后,现代洋流体系形成,在冰岛-苏格兰溢流水和北大西洋暖流的共同作用下,沉积物主要来自冰岛和欧洲西部,拉布拉多半岛的碎屑物质也有部分输入。

    Abstract:

    Changes of marine sedimentary environment since the Last Glacial Maximum (LGM) recorded in the core sediments of the southern slope of Iceland reflect millennial-scale changes in ice sheets and ocean currents. The age framework was established with AMS14C dating data of the ARC05/IS-2A core sediments in the southern slope of Iceland, and the grain size, color reflectance and high-resolution XRF element geochemical tests were carried out. According to the XRF spectrometer analysis results, the main material source of the IS-2A core sediment was determined through factor analysis method. Combined with previous studies on the changes of ice sheets and ocean currents in North Atlantic, the evolution of sediment sources on the southern slope of Iceland since the LGM was reconstructed, and the relationship between the changes of sediment sources and activities of the surrounding major ice sheets was discussed. Results show that the sediments of IS-2A core are mainly terrigenous since the LGM. Detritus in sediment indicate the main source areas from the Iceland Ice Sheet (IIS), the British-Irish Ice Sheet (BIIS), and the Finnoscandia Ice Sheet (FIS). In the early last deglaciation, terrigenous detritus were increased as a whole, came mainly from IIS, FIS and BIIS, as well as the distal Laurent ice sheet (LIS). In the middle and late period of the last deglaciation, due to the weakening of transport conditions, the terrestrial input of LIS decreased, reflecting the restriction of ice sheet on the sediments supply to the study area. In the Holocene, the modern ocean current system was formed. Under the combined action of the Iceland-Scotland Overflow Water and the North Atlantic Current, sediments mainly came from Iceland and western Europe, and partially from the detritus of the Labrador Peninsula.

  • 近海作为连接陆地和海洋的关键区域,是营养盐、碳及人为释放物(如重金属等)生物地球化学循环的重要区域[1-3]。有机碳埋藏在海洋碳循环和全球气候变化中起着至关重要的作用,特别是在人类活动加剧的背景下,随着近海富营养化程度加剧,浮游植物生产力成倍增加,海源有机碳埋藏效率也随之提高[4]。另一方面,输入近海的污染物种类和通量发生了显著变化[5-7],除去自然过程的影响,人类活动的排放(例如工业生产、生物质、化石燃料燃烧和废物焚烧以及采矿和冶炼业)呈现显著增加,人为源已经成为重金属等污染物排放入海的主要贡献源[8-10]。这些人为释放为主的污染物主要可通过大气沉降以及河流输入进入海洋,并通过吸附到有机质和矿物(如铁锰氧化物)上或者生物泵作用等方式,最终埋藏在沉积物中[11-13]

    随着近海环境污染日益严峻,尤其是重金属等污染物的生态风险持续上升,汞作为一种典型的重金属,因其对水生生态系统和人类健康的毒性而受到广泛关注[2, 5, 9]。许多研究表明,沉积有机碳与汞埋藏之间存在显著关联,例如北极湖泊的沉积记录中,沉积汞含量的上升可能不仅代表大气中汞含量的增加,还更多地受到气候变暖驱动的藻类初级生产力增加的影响[14-15]。在一些中低纬度湖泊、河口以及南大洋等区域的研究中也观察到有机碳特别是海源有机碳与汞之间存在显著相关性,这跟浮游植物与汞的相互作用以及藻类来源的有机质颗粒对汞的吸附和清除有关,即汞通过生物清除作用沉降并埋藏在沉积物中[16-18]。综上,对于近海这一陆海相互作用强烈和人类活动影响显著的海区,尤其是在全球变暖导致海洋生产力不断升高的背景下,该区生物泵等作用对于沉积汞的迁移和埋藏的约束作用或还有待进一步评估,这对系统认识近海有机碳的源汇过程及其对关键元素循环和生态系统的影响具有重要的科学意义。

    环渤海经济圈是中国最早工业化的地区,渤海作为中国最为封闭的近海,其生态环境承受了大量周边人类活动的压力,包括重金属污染、持久性有机污染物的积累等,其中汞因高毒性、生物积累、长距离运输以及持久性等特点,已成为学者研究的热点[5, 9, 19-21]。本研究选择渤海中部泥质区为研究靶区,该区距离河口较远,受河流直接输入的影响较小[22],大气沉降是本区汞等重金属进入海洋的主要输入方式[19];同时该区水动力环境较弱,沉积速率相对较高[23],因而是重建海洋生产力演变和重金属埋藏的理想场所。据此,本研究聚焦不同来源有机碳的沉积记录演化对汞埋藏的约束作用,旨在阐明在人类活动影响日益加剧和近海生态系统压力不断增加的背景下,有机碳埋藏与沉积汞之间的内在关系,这有助于评估生物泵作用对区域沉积汞埋藏的贡献,能更加准确地认识人类活动对近海环境演变的影响,可为渤海环境保护和污染治理提供一定的科学依据。

    渤海是中国唯一的半封闭内海,由莱州湾、渤海湾、辽东湾和渤海中部组成,通过山东和辽东半岛之间狭窄的渤海海峡与黄海相连,平均深度18 m,总面积为7.7×104 km2图1),其中渤海中部面积最大,平均深度为22.5 m,其浮游植物生物量约占整个渤海的近一半[24-25]。渤海水动力条件较弱,与外海水体交换能力差,生态系统脆弱性较高[26-27]。环渤海经济圈是中国人口密度和工业化程度最高的地区之一,粗放的海洋开发模式导致大量人为污染物和营养物质通过河流和大气沉降输入渤海[5, 28]。例如,2010至2017年,渤海沿岸主要河流每年输送的污染物总量约为84万t,其中溶解无机氮(DIN)、总磷(TP)和重金属汞的年输入量分别约为4.4万t、0.5万t和6t[21]。渤海中部大气沉降与河流输入的DIN通量相当[29]。需要注意的是,1949年至2012年,中国人为大气汞的排放量从13 t/a增加到了695 t/a,这些汞的相当一部分可通过大气长距离运输最终沉降入渤海[10, 30],相应地,渤海沉积物中汞埋藏通量在同期内也增加了84.3%±1.8%[2]。此外,已有研究表明,近几十年来渤海DIN浓度增加约7倍,溶解无机磷(DIP)浓度有所下降,导致渤海浮游植物生长的限制性生源要素已由氮转变为磷,且过度的养分负荷与高N/P比值导致渤海浮游植物生物量显著增加,浮游植物由硅藻占绝对优势转向硅藻和甲藻共同控制[31-33]

    图  1  研究区概况及取样站位 [34]
    Figure  1.  Overview of the study area and sampling site (M7) [34]

    本研究沉积岩芯(M7)的采样位置为120°27′29.16″N、39°31′56.70″E,位于渤海中部泥质区,水深29 m,于2013年由箱式取样器采集获得。M7岩芯长度为53 cm,以1 cm间隔进行分样并包入铝箔中,保存在预清洁的塑料袋中,置于冰柜于−20°C下冷冻储存直至分析测试。

    本文利用的M7岩芯210Pb和137Cs放射性比活度和测年结果、总有机碳含量(TOC)、生物标志物(菜籽甾醇和甲藻甾醇)以及沉积汞含量数据主要来自课题组前期已经发表的研究资料;同时收集了前人关于渤海周边营养盐输入、水文资料和浮游植物群落结构变化的相关数据资料进行对比研究(表1)。

    表  1  数据资料来源
    Table  1.  Data sources
    数据资料参考文献
    总有机碳含量、生物标志物Xu等(2018)[35]
    沉积汞含量Chen等(2021)[19]
    210Pb和137Cs放射性比活度和测年结果Chen等(2021)[19]
    渤海营养盐(DIN、DIP)数据Li等(2021),
    Wang等(2021)[36-37]
    研究区海表温度(SST)数据网站https://cds.climate.copernicus.eu
    中国人为大气汞排放数据Tian等(2015)[10]
    渤海中部浮游植物细胞丰度调查数据郭术津等(2014)[33]
    下载: 导出CSV 
    | 显示表格

    沉积物总有机碳含量及其稳定碳同位素使用盐酸处理法,分别经元素分析仪和稳定同位素质谱仪测试得到[38];生物标志物使用超声萃取法,经气相色谱仪测试得到[35];沉积总汞含量采用原子荧光光谱法测定[39]。δ13C值以PDB国际标准物质作为参考标准,测试精度为 ±0.3‰。δ13C值的计算公式如下:

    $$ \begin{array}{c}\text{δ}{}_{\text{}}{}^{\text{13}}\text{C}\text=\left[{\text{R}\left({}_{\text{}}{}^{\text{13}}\text{C}\text{∕}{}_{\text{}}{}^{\text{12}}\text{C}\right)}_{\text{样品}}/{\text{R}\left({}_{\text{}}{}^{\text{13}}\text{C}\text{∕}{}_{\text{}}{}^{\text{12}}\text{C}\right)}_{\text{PDB}}{-1}\right]\text{×}\text{1000}\end{array} $$ (1)

    考虑到Suess效应,即工业革命以来人类活动(主要是燃烧化石燃料)向大气中释放大量富含12C的CO2,导致大气中13C/12C比值下降,δ13C值变得偏负,最终影响沉积有机碳稳定碳同位素分布,因此为了更好地揭示不同来源有机碳的沉积记录,本研究对有机碳δ13C进行了校正[40-42]。使用以下公式对δ13C进行Suess效应校正:

    $$ \begin{array}{c}\text{δ}{}^{\text{13}}\text{C}=-\text{4577.8}+\text{7.3430}\text{×}\left({ t}{-10}\right)-\text{3.9213}\text{×}{\text{10}}^{{-3}} \text{×}\\{\left({ t}{-10}\right)}^{\text{2}}\text+\text{6.9812}\text{×}{\text{10}}^{{-7}}\text{×}{\left({ t}{-10}\right)}^{\text{3}}\text+\text{(}-\text{6.31}\text{)}\end{array} $$ (2)

    基于公式(2)得到校正后的δ13C值,式中,t为沉积年代(年),−6.31‰为1840年大气中CO2的δ13C值。采用(t−10)而不是Schelske和Hodell提出的应用于湖泊中的t,这是由于海洋和大气之间的13C平衡需要10~12 a的时间来建立[40, 43]

    近海中的有机碳主要有两种来源,即由河流径流和风尘沉降输送的陆源有机碳以及海洋初级生产者产生的海源有机碳[44]。δ13C可用于示踪沉积环境中有机碳来源,基于沉积物δ13C值的双端元混合模型[45],可以定量计算岩芯中海源和陆源有机碳的贡献比例,分别选取−27‰和−21‰作为陆源和海源有机碳的δ13C端元值[46-47],由此根据校正后的δ13C计算出海源有机碳和陆源有机碳贡献占比,计算公式如下:

    $$ \begin{array}{c}{{f}}_{\text{T}}=\dfrac{{\text{δ}}^{\text{13}}{\text{C}}_{\text{M}}-{\text{δ}}^{\text{13}}{\text{C}}_{\text{S}}}{{\text{δ}}^{\text{13}}{\text{C}}_{\text{M}}-{\text{δ}}^{\text{13}}{\text{C}}_{\text{T}}}\end{array} $$ (3)
    $$ \begin{array}{c}{{f}}_{\text{M}}=\text{1}-{{f}}_{\text{T}}\end{array} $$ (4)

    式中,fT为陆源有机碳贡献系数;δ13CM为海源端元有机碳δ13C;δ13CT为陆源端元有机碳δ13C;δ13CS为沉积物样品校正后的δ13C;fM为海源有机碳贡献系数。

    M7岩芯TOC和校正后δ13C变化特征以1970年为界呈现出两段性变化(图2):1970年以前,TOC含量比较低且稳定,变化范围为0.32%~0.50%,平均值为0.43%±0.04%(图2a);校正后δ13C在波动中呈增加趋势,变化范围为−23.43‰~−22.48‰,平均值为−22.98‰±0.30‰(图2b)。1970年以后,TOC含量开始呈明显的波动增加趋势,从0.43%升高到0.70%,平均值为0.52% ± 0.08%;校正后δ13C呈显著增加趋势,变化范围为−23.09‰~−21.06‰,平均值为−22.26‰±0.38‰。根据校正后的δ13C的双端元混合模型计算出海源有机碳和陆源有机碳贡献占比分别为59%~90%(平均值为74%±0.08%)和10%~41%(平均值为26%±0.08%),在整个沉积时期以海源有机碳贡献为主(图2c、d)。

    图  2  M7岩芯TOC、δ13C、海源和陆源有机碳贡献率的垂向分布
    Figure  2.  Vertical distribution of TOC, δ13C, and contributions of marine and terrestrial organic carbon in Core M7

    将生物标志物数据进行了TOC归一化处理,以避免有机质降解保存的干扰[48-49]。菜籽甾醇和甲藻甾醇具有相似的变化趋势(图3a、b),大致可分为两个阶段:1970年之前菜籽甾醇和甲藻甾醇的含量较低,变化范围分别为0.01~0.06 μg/g TOC(平均值为0.04±0.02 μg/g TOC)和0.05~0.18 μg/g TOC(平均值为0.11±0.04 μg/g TOC);1970年之后二者呈增加趋势,尤其是2000年之后显著增加,变化范围分别为0.01~1.44 μg/g TOC(平均值为0.24±0.29 μg/g TOC)和0.04~0.98 μg/g TOC(平均值为0.37±0.23 μg/g TOC)。菜籽甾醇和甲藻甾醇的总含量在M7岩芯中的垂向分布与上述变化特征类似(图3c),变化范围为0.05~2.42 μg/g TOC,平均值为0.41±0.44 μg/g TOC。菜籽甾醇与甲藻甾醇比值的波动较大,变化范围为0.22~1.47,平均值为0.46±0.22,总体上呈现增加的趋势(图3d)。

    图  3  M7岩芯甾醇和沉积汞含量的垂向分布
    Figure  3.  Vertical distribution of sterol and sedimentary mercury content in Core M7

    沉积汞含量在M7岩芯中的变化特征也以1970年为界分为两段(图3e)。1970年以前沉积汞的含量比较低,变化范围为26.09~36.32 ng/g,平均值为29.54±2.80 ng/g,但在1955年之前存在一个较大的波动,前期从26.43 ng/g上升到36.32 ng/g,1950年后又回到低值29.32 ng/g;1970年后沉积汞含量呈显著增加趋势,从30.59 ng/g上升到52.63 ng/g,平均值为38.43±6.66 ng/g。

    初级生产力是海洋生态系统的重要组成部分,浮游植物在透光层产生的有机质颗粒的沉降和埋藏是沉积物中海源有机碳沉积物的主要来源,因此,海源有机碳是反映生产力最直接的代表[50-52]。通过校正有机碳δ13C和双端元混合模型计算,发现近百年来海源有机碳的贡献占主导地位,并呈持续增加的趋势,尤其是1970年以后显著增加,贡献占比达65%~90%;陆源有机碳贡献相对较低且呈减少趋势,主要与人类活动(建坝、水土保持措施)以及气候变化的影响下河流向渤海输送的泥沙量急剧减少有关(图2c、d)[53]。海源有机碳含量的变化范围为0.20%~0.63%,平均值为0.36%±0.09%,1970年前变化相对较小,1970年后呈明显增加趋势,由0.29%上升至0.56%(图4a),表明1970年以后渤海初级生产力显著增加,与前人的研究结果一致[32, 36]。此外,生物标志物因其来源明确、稳定性高的特点,被广泛用于重建浮游植物生产力和群落结构变化[48, 54-58]。硅藻和甲藻是海洋中重要的浮游植物,是渤海初级生产力的主要贡献者[36, 58],且二者分别是菜籽甾醇和甲藻甾醇的主要生产者[59],因此这两种甾醇总含量通常被用于指示海洋浮游植物生产力。与海源有机碳含量变化指示的初级生产力演化相对应,菜籽甾醇+甲藻甾醇含量自1970年后从0.37 μg/g TOC上升至2.42 μg/g TOC,进一步表明浮游植物生产力自1970年以来显著增加,并在2000年以后增幅变大(图4b)。

    图  4  有机碳沉积记录及其与汞埋藏演变的协变性
    Figure  4.  Covariation of organic carbon sedimentation and mercury burial trends

    与人类活动(如化肥使用、废水排放)相关的营养盐输入显著影响着渤海浮游植物生产力及其群落的演变[21, 60]。DIN和DIP等营养物质是初级生产过程与食物链的基础,其含量高低直接影响海洋生产力和生态结构[61-62]。渤海水体营养盐的年际变化显示,总体上DIN浓度呈现增加趋势(图4g),而DIP浓度呈现降低趋势,1980s至1990s期间DIP浓度略有增加(图4h),营养盐含量的不平衡变化导致营养盐结构改变,DIN/DIP比值呈增加趋势(图4i),尤其是进入21世纪后显著增加。有研究表明,营养盐浓度是控制海洋中浮游植物生物量的关键因素,高营养盐浓度可以促进硅藻和甲藻的生长[4],因此人为营养输入增加引起的DIN含量升高以及N/P比值失衡可能是导致初级生产力增加的重要因素[36, 48]

    另一方面,浮游植物光合作用效率和代谢速率会随着温度升高而增加,从而改变浮游植物的丰度和种类组成[63-65]。本文统计了研究区海表温度(SST)以及10年平均海表温度变化情况(图4j),发现1980年之前,SST波动较大,平均值为12.2±0.59°C;1980年至2000年,SST呈增加趋势,由10.9°C增加至12.7°C;2000年之后SST平均值为12.4±0.40°C。为进一步分析温度对初级生产力的影响,采用SST与时间的回归方程计算了M7岩芯的年平均气温(SSTfit)(图4j中红色直线),通过初级生产力指标与海表温度的线性相关分析发现,SSTfit与TOC、海源有机碳含量以及菜籽甾醇+甲藻甾醇之间呈显著正相关(R分别为0.65、0.78和0.74,p<0.001),表明变暖可能也是导致渤海初级生产力增加的重要因素[66-67]

    海洋环境中沉积汞与有机碳(特别是水生来源)之间普遍存在相关性,指示汞埋藏可能受到初级生产力控制[14, 17]。M7岩芯中沉积汞含量与指示生产力变化的有机碳等参数的垂向变化趋势总体呈现出一致性(图4a-d),表明汞与初级生产力之间可能存在内在联系,为了进一步探究它们之间的潜在关联,对这些指标进行了相关性分析。如图5所示,以初级生产力显著增加的1970年为界分阶段做相关性分析,结果表明1970年之前Hg与有机碳等指标之间不存在相关性;而1970年之后Hg与TOC、菜籽甾醇+甲藻甾醇以及海源有机碳含量之间都呈现出较高的相关性(R分别为0.41,p<0.05;0.76、0.58,p<0.001),且Hg与海源有机碳、生物标志物的相关性高于与TOC的相关性;同时,与陆源有机碳之间呈现负相关。研究指出,汞与海源有机碳之间的相关性可能与海源有机质对汞的吸附和清除作用有关[17- 18]。例如北极湖泊沉积物中汞浓度与藻类来源有机质之间存在显著相关性,与生产力增加导致的有机质对汞的清除作用加强有关[14-15];中低纬湖泊(青海湖和澄海湖)的研究也证明了有机质是影响湖泊沉积物中汞分布的最重要因素之一[16];此外,在南大洋硅质浮游植物软泥沉积记录的研究中,发现沉积汞浓度与初级生产力以及快速沉降的硅藻有机质对水柱中汞的清除有关[18];河口沉积物中发现海洋自生有机碳与汞之间高度相关,海源有机碳比陆源有机碳对汞的亲和力更高[17]。因此,M7岩芯沉积物中藻类来源的有机碳和汞之间的线性相关性(1970年后)表明海源有机碳埋藏对沉积汞可能具有控制作用,进一步说明了生产力对汞埋藏的约束。

    图  5  Hg与TOC、菜籽甾醇+甲藻甾醇以及海源、陆源有机碳含量的相关性分析
    Figure  5.  Correlation analysis of mercury with TOC, brassicasterol + dinosterol, and marine and terrestrial organic carbon content

    已有研究表明,沉积物有机赋存相态的汞占总汞含量的约55% ~ 90%[16-17]。而通过Hg/TOC比值可大体确定沉积汞含量的变化是否由有机碳输入的变化驱动,进而可推断汞的来源和运输路径[68]。M7岩芯中Hg/TOC比值总体呈现上升趋势,在1970年以前,变化范围为60.0~84.8 ng/g TOC,平均值为69.7±7.92 ng/g TOC;1970年之后,变化范围为52.0~115.6 ng/g TOC,平均值为79.1±13.60 ng/g TOC(图4e)。Hg/TOC比值随时间增加的趋势表明单位有机碳结合的汞在增加,可能与以下因素有关:一方面是有机碳来源的变化,近几十年来陆源有机碳输入的比例持续减少(图2d),同时浮游植物生产力增加[32, 36],导致海源有机碳含量显著增加(图4a)。研究表明海源有机碳中的硫醇基和其他活性基团能够与汞形成稳定复合物[69],因此海源有机碳通常比陆源有机碳具有更高的汞结合能力,藻类来源的有机碳可通过吸附和清除作用约束沉积汞的埋藏归宿[14, 17],且浮游植物能够通过光合作用吸收海水中的汞,并在其死亡和沉降后将汞带入沉积物中[13, 18]。因此,海源有机碳埋藏的增加提高了整体Hg/TOC比值,可能加速了汞埋藏到沉积物的过程。另一方面,受人类活动的影响,工业化进程加剧了汞的排放,并可通过大气沉降或河流释放到海洋环境中[3, 9-10],这些大量输入的人为源汞被海源有机碳的有效清除是Hg/TOC比值提高的重要原因。

    图6所示,基于M7岩芯汞含量的沉积记录,计算得出自1970年以来沉积汞含量每10年的绝对增长率,发现沉积汞的埋藏量呈持续增加趋势,其中1980年至1990年的绝对增长率最高,达29.8%;与此同时,中国每年人为大气汞的排放量也显著增加[10],2000s后其绝对增长率高达119.3%。在1980年至1990年期间,沉积汞的增长率以及其与汞排放量的增长率比值达到峰值,反映了该阶段快速工业化导致汞排放量和埋藏量同步增加[3, 19-20],而且如上所述,这一时期初级生产力快速增加促进了汞的埋藏[18, 32]。然而,2000s后,尽管大气汞排放量显著增加,但沉积汞埋藏的比率明显降低(相对于排放量)。考虑到两者前期基本呈同步变化的特征,这可能说明在2000s后浮游植物对汞的清除作用效率相比之前有所降低。事实上,研究已发现2000s以来渤海DIN/DIP比值急剧上升(图4),从而引起浮游植物群落结构产生显著变化[36-37]。渤海中部浮游植物细胞丰度调查显示,21世纪以来该区已经由硅藻主导向硅、甲藻共同控制演替,甲藻/硅藻比值的平均水平较20世纪升高了2.82倍(图6[33, 70-71]。研究已证实在高N/P比值的情况下,甲藻具有相对较强的竞争优势,浮游植物可由优势藻硅藻转变为甲藻[72-73]。浮游植物群落变化可以显著影响有机碳沉积和养分循环[74],并直接影响水体中重金属等元素的迁移清除效率。硅藻因其硅质细胞壁密度大,沉降速度快,能够将汞有效地运输到海底;而甲藻通过休眠孢囊下沉或在水柱中解体,沉降速度较慢,延长了有机物质的分解时间,使汞释放回水相,降低其埋藏效率和相应的清除作用[18, 74-75]。因此,渤海近年来的浮游植物群落结构变化可能对沉积汞的迁移和埋藏归宿具有重要影响,对此还有待进一步深入研究。

    图  6  沉积汞含量与人为大气汞排放量的绝对增长率对比
    Figure  6.  Comparison in absolute growth rate between sedimentary mercury content and anthropogenic atmospheric mercury emissions

    本研究基于渤海中部泥质区M7岩芯的高分辨率沉积记录,探讨了百年来渤海有机碳沉积记录演化及其对沉积汞埋藏的影响,发现1970年前,海源有机碳以及菜籽甾醇与甲藻甾醇含量较低,且Hg与TOC等指标之间无明显相关性;1970年后,受营养物质输入和变暖的影响,渤海有机碳埋藏和初级生产力显著增加,海源有机碳埋藏量从0.29%上升至0.56%,菜籽甾醇与甲藻甾醇的总含量从0.37 μg/g TOC上升至2.42 μg/g TOC,这一时期Hg与海洋生产力相关的参数呈显著正相关,Hg/TOC比值也明显增加,指示浮游植物生产力的增加显著促进了汞的埋藏,说明海源有机碳可能对汞的清除埋藏具有重要作用。2000s以来,人为大气汞排放量与沉积汞的埋藏演变趋势不一致,汞埋藏比率有所下降,这可能与同时期营养盐结构和浮游植物群落结构改变导致的生物清除作用相对减弱有关,对此有待于进一步研究。

    致谢:本研究使用的样品为国家自然科学基金委渤黄海共享航次获得,调查船为东方红2号,感谢参加调查工作的全体考察队员,感谢审稿专家提出的宝贵修改意见。

  • 图  1   研究区地理位置、洋流系统和岩芯位置分布示意图

    图中橙色五角星为本文研究站位IS-2A;红色实线代表暖流,蓝色实线代表寒流;灰色虚线代表LGM最大冰盖范围;图中涉及到的流系分别为表层的北大西洋暖流(NAC)、伊明格暖流(IC)、东冰岛洋流(EIC)、东格陵兰洋流(EGC);中-深层的冰岛-苏格兰溢流(ISOW)、北大西洋深层水(NADW)。洋流系根据文献[13, 29-30]重绘,最大冰盖线根据文献[13]重绘。

    Figure  1.   The distribution of geographical location, ocean currents, and core location in the study area

    The orange pentagram marks site IS-2A. The red solid line represents warm currents, and the blue solid line for cold currents; the gray dotted line is the maximum ice cover range of LGM. The current systems shown in the diagram are surface currents, including North Atlantic Current (NAC), Iminger Current (IC), East Iceland Current (EIC), and East Greenland Current (EGC), as well as the mid-deep currents, including Iceland-Scotland Overflow Water (ISOW), and North Atlantic Deep Water (NADW). The ocean currents are redrawn from references [13, 29-30]. The maximum ice sheet line is redrawn according to reference [13].

    图  2   IS-2A岩芯年代框架及沉积速率图

    Figure  2.   The age framework and sedimentary rate of IS-2A

    图  3   IS-2A岩芯沉积物IRD(>125 μm)丰度、平均粒径与粒度组成变化曲线

    Figure  3.   The variation curves of IRD (ice-rafted debris) (>125 μm ) abundance, average particle size, and particle size composition of IS-2A sediments

    图  4   IS-2A岩芯沉积物粒径-频率典型分布模式(a、b、c)与粒径端元EM1-3频率分布图(d)

    图b中末次冰消期黄色粒度分布代表沉积物类似LGM期的单峰分布模式,紫色粒度分布代表沉积物类似全新世的多峰分布模式。

    Figure  4.   The typical particle size-frequency distribution patterns (a, b, c) of IS-2A sediments and the frequency distribution of particle size endmember EM1-3 (d)

    The yellow lines for the last deglaciation show a unimodal distribution pattern similar to the LGM period, and the purple lines show a multimodal distribution pattern similar to the Holocene ones.

    图  5   IS-2A岩芯沉积物粒径端元随时间变化曲线

    Figure  5.   Temporal variation curve for the end-members of sediment particle size in IS-2A

    图  6   IS-2A岩芯沉积物颜色反射率曲线

    Figure  6.   The color reflectance curve of IS-2A sediments

    图  7   IS-2A沉积物元素相关性分析图

    Figure  7.   The elements correlation analysis for IS-2A sediment

    图  8   IS-2A岩芯F3与F4因子与温度数据随时间变化曲线

    其中,格陵兰冰芯GISP 2氧同位素数据来自文献[68]。

    Figure  8.   The temporal variation curves of F3 and F4 factors and temperature data of IS-2A

    The GISP 2 oxygen isotope data of Greenland ice core are from reference [68].

    图  9   IS-2A岩芯沉积物中与陆源物质相关的元素及因子随时间变化曲线

    Figure  9.   The temporal variation of elements and factors related to terrigenous sediments in IS-2A core

    表  1   IS-2A岩芯 AMS14C测年数据及地层年代框架

    Table  1   AMS14C dating data and stratigraphic age framework of IS-2A core

    层位/cmAMS14C年龄/aBP日历年龄/cal.aBP±1σ
    0~25280±303225±15.0
    10~126200±304280±32.5
    20~229910±308401±64.5
    50~5214400±4014422±97.5
    90~9215700±5016153±75.5
    110~112 16480±5016960±61.5
    140~14216640±5017132±85.0
    170~17217080±5017687±93.0
    190~19217480±5018165±93.5
    210~21217600±5018306±91.5
    230~23217870±5018632±83.5
    250~25218270±5019127±114.5
    270~27218350±5019246±91.5
    290~29218950±5019538±107.5
    350~35219980±6020660±103.5
    450~45220910±6021790±116
    下载: 导出CSV

    表  2   IS-2A岩芯主成分及方差分析

    Table  2   Principal component and variance analysis for IS-2A sediments

    元素 F1 F2 F3 F4
    Al 0.894 −0.050 0.162 −0.073
    Si 0.932 −0.047 0.151 −0.115
    S 0.001 0.095 0.069 0.941
    K 0.711 −0.596 −0.044 −0.097
    Ca 0.502 0.031 0.769 −0.036
    Ti −0.136 0.939 0.139 −0.002
    Mn −0.723 0.089 −0.280 0.031
    Fe 0.011 0.937 −0.170 0.013
    Ni 0.354 0.006 0.718 0.042
    Sr −0.045 −0.038 0.875 −0.066
    Cl −0.490 −0.144 −0.261 0.629
    方差贡献 30.303 19.629 19.316 11.965
    累计方差贡献 30.303 49.932 69.248 81.213
    下载: 导出CSV
  • [1]

    Larsen H C, Saunders A D, Clift P D, et al. Seven Million Years of Glaciation in Greenland[J]. Science, 1994, 264(5161):952-955. doi: 10.1126/science.264.5161.952

    [2]

    Jansen E, Sjøholm J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea[J]. Nature, 1991, 349(6310):600-603. doi: 10.1038/349600a0

    [3]

    Flesche K H, Jansen E, Fronval T, et al. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma) -ice-rafted detritus evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(3):213-223.

    [4]

    Maslin M A, Li X S, Loutre M F, et al. The Contribution of Orbital Forcing to the Progressive Intensification of Northern Hemisphere Glaciation[J]. Quaternary Science Reviews, 1998, 17(4):411-426.

    [5]

    Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region[J]. Nature, 1984, 307(5952):620-623. doi: 10.1038/307620a0

    [6]

    Hodell D, Channell J. Mode transitions in Northern Hemisphere glaciation: Co-evolution of millennial and orbital variability in Quaternary climate[J]. Climate of the Past, 2016, 12(9):1805-1828. doi: 10.5194/cp-12-1805-2016

    [7]

    Stein R, Fahl K, Müller J. Proxy Reconstruction of Cenozoic Arctic Ocean Sea-Ice History - from IRD to IP25-[J]. Polarforschung, 2012, 82(1):37-71.

    [8]

    Justwan A, Koc N, Jennings A E. Evolution of the Irminger and East Icelandic Current systems through the Holocene, revealed by diatom-based sea surface temperature reconstructions[J]. Quaternary Science Reviews, 2008, 27(15):1571-1582.

    [9]

    Revel M, Cremer M, Grousset F E, et al. Grain-size and Sr Nd isotopes as tracer of paleo-bottom current strength, Northeast Atlantic Ocean[J]. Marine Geology, 1996, 131(3):233-249.

    [10]

    Clarke G, Marshall S, Hillarire-M C, et al. Mechanisms of Global Climate Change at Millennial Time Scales[M]. 1999:243-262.

    [11]

    Andrews J T, Cooper T A, Jennings A E, et al. Late Quaternary iceberg-rafted detritus events on the Denmark Strait-Southeast Greenland continental slope (~65°N): related to North Atlantic Heinrich events?[J]. Marine Geology, 1998, 149(1):211-228.

    [12]

    Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130, 000 years[J]. Quaternary Research, 1988, 29(2):142-152. doi: 10.1016/0033-5894(88)90057-9

    [13]

    Struve T, Roberts N L, Frank M, et al. Ice-sheet driven weathering input and water mass mixing in the Nordic Seas during the last 25, 000 years[J]. Earth and Planetary Science Letters, 2019, 514(15):108-118.

    [14] 赵嵩, 董林森, 王湘芹, 等. 北冰洋门捷列夫海岭富锰棕色层稀土元素组成特征与来源初步分析[J]. 海洋学报(中文版), 2020, 42(7):78-92

    ZHAO Song, DONG Linsen, WANG Xiangqin, et al. Composition and provenance analysis of rare-earth elements in the manganese-rich brown layers of the Mendeleev Ridge, Arctic Ocean[J]. Haiyang Xuebao, 2020, 42(7):78-92.]

    [15]

    Leone S, Palcu D V, Srevastava P, et al. Changing sediment supply during glacial-interglacial intervals in the North Atlantic revealed by particle size characterization and environmental magnetism[J]. Global and Planetary Change, 2023, 220(12):104022.

    [16] 陈漪馨, 刘焱光, 姚政权, 等. 末次盛冰期以来挪威海北部陆源物质输入对气候变化的响应[J]. 海洋地质与第四纪地质, 2015, 35(3):95-108

    CHEN Yixin, LIU Yanguang, YAO Zhenquan, DONG Linsen, LI Chaoxin. Response of Terrigenous Input to the Climatic Changes of Northern Norwegian Sea since the Last Glacilal Maximum[J]. Marine Geology & Quaternary Geology, 2015, 35(3):95-108.]

    [17]

    Depaolo D J, Maher K, Christensen J N, et al. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984[J]. Earth and Planetary Science Letters, 2006, 248(1):394-410.

    [18]

    Hemming S R, Broecker W S, Sharp W D, et al. Provenance of Heinrich layers in core V28-82, northeastern Atlantic: 40Ar/39Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd-Sr-Pb isotopes in the fine sediment fraction[J]. Earth and Planetary Science Letters, 1998, 164(1):317-333.

    [19]

    Grousset F, Labeyrie L, Sinko J, et al. Patterns of Ice-Rafted Detritus in the Glacial North Atlantic (40-55°N)[J]. Paleoceanography, 1993, 8(2):175-192. doi: 10.1029/92PA02923

    [20]

    Grousset F, Pujol C, Labeyrie L, et al. Were the North Atlantic Heinrich events triggered by the behaviour of the European Ice Sheets?[J]. Geology, 2000, 28(2):123-126. doi: 10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2

    [21]

    Schmitz W J, Mccartney M S. On the North Atlantic Circulation[J]. Reviews of Geophysics, 1993, 31(1):29-49. doi: 10.1029/92RG02583

    [22]

    Ferreira D C, Luiza M, Kerr, et al. Source water distribution and quantification of North Atlantic Deep Water and Antarctic Bottom Water in the Atlantic Ocean[J]. Progress in Oceanography, 2017, 153:66-83. doi: 10.1016/j.pocean.2017.04.003

    [23]

    Bourgeois O, Dauteuil O, Vliet-L B V. Geothermal control on flow patterns in the Last Glacial Maximum ice sheet of Iceland[J]. Earth Surface Processes and Landforms, 2000, 25(1):59-76. doi: 10.1002/(SICI)1096-9837(200001)25:1<59::AID-ESP48>3.0.CO;2-T

    [24]

    Pini R, Furlanetto G, Vallé F, et al. Linking North Atlantic and Alpine Last Glacial Maximum climates via a high-resolution pollen-based subarctic forest steppe record[J]. Quaternary Science Reviews, 2022, 294(15):1-18.

    [25]

    Swift J H. The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(11):1339-1355. doi: 10.1016/0198-0149(84)90005-0

    [26]

    Farmer G L, Barber D, Andrews J. Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence[J]. Earth and Planetary Science Letters, 2003, 209(1):227-243.

    [27]

    Hemming S. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1):1-43.

    [28]

    Jenner K A, Campbell D C, Piper D J W. Along-slope variations in sediment lithofacies and depositional processes since the Last Glacial Maximum on the northeast Baffin margin, Canada[J]. Marine Geology, 2018, 405(1):92-107.

    [29]

    Mao L, Piper D J W, Saint-A F, et al. Labrador Current fluctuation during the last glacial cycle[J]. Marine Geology, 2018, 395:234-246. doi: 10.1016/j.margeo.2017.10.012

    [30]

    Xiao X, Zhao M, Knudsen K L, et al. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes[J]. Earth and Planetary Science Letters, 2017, 472(15):14-24.

    [31]

    Thornalley D J, Elderfield H, McCave I. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21, 000 years[J]. Paleoceanography, 2010, 25(1):1211-1226.

    [32] 吴东, 刘焱光, Eiríksson J, 等. 3万年以来挪威海南部冰岛-苏格兰溢流变化及其对海冰活动的响应[J]. 第四纪研究, 2019, 39(4):845-862 doi: 10.11928/j.issn.1001-7410.2019.04.06

    WU Dong, LIU Yanguang, Eiríksson Jón, et al. Changes of Iceland-Scotland overflow water in Southern Norwegian Sea and the responses to sea ice activities since 30 kaBP[J]. Quaternary Sciences, 2019, 39(4):845-862.] doi: 10.11928/j.issn.1001-7410.2019.04.06

    [33] 朱爱美, 刘季花, 邹建军, 等. 亚北极太平洋边缘海表层沉积物地球化学特征[J]. 海洋科学进展, 2019, 37(4):601-612

    ZHU Aimei, LIU Jihua, ZOU Jianjun, et al. Characteristics of Sedimentary Geochemistry of Surface Sediments in the Subarctic Pacific Marginal Seas.[J]. Advances in Marine Science, 2019, 37(4):601-612.]

    [34]

    Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085

    [35]

    Mccave I N. Chapter 8: Size Sorting During Transport and Deposition of Fine Sediments: Sortable Silt and Flow Speed[M]. 2008: 121-142.

    [36] 豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3):690-703 doi: 10.11928/j.issn.1001-7410.2020.03.08

    DOU Ruxi, ZOU Jianjun, SHI Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30000 years[J]. Quaternary Sciences, 2020, 40(3):690-703.] doi: 10.11928/j.issn.1001-7410.2020.03.08

    [37] 王昆山, 石学法, 王国庆. 南黄海陆架沉积物颜色反射率的初步研究[J]. 海洋科学进展, 2006, 24(1): 30-38

    WANG Kunshan, SHI Xuefa, WANG Guoqing, A Preliminary Study on the Sediment Color Reflectancein the Southern Yellow Sea Shelf Area[J]. Advances in Marine Science, 2006, 24(1): 29-38.]

    [38]

    Rad U, Schaaf M, Michels K, et al. A 5000-yr Record of Climate Change in Varved Sediments from the Oxygen Minimum Zone off Pakistan, Northeastern Arabian Sea[J]. Quaternary Research, 1999, 51(1):39-53. doi: 10.1006/qres.1998.2016

    [39]

    Kïg I, Drodt M, Suess E, et al. Iron reduction through the tan-green color transition in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8):1679-1683. doi: 10.1016/S0016-7037(97)00007-0

    [40]

    Chen P, Li F, Wu C. Research on Intrusion Detection Method Based on Pearson Correlation Coefficient Feature Selection Algorithm[J]. Journal of Physics: Conference Series, 2021, 1757(1):12010-12054. doi: 10.1088/1742-6596/1757/1/012010

    [41]

    Ziegler C L, Murray R W. Geochemical evolution of the central Pacific Ocean over the past 56 Myr[J]. Paleoceanography, 2007, 22(2):2203-2224.

    [42]

    Reimann C, Filzmoser P, Garrett R G. Factor analysis applied to regional geochemical data: problems and possibilities[J]. Applied Geochemistry, 2002, 17(3):185-206. doi: 10.1016/S0883-2927(01)00066-X

    [43] 姚政权, 刘焱光, 王昆山, 等. 日本海末次冰期千年尺度古环境变化的地球化学记录[J]. 矿物岩石地球化学通报, 2010, 29(2):119-126 doi: 10.3969/j.issn.1007-2802.2010.02.002

    YAO Zhengquan, LIU Yanguang, WANG Kunshan, et al. Millennial-scale Paleoenvironment Change During the Last GIacial Period Recorded by Geochemical Variations in the Japan Sea[J]. Bulletin of MineraIogy, Petrology and Geochcmistry, 2010, 29(2):119-126.] doi: 10.3969/j.issn.1007-2802.2010.02.002

    [44]

    Ballini M, Kissel C, Colin C, et al. Deep-water mass source and dynamic associated with rapid climatic variations during the last glacial stage in the North Atlantic: A multiproxy investigation of the detrital fraction of deep-sea sediments[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2):1-16.

    [45]

    Richter T O, Van D G S, Koster B, et al. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments[J]. Geological Society London Special Publications, 2006, 267(1):39-50. doi: 10.1144/GSL.SP.2006.267.01.03

    [46]

    Yao Z, Liu Y, Shi X, et al. Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: indications from high-resolution X-ray fluorescence core scanning[J]. Journal of Quaternary Science, 2012, 27(9):932-940. doi: 10.1002/jqs.2583

    [47]

    Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5):1-6.

    [48]

    Andrews J T, Eberl D D. Determination of sediment provenance by unmixing the mineralogy of source-area sediments: The “SedUnMix” program[J]. Marine Geology, 2012, 291-294(1):24-33.

    [49]

    Andrews J T, Kirby M E, Aksu A, et al. Late Quaternary Detrital Carbonate (DC-) Layers in Baffin Bay Marine Sediments (67°-74°N): Correlation with Heinrich Events in the North Atlantic?[J]. Quaternary Science Reviews, 1998, 17(12):1125-1137. doi: 10.1016/S0277-3791(97)00064-4

    [50]

    Patton H, Hubbard A, Bradwell T, et al. The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet[J]. Earth-Science Reviews, 2017, 166:223-245. doi: 10.1016/j.earscirev.2017.02.001

    [51]

    Spagnolo M, Clark C. A geomorphological overview of glacial landforms on the Icelandic continental shelf[J]. Journal of Maps, 2008, 5(1):37-52.

    [52]

    Rørvik K L, Laberg J S, Hald M, et al. Behavior of the northwestern part of the Fennoscandian Ice Sheet during the Last Glacial Maximum-A response to external forcing[J]. Quaternary Science Reviews, 2010, 29(17):2224-2237.

    [53]

    Peck V L, Hall I R, Zahn R, et al. High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation[J]. Earth and Planetary Science Letters, 2006, 243(3):476-488.

    [54]

    Revel M, Sinko J A, Grousset F E, et al. Sr and Nd isotopes as tracers of North Atlantic lithic particles: Paleoclimatic implications[J]. Paleoceanography, 1996, 11(1):95-113. doi: 10.1029/95PA03199

    [55]

    You D, Stein R, Fahl K, et al. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea[J]. Communications Earth & Environment, 2023, 4(1):1-13.

    [56]

    Argenio C, Flores J A, Balestra B, et al. Surface water mass dynamics at IODP Site U1313 through Principal Component Analysis: Evidence from coccolith assemblages in the ~25-7 kyr interval[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 635(1):111960.

    [57]

    Jackson R, Frederichs T, Schulz H, et al. Chronology of detrital carbonate events in Baffin Bay reveals different timing but similar average recurrence time of North American-Arctic and Laurentide ice sheet collapse events during MIS 3[J]. Earth and Planetary Science Letters, 2023, 613:1-10.

    [58]

    Ezat M M, Rasmussen T L, Thornalley D J R, et al. Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates[J]. Paleoceanography, 2017, 32(2):172-181. doi: 10.1002/2016PA003053

    [59]

    Sejrup H P, Clark C D, Hjestuen B O. Rapid ice sheet retreat triggered by ice stream debuttressing: Evidence from the North Sea[J]. Geology, 2016, 44(5):37651-37652.

    [60]

    Lekens W A H, Sejrup H P, Haflidason H, et al. Laminated sediments preceding Heinrich event 1 in the Northern North Sea and Southern Norwegian Sea: Origin, processes and regional linkage[J]. Marine Geology, 2005, 216(1):27-50.

    [61]

    Hjelstuen B O, Sejrup H P, Haflidason H. , et al. Late Quaternary seismic stratigraphy and geological development of the south Vøring margin, Norwegian Sea[J]. Quaternary Science Reviews, 2004, 23:1847-1865. doi: 10.1016/j.quascirev.2004.03.005

    [62]

    Marcott S A, Clark P U, Padman L, et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events[J]. Proc Natl Acad Sci U S A, 2011, 108(33):13415-13419. doi: 10.1073/pnas.1104772108

    [63]

    Becker L W, Hjelstuen, B O, Støren E W, et al. Automated counting of sand‐sized particles in marine records[J]. Sedimentology: Journal of the International Association of Sedimentologists, 2018, 65(3):842-850.

    [64]

    Scourse J D, Haapaniemi A I, Colmenero-H E, et al. Growth, dynamics and deglaciation of the last British–Irish ice sheet: the deep-sea ice-rafted detritus record[J]. Quaternary Science Reviews, 2009, 28(27):3066-3084.

    [65]

    Peck V L, Hall I R, Zahn R, et al. The relationship of Heinrich events and their European precursors over the past 60 ka BP: a multi-proxy ice-rafted debris provenance study in the North East Atlantic[J]. Quaternary Science Reviews, 2007, 26(7-8):862-875. doi: 10.1016/j.quascirev.2006.12.002

    [66]

    Patton H, Hubbard A, Andreassen K, et al. Deglaciation of the Eurasian ice sheet complex[J]. Quaternary Science Reviews, 2017, 169(1):148-172.

    [67]

    Max L, Nürnberg D, Chiessi C M, et al. Subsurface ocean warming preceded Heinrich Events[J]. Nature Communications, 2022, 13(1):4217. doi: 10.1038/s41467-022-31754-x

    [68]

    Souchez R. Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature, 1993, 364(6434):203-207. doi: 10.1038/364203a0

    [69]

    Eiríksson J, Karen K, Hafidi H, et al. Late-glacial and Holocene paleoceanography of the North Iceland Shelf[J]. Journal of Quaternary Science, 2000, 15(1):23-42. doi: 10.1002/(SICI)1099-1417(200001)15:1<23::AID-JQS476>3.0.CO;2-8

    [70]

    Dyke A. An outline of North American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2:373-424.

    [71]

    Barber D C, Dyke A, Hillaire-M C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400(6742):344-348. doi: 10.1038/22504

    [72]

    Bini A, Andreson R, Briner J. Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord[J]. Nature Geoscience, 2009, 2(7):496-499. doi: 10.1038/ngeo556

    [73]

    Clark P, Carlson A. Ice Sheet Sources of Sea Level Rise and Freshwater Discharge during the Last Deglaciation[J]. AGU Fall Meeting Abstracts, 2010, 50(4):371-443.

    [74]

    Kutzbach J, Gallimore R, Harrison S, et al. Climate and biome simulations for the past 21, 000 years[J]. Quaternary Science Reviews, 1998, 17(6):473-506.

    [75]

    Thornalley D J R, Blaschek M, Davies F J, et al. Long-term variations in Iceland–Scotland overflow strength during the Holocene[J]. Climate of the Past, 2013, 9(5):2073-2084. doi: 10.5194/cp-9-2073-2013

    [76]

    Knudsen K L, Jiang H, Jansen E, et al. Environmental changes off North Iceland during the deglaciation and the Holocene: foraminifera, diatoms and stable isotopes[J]. Marine Micropaleontology, 2004, 50(3):273-305.

图(9)  /  表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  4
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-17
  • 修回日期:  2024-05-17
  • 录用日期:  2024-05-17
  • 网络出版日期:  2024-06-02
  • 刊出日期:  2025-02-27

目录

/

返回文章
返回