2020年特大洪水期间长江水下三角洲沉积物沉积特征

李明宸, 闫粟, 公力维, 王雪晨, 耿润玉, 徐润喆, 周亮, 汪亚平, 沈治雄

李明宸,闫粟,公力维,等. 2020年特大洪水期间长江水下三角洲沉积物沉积特征[J]. 海洋地质与第四纪地质,2025,45(2): 31-42. DOI: 10.16562/j.cnki.0256-1492.2024022902
引用本文: 李明宸,闫粟,公力维,等. 2020年特大洪水期间长江水下三角洲沉积物沉积特征[J]. 海洋地质与第四纪地质,2025,45(2): 31-42. DOI: 10.16562/j.cnki.0256-1492.2024022902
LI Mingchen,YAN Su,GONG Liwei,et al. Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020[J]. Marine Geology & Quaternary Geology,2025,45(2):31-42. DOI: 10.16562/j.cnki.0256-1492.2024022902
Citation: LI Mingchen,YAN Su,GONG Liwei,et al. Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020[J]. Marine Geology & Quaternary Geology,2025,45(2):31-42. DOI: 10.16562/j.cnki.0256-1492.2024022902

2020年特大洪水期间长江水下三角洲沉积物沉积特征

基金项目: 国家自然科学基金项目“海南岛南部海岸风暴巨砾沉积揭示的风暴强度”(41706096),“长江流域两千年以来入海水沙通量变化及其对河口-陆架泥质沉积体系发育和演化的影响”(41776048),“海岸风暴频率-强度关系的沉积记录分析”(41530962),“The magnitude and frequency of extreme late Holocene flooding in the middle Yangtze River and their climatic and anthropogenic forcing”(42250610211);上海市教育委员会科研创新项目“长江三角洲蓝图重绘的基础科学问题研究”(2019-01-07-00-05-E00027);江苏省研究生科研与实践创新计划项目“长江口历史水道变迁和特大洪水事件的沉积记录”(KYCX22_2787);江苏省高等学校大学生创新创业训练计划“长江水下三角洲历史特大水文事件沉积的识别”(202110320121Y)
详细信息
    作者简介:

    李明宸(1999—),男,硕士研究生,主要从事河口沉积过程方面研究,E-mail:limingchenmy@163.com

    通讯作者:

    周亮(1986—),男,副教授,主要从事古洪水水文学和古风暴学研究,E-mail:geozhouliang@126.com

  • 中图分类号: P736

Depositional characteristics of sediments in the Changjiang River subaqueous delta during the catastrophic flood in 2020

  • 摘要:

    大河特大洪水会对河口地区沉积环境产生显著影响,然而当前有关河口三角洲古洪水沉积特征的认识存在较大争议,有待通过现代洪水沉积研究深入揭示河口三角州洪水沉积特征。本文于2020年长江流域性特大洪水发生期间,在长江水下三角洲采集了16根短柱样,在实验室进行了粒度和有机地球化学指标(TOC、TN)分析。结果表明短柱中洪水期间产生的沉积层厚度为3~21 cm,上部洪水沉积层TOC含量平均值为0.59%,TN含量平均值为0.077%,与下部常态沉积层相比均有所增加。洪水层沉积物的平均粒径(13.23 µm)比其下部常态沉积物平均粒径(13.87 µm)略微偏细。代表洪水事件沉积的粒度端元组分EM1和研究区以往钻孔中洪水沉积粒度结果的对比表明,2020年长江口洪水沉积相对底部常态沉积粒度偏细,但比以往研究区钻孔中的洪水沉积粒径偏粗,这与传统古洪水沉积以粗颗粒组分为主的认识存在不同,这应该是流域内大坝建设对沉积物的圈闭作用、中下游河道侵蚀作用和水下三角洲受海洋动力侵蚀作用共同导致。该研究对于河口地区长时间尺度古洪水事件序列的重建以及极端水文事件沉积记录解译具有重要的科学意义。

    Abstract:

    Catastrophic floods in large rivers exert significant influences on the sedimentary environment in the estuarine region. However, viewpoints of sedimentary characteristics of the paleoflood in the estuarine delta is controversial. Therefore, it is necessary to understand the sedimentary characteristics of modern flood. The whole Changjiang River basin suffered from a catastrophic flood in 2020. Sixteen sediment cores in the Changjiang subaqueous delta were collected during the flood period. Grain size and organic index (TOC, TN) were measured. The result indicates that the flood layers is 3~21 cm thick, the average TOC and TN is 0.59% and 0.077%, respectively, which is higher than that of lower part deposit. The mean grain size of the flood layers (13.23 µm) is finer than that of the lower part deposits (13.87 µm). The end-member modelling analysis indicated that the finest populations (EM1) were originated from the 2020 flooding. Comparing the EMs of 2020 flood deposits with grain size characteristics of flood deposits in previous studies, we found that the 2020 flood sediments were finer than the lower part non-flood deposits, but coarser than the previous flood sediments, which is different from the common view that the paleoflood deposits are characterized by coarser sediments. We believed that this difference was due to (1) human activities (e.g. dam construction) in the river basin, by which more coarse sediment were trapped within the dam; (2) the weakened erosion in middle and lower reaches of river channels; and (3) the subaqueous delta by ocean dynamic erosion. This study is beneficial for the reconstruction of long-term paleoflood events sequences and the interpretation of extreme event deposition in the estuarine region.

  • 南大西洋两岸盆地漂移期(被动大陆边缘期)层系油气资源十分丰富,油气可采储量达1888亿桶油当量。储量主要分布在两岸的几个重点盆地,如南美东海岸的大坎波斯盆地(包括桑托斯、坎波斯和埃斯皮里图桑托盆地)、塞尔西培盆地和圭亚那苏里南盆地以及西非海域的毛塞几比盆地、利比里亚—塞拉利昂盆地、科特迪瓦盆地、下刚果盆地和西南非海岸盆地。近几年又接连在该领域获得多个大的油气发现,使得该领域继续成为世界油气勘探热点。如2007年在西非科特迪瓦盆地发现的Jubilee油田2P可采储量达11亿桶,在南美一侧的圭亚那苏里南盆地发现的Liza油田可采储量也在10亿桶以上。虽然两岸重点盆地的漂移期层系是油气勘探热点,但是国内外对漂移期的研究主要是集中在深水沉积储层预测,油气富集规律以及近几年对西非海相烃源岩生烃机理研究等方面[1-10]。前人对两岸重点盆地漂移期主力烃源岩发育层位、生烃潜力、主力烃源岩热演化程度、优质烃源岩识别特征和分布范围等特征均不清楚,因此开展两岸重点盆地漂移期海相烃源岩生烃潜力和控制因素研究,可以进一步利于该领域油气资源规模的预测, 同时对油公司在该领域油气勘探部署也具有指导意义。

    南大西洋两岸盆地是典型的被动大陆边缘盆地,根据大洋转换断层分布特征、盆地区域结构、地层的充填演化特征,具体可以将两岸盆地从北往南划分为4段:受转换断层强烈控制的北段、夭折裂谷继承发育的赤道段、富含盐的中段和富火山岩的南段[11-13]。其中,毛塞几比盆地属于受转换断层强烈控制的北段,其演化与北大西洋形成有关。圭亚那-苏里南盆地、利比里亚-塞拉利昂和科特迪瓦盆地属于赤道段,塞尔西培盆地、大坎波斯盆地和下刚果盆地属于富含盐岩的中段,西南非海岸盆地属于富火山岩的南段。

    两岸盆地具有相似的构造和沉积演化过程,主要经历了裂谷期、过渡期和漂移期(被动大陆边缘期)。受北大西洋的形成演化影响,北段的毛塞几比盆地裂谷期形成时间早,持续时间长,从侏罗纪一直持续到早白垩世的阿尔布期。由于在南大西洋形成时,赤道段裂开时间较晚,裂陷作用持续至早白垩世阿尔布期。而富含盐的中段和南段盆地裂谷期主要为早白垩巴列姆期—阿普特早期。裂谷阶段的断陷期地层充填以河流—三角洲相砂砾岩和泥岩为主,裂谷发育早期的拗陷阶段主要沉积湖相碳酸盐岩。过渡期为早白垩世的阿普特期—阿尔布期,同时受局部海侵影响,两岸盆地的沉积环境由陆相逐步转变为局限海的过渡环境,沉积了一套厚层盐岩。其中,毛塞几比盆地、圭亚那-苏里南盆地、科特迪瓦等盆地过渡期盐岩不发育,以沉积海相泥岩为主。进入到阿尔布期以后,伴随着南美大陆与非洲板块的裂离,两岸盆地彻底拉开,发生大规模海侵,盆地构造演化进入到漂移阶段(被动大陆边缘阶段),以沉积巨厚海相泥岩、深水沉积砂岩为主。同时,在晚白垩世赛诺曼—土仑期,由于发生全球范围的大洋缺氧事件,两岸盆地沉积了一套富含有机质海相泥岩,是两岸漂移层系重要的海相烃源岩[14-20]

    图  1  南大西洋两岸盆地分布图
    Figure  1.  Distribution map of basins on both sides of South Atlantic

    通过对南大西洋两岸重点盆地漂移期主力烃源岩生烃潜力对比分析,发现两岸发育漂移早期和漂移中期2套主力烃源岩,其中漂移早期包括塞尔西培盆地下白垩统的巴列姆—阿普特阶海相泥岩和西南非盆地的阿尔布阶海相泥岩,漂移中期为上白垩统赛诺曼—土仑阶海相泥岩。漂移早期烃源岩分布较为局限,漂移中期烃源岩分布范围较广(表 1)。西非一侧的下刚果盆地、科特迪瓦盆地、利比里亚—塞拉利昂和毛塞几比盆地以及南美一侧的大坎波斯盆地(包括桑托斯盆地、坎波斯盆地和埃斯皮里图桑托盆地)、圭亚那-苏里南盆地等8个盆地的漂移期主力烃源岩均为赛诺曼—土仑阶海相泥岩。

    表  1  南大西洋两岸重点盆地漂移期主力烃源岩分布层位对比
    Table  1.  Correlation of source rocks in basins on the two sides of South Atlantic
    地区 盆地名称 年代 TOC/% S1+S2/(mg/g) HI/(mg/g) 有机质类型
    桑托斯 赛诺曼—土仑阶 0.6~1.8 1~10 普遍小于400 2—Ⅲ
    坎波斯 赛诺曼—土仑阶 0.6~2 0.5~6 普遍小于250 2—Ⅲ
    南美一侧 埃斯皮里图桑托 赛诺曼—土仑阶 1~3 1~40 160~400 2—Ⅲ
    塞尔西培 阿尔布阶 3~7 10~20 500 Ⅱ型为主
    圭亚那苏里南 赛诺曼—土仑阶 1.9~6 —— 400~800 1
    西南非 巴列姆-阿普特 普遍小于3.8 0.4~16.6 普遍小于400 Ⅱ—Ⅲ
    下刚果 晚白垩 2~4 5~25 270~540 1
    西非一侧 科特迪瓦 赛诺曼—土仑阶 3.6~7 —— 409~780 2—Ⅲ
    利比里亚—塞拉利昂 赛诺曼—土仑阶 2.2~3.8 8.9~14.4 336~424 1
    毛塞几比 赛诺曼—土仑阶 3~8.72 372~996 1
    下载: 导出CSV 
    | 显示表格

    而对于西非一侧的西南非海岸盆地和南美一侧的塞尔西培盆地,由于地温梯度相对较低(普遍小于3℃/100m),同时,这两个盆地赛诺曼—土仑阶地层埋深也相对较浅,一般小于2500m(图 2),因此,赛诺曼—土仑阶烃源岩成熟度普遍较低。因此,这两个盆地的漂移期主力烃源岩分别为埋藏较深的巴列姆—阿普特阶海相泥岩和阿尔布阶海相泥岩。

    图  2  南大西洋两岸重点盆地地温梯度与土仑阶顶埋深交会图
    Figure  2.  Cross plot of geothermal gradient vs the depth of the top of Turinian

    北段和赤道段盆地主力烃源岩生烃潜力优于中段和南段盆地。整体上,南大西洋两岸北段和赤道段的5个盆地(包括西非北段的毛塞几比、利比里亚—塞拉利昂、科特迪瓦盆地和南美的圭亚那—苏里南和塞尔西培盆地)主力烃源岩TOC为3.8%~8.7%,HI为500~996mg/g,干酪根类型以Ⅱ1型为主,主要生油。而利比里亚-塞拉利昂盆地的Ap-1钻井揭示的赛诺曼—土仑阶海相泥岩主要位于砂岩储层较为发育的三角洲前缘亚相,揭示的泥岩地化指标相对较差,中段和南段的5个盆地主力烃源岩TOC一般都小于4%,HI为250~589mg/g,OI为50~350 mg/g,干酪根类型以Ⅱ型和Ⅱ2型为主,油气兼生。巴西桑托斯、坎波斯和埃斯皮里图桑托盆地赛诺曼—土仑阶烃源岩地化指标最差,海相泥岩的TOC一般小于3%,HI为250~400mg/g(图 34)。

    图  3  两岸重点盆地漂移期主力烃源岩有机质丰度(TOC)柱状图
    Figure  3.  Distribution of TOC in main marine source rocks in side basins, South Atlantic
    图  4  两岸重点盆地漂移期主力烃源岩氢指数(HI)柱状图
    Figure  4.  Distribution of HI in main marine source rock in the side basins, South Atlantic

    西非一侧海域盆地海相烃源岩地化指标,干酪根类型等生烃潜力明显优于南美一侧盆地。西非一侧重点盆地海相烃源岩生烃潜力属于好—很好的烃源岩,赛诺曼—土仑阶的海相泥岩TOC指标普遍相对较高,一般大于3.8%,如毛塞几比盆地赛诺曼—土仑阶海相泥岩TOC最高可达8.7%,生烃潜力属于很好的烃源岩。而南美一侧除了北部的圭亚那—苏里南盆地和塞尔西培盆地外,多数盆地漂移期海相烃源岩TOC指标相对较低,如巴西桑托斯、坎波斯和埃斯皮里图桑托等3个盆地海相泥岩的TOC值均小于3%,而桑托斯盆地赛诺曼—土仑阶海相泥岩的TOC只有1.8%,生烃潜力相对较差。

    北段和赤道段盆地漂移期烃源岩生排烃期早,中南段晚。盆地模拟表明,北段和赤道段盆地漂移期主力烃源岩在古新世—始新世开始大规模生排烃,而中段和南段盆地则在中新世开始大规模生排烃。如塞尔西培盆地漂移早期烃源岩在60MaBP(古新世)时,海相泥岩热演化程度(Ro)达到0.7%,开始大规模生排烃。西非科特迪瓦盆地在50MaBP(始新世)Ro达到0.7%并开始大规模生排烃。巴西大坎波斯盆地和西非下刚果盆地均是在20Ma(中新世)时Ro才达到0.7%,明显晚于北段和赤道段大规模生排烃时间。

    整体上,两岸盆地主力烃源岩热演化程度处于生油高峰期,盆地模拟表明主力烃源岩热演化程度Ro普遍为0.7%~1.2%。另外,下刚果盆地M-1井实测上白垩统赛诺曼—土仑阶Mardingo组海相泥岩Ro为0.7%~0.8%。在南美一侧的桑托斯盆地盐微盆、圭亚那—苏里南盆地西北部,西非一侧的利比里亚—塞拉利昂盆地和西南非盆地局部深埋区达到高成熟阶段,如西南非盆地南部的奥兰治次盆,盆地模拟海相烃源岩Ro大于2.0%,已经进入生裂解气演化阶段(图 5)。

    图  5  南大西洋两岸盆地漂移期主力烃源岩热演化程度分布图
    Figure  5.  Distribution of marine source rock Ro in side basins, South Atlantic

    在两岸10个重点盆地中有超过10余口钻井钻遇了漂移期主力烃源岩,根据烃源岩层段岩性组合特征和地震反射结构,总结出两岸漂移期主力烃源岩发育3种类型地震反射特征(图 6)。

    图  6  南大西洋两岸重点盆地漂移期主力烃源岩地震相特性
    Figure  6.  Seismic facies of main marine source rock in side basins

    Ⅰ类:低频连续强振幅反射特征,岩性组合以厚层泥岩为主,夹薄层泥质粉砂岩、粉砂质泥岩与泥质灰岩。在下刚果盆地、科特迪瓦盆地、利比里亚-塞拉利昂盆地、毛塞几比盆地、圭亚那-苏里南盆地和塞尔西培盆地漂移期烃源岩均发育此类地震相特征。其中下刚果盆地的M-1井在赛诺曼—土仑阶Madingo组烃源岩层段钻遇340m厚的海相泥岩夹薄层泥质灰岩,地震相为低频连续强振幅反射。科特迪瓦盆地的A-1井也在土仑阶烃源岩层段钻遇了约230m厚的海相泥岩夹薄层砂岩、泥灰岩,地震反射特征为低频连续强振幅反射。

    Ⅱ类:中低频连续中弱振幅反射特征,岩性组合为大套泥灰岩与泥岩互层为主,夹白云岩、灰岩和薄层粉砂岩。下刚果盆地的L-1井在Madingo组钻遇了约430m厚的大套泥岩与泥灰岩互层,其中泥岩厚200m,泥灰岩230m。地震反射特征为中低频连续中弱振幅。

    Ⅲ类:低频弱连续弱振幅反射特征,岩性以厚层泥岩为主。南美的埃斯皮里图桑托盆地和西南非海岸盆地均钻遇了此类地震相特征。其中,埃斯皮里图桑托盆地的B-186井在上白垩统钻遇1400m厚的海相泥岩,仅在赛诺曼—土仑阶底部约150m厚的海相泥岩层段有机质最为富集,地震反射特征为低频弱连续弱振幅。

    (1) 局限海湾的古地理背景是优质海相烃源岩发育的主要控制因素。晚白垩世土仑期,西非和南美板块尚未完全分离,加之威尔维斯火山脊的阻挡,南大西洋赤道段整体处于半封闭的局限海湾沉积环境,而富含盐岩的中段大坎波斯盆地和南段西南非海岸盆地则为开阔海环境。同时,这种局限的海湾环境水体与外界交换不畅,表现为缺氧的强还原条件,利于有机质保存。下刚果盆地的M-A井矿物化学元素分析表明,磷元素主要富集在富含有机质的赛诺曼—土仑阶Madingo组,指示该时期古海洋生产力高,利于形成富有机质泥岩。

    (2) 沉积相带类型和展布特征控制了优质海相烃源岩分布范围。在下刚果盆地上白垩统Madingo组沉积时期,靠近滨岸带的混积内浅海亚相的L-1井揭示沉积地层以泥岩与泥灰岩互层为主,地震相特征表现中低频连续中弱振幅,属于Ⅱ类地震相特征,海相烃源岩生烃潜力一般。而位于外浅海相带的M-1井揭示赛诺曼—土仑阶烃源岩层段厚度超过300m,岩性以大套厚层泥岩为主,夹杂薄层泥质灰岩,地震相特征为低频连续强振幅反射,属于Ⅰ类反射特征,烃源岩生烃潜力好。而位于外浅海—半深海沉积相带内,沉积地层岩性以大套厚层泥岩为主,地震反射特征为中弱振幅、中低频、连续,属于Ⅲ类反射特征,烃源岩生烃潜力相对较差。

    (3) 基于对大西洋两岸漂移期烃源岩生烃潜力、古地理背景和沉积相带类型综合分析,优选出两类有利勘探方向,分别为Ⅰ类:北段和赤道段的5个盆地(包括毛塞几比盆地、利比里亚-塞拉利昂盆地、科特迪瓦盆地、圭亚那-苏里南盆地和塞尔西培盆地),在晚白垩世土仑期,这5个盆地整体上属于大型的局限海湾环境,优质海相烃源岩沉积最有利。Ⅱ类:中段含盐盆地(包括埃斯皮里图桑托盆地、坎波斯盆地、桑托斯盆地、下刚果盆地),在主力烃源岩沉积期(晚白垩世土仑期)主要为开阔海的沉积环境,海相泥岩有机质富集程度一般。其中,北段和赤道段5个盆地的主力烃源岩的干酪根类型、生烃潜力均优于中段含盐盆地。

    由于漂移期油气藏和漂移期烃源岩灶纵向上具有很好的叠合关系,因此,Ⅰ类盆地的有利勘探方向为漂移期成熟生烃灶平面分布范围内的深水沉积砂体,主要位于后期有断裂活动的陆坡区,该类型储集体通过陆坡区大断层沟通漂移期已成熟的烃源岩,且烃源岩类型为倾油型,主要以找油为主。同时,漂移期广泛沉积的海相泥岩可以是很好的盖层。Ⅱ类盆地的有利勘探方向为紧邻盐微盆的漂移期深水沉积砂体,盐侧翼和盐活动相关断层是其主要运移通道,且已经在南美的桑托斯盆地Mzula气田和西非下刚果盆地Mohm油田等多个油田已经证实,但由于盆地漂移期主力烃源岩类型为油气兼生,所以以找油和天然气为主。

    (1) 南大西洋两岸盆地漂移期发育两套主力海相烃源岩,漂移早期烃源岩主要在西南非盆地和南美一侧的塞尔西培盆地,漂移期的赛诺曼—土仑期烃源岩分布范围较广。

    (2) 整体上,两岸北段和赤道段盆地漂移期主力烃源岩地化指标优于中—南段盆地,北段和赤道段盆地烃源岩生排烃期早,以生油为主,中—南段盆地生排烃期相带较晚,油气兼生。西非一侧海域盆地烃源岩地化指标优于南美一侧盆地。

    (3) 明确两岸盆地漂移期海相烃源岩主要存在3种地震相类型,其中第Ⅰ类地震相类型烃源岩生烃潜力较大。

    (4) 局限海湾的古地理背景是优质海相烃源岩发育的主要控制因素,沉积相带类型和展布特征控制了优质海相烃源岩平面分布范围。

    (5) 南大西洋两岸北段和赤道段盆地漂移期成熟生烃灶平面分布范围内的深水沉积砂体是最主要有利勘探方向,以找油为主。中—南段盆地内紧邻盐微盆的漂移期深水沉积砂体勘探潜力次之,以找油和天然气为主。

  • 图  1   研究区概况及柱状样站位

    Figure  1.   The study area and the sampling sites

    图  2   短柱样照片

    红色箭头表示洪水沉积层的底部。

    Figure  2.   Photographs of the cores

    The red arrows indicate the bottom of the flood deposit.

    图  3   粒度组分及粒度参数垂向变化

    黑色横线以上表示洪水沉积层。

    Figure  3.   Vertical distribution of grain size composition and parameters

    Black horizontal lines indicates the flood layer bottom.

    图  4   TOC和TN垂向变化

    黑色横线以上表示洪水沉积层。

    Figure  4.   Vertical distribution of TOC and TN

    Black horizontal line indicates the flood layer bottom.

    图  5   短柱样各粒度端元频率曲线

    Figure  5.   Frequency distribution curves of end-members in the cores

    图  6   短柱样粒度组分、平均粒径及各端元含量垂向变化

    黑色横线以上表示洪水沉积层。

    Figure  6.   Vertical distribution of grain size components, mean grain size, and end-members of the cores

    Black horizontal lines indicate the flood layer bottom.

    图  7   长江口水下三角洲钻孔cj0702[18] (a)和YE-1[50] (b)的平均粒径与1880-2020年大通站水沙通量[49,52] (c)比较

    蓝色箭头表示钻孔内识别出的洪水层,红色虚线表示三峡大坝建成的2003年。

    Figure  7.   Comparison in the mean grain size of sedimentary cores cj0702[18], YE-1[50], and river discharge, sediment discharge at the Datong Hydrological Station from 1880 to 2020

    Blue arrows mark flood events, and red dash line indicates year 2003 when the Three Gorges Dam was completed.

  • [1]

    Stanley D J, Warne A G. Worldwide initiation of holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265(5169):228-231. doi: 10.1126/science.265.5169.228

    [2]

    Wright L D. Sediment transport and deposition at river mouths: a synthesis[J]. GSA Bulletin, 1977, 88(6):857-868. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    [3]

    Hirabayashi Y, Mahendran R, Koirala S, et al. Global flood risk under climate change[J]. Nature Climate Change, 2013, 3(9):816-821. doi: 10.1038/nclimate1911

    [4]

    Tessler Z D, Vörösmarty C J, Grossberg M, et al. Profiling risk and sustainability in coastal deltas of the world[J]. Science, 2015, 349(6248):638-643. doi: 10.1126/science.aab3574

    [5]

    Yin H F, Li C G. Human impact on floods and flood disasters on the Yangtze River[J]. Geomorphology, 2001, 41(2-3):105-109. doi: 10.1016/S0169-555X(01)00108-8

    [6]

    Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108:68-80. doi: 10.1016/j.jseaes.2015.04.028

    [7]

    Zhou L, Shi Y, Zhao Y Q, et al. Extreme floods of the Changjiang River over the past two millennia: contributions of climate change and human activity[J]. Marine Geology, 2021, 433:106418. doi: 10.1016/j.margeo.2020.106418

    [8]

    Allison M A, Sheremet A, Goñi M A, et al. Storm layer deposition on the Mississippi–Atchafalaya subaqueous delta generated by Hurricane Lili in 2002[J]. Continental Shelf Research, 2005, 25(18):2213-2232. doi: 10.1016/j.csr.2005.08.023

    [9]

    Chen Z Y, Song B P, Wang Z H, et al. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation[J]. Marine Geology, 2000, 162(2-4):423-441. doi: 10.1016/S0025-3227(99)00064-X

    [10]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023

    [11] 施雅风, 姜彤, 苏布达, 等. 1840年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, 16(4):289-297 doi: 10.3321/j.issn:1003-5427.2004.04.001

    SHI Yafeng, JIANG Tong, SU Buda, et al. Preliminary analysis on the relation between the evolution of heavy floods in the Yangtze River catchment and the climate changes since 1840[J]. Journal of Lake Sciences, 2004, 16(4):289-297.] doi: 10.3321/j.issn:1003-5427.2004.04.001

    [12]

    Yu F L, Chen Z Y, Ren X Y, et al. Analysis of historical floods on the Yangtze River, China: characteristics and explanations[J]. Geomorphology, 2009, 113(3-4):210-216. doi: 10.1016/j.geomorph.2009.03.008

    [13]

    Jiang T, Zhang Q, Blender R, et al. Yangtze Delta floods and droughts of the last millennium: abrupt changes and long term memory[J]. Theoretical and Applied Climatology, 2005, 82(3-4):131-141. doi: 10.1007/s00704-005-0125-4

    [14] 李雨凡, 周亮, 于世永, 等. 过去两千年长江干流历史洪水事件的时空变化研究[J]. 地球与环境, 2022, 50(2):241-251

    LI Yufan, ZHOU Liang, YU Shiyong, et al. Temporal and spatial variations of flood events of the Yangtze River over the past 2000 years[J]. Earth and Environment, 2022, 50(2):241-251.]

    [15]

    Zhan W, Yang S Y, Liu X L, et al. Reconstruction of flood events over the last 150 years in the lower reaches of the Changjiang River[J]. Chinese Science Bulletin, 2010, 55(21):2268-2274. doi: 10.1007/s11434-010-3263-8

    [16] 盛琛, 陈彬, 安郁辉, 等. 长江口泥质区24Z孔沉积物粒度特征及对洪水事件的沉积响应[J]. 海洋科学, 2020, 44(3):74-84 doi: 10.11759/hykx20190513002

    SHENG Chen, CHEN Bin, AN Yuhui, et al. Grain-size characteristics of sediments and sedimentary response to flood events from hole 24Z in muddy areas of the Yangtze Estuary[J]. Marine Sciences, 2020, 44(3):74-84.] doi: 10.11759/hykx20190513002

    [17] 韦璐, 范代读, 吴伊婧, 等. 近百年来长江水下三角洲高分辨率洪水沉积记录及其控制机[J]. 地质通报, 2021, 40(5):707-720

    WEI Lu, FAN Daidu, WU Yijing, et al. High resolution flood records in the Yangtze subaqueous delta during the past century and control mechanism[J]. Geological Bulletin of China, 2021, 40(5):707-720.]

    [18]

    Hu G, Li A C, Liu J, et al. High resolution records of flood deposition in the mud area off the Changjiang River mouth during the past century[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(4):909-920. doi: 10.1007/s00343-014-3244-x

    [19]

    Wang M J, Zheng H B, Xie X, et al. A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records[J]. Chinese Science Bulletin, 2011, 56(2):188-195. doi: 10.1007/s11434-010-4212-2

    [20]

    Fan D J, Qi H Y, Sun X X, et al. Annual lamination and its sedimentary implications in the Yangtze River delta inferred from High-resolution biogenic silica and sensitive grain-size records[J]. Continental Shelf Research, 2011, 31(2):129-137. doi: 10.1016/j.csr.2010.12.001

    [21]

    Yang S L, Belkin I M, Belkina A I, et al. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4):689-699. doi: 10.1016/S0272-7714(02)00409-2

    [22]

    Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1-2):14-20. doi: 10.1016/j.gloplacha.2010.09.006

    [23]

    Yang S L, Milliman J D, Xu K H, et al. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River[J]. Earth-Science Reviews, 2014, 138:469-486. doi: 10.1016/j.earscirev.2014.07.006

    [24]

    Flemming B W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis[J]. Sedimentary Geology, 2007, 202(3):425-435. doi: 10.1016/j.sedgeo.2007.03.018

    [25] 高抒. 沉积物粒径趋势分析: 原理与应用条件[J]. 沉积学报, 2009, 27(5):826-836

    GAO Shu. Grain size trend analysis: principle and applicability[J]. Acta Sedimentologica Sinica, 2009, 27(5):826-836.]

    [26]

    McCave I N. Grain-size trends and transport along beaches: example from eastern England[J]. Marine Geology, 1978, 28(1-2):M43-M51. doi: 10.1016/0025-3227(78)90092-0

    [27] 张瑞, 汪亚平, 高建华, 等. 长江口泥质区垂向沉积结构及其环境指示意义[J]. 海洋学报, 2008, 30(2):80-91

    ZHANG Rui, WANG Yaping, GAO Jianhua, et al. The vertical sedimentary structure and its implications for environmental evolutions in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2008, 30(2):80-91.]

    [28]

    Zhang X D, Ji Y, Yang Z S, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China Earth Sciences, 2016, 59(2):258-267. doi: 10.1007/s11430-015-5165-8

    [29]

    Zhang X D, Wang H M, Xu S M, et al. A basic end-member model algorithm for grain-size data of marine sediments[J]. Estuarine, Coastal and Shelf Science, 2020, 236:106656. doi: 10.1016/j.ecss.2020.106656

    [30] 张晓东, 翟世奎, 许淑梅. 端元分析模型在长江口邻近海域沉积物粒度数据反演方面的应用[J]. 海洋学报, 2006, 28(4):159-166

    ZHANG Xiaodong, ZHAI Shikui, XU Shumei. The application of grain-size end-member modeling to the shelf near the estuary of Changjiang River in China[J]. Acta Oceanologica Sinica, 2006, 28(4):159-166.]

    [31] 赵松, 常凤鸣, 李铁刚, 等. 粒度端元法在东海内陆架古环境重建中的应用[J]. 海洋地质与第四纪地质, 2017, 37(3):187-196

    ZHAO Song, CHANG Fengming, LI Tiegang, et al. The application of grain-size end member algorithm to paleoenvironmental reconstruction on inner shelf of East China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):187-196.]

    [32]

    Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007/BF02775085

    [33] 张晓东, 许淑梅, 翟世奎, 等. 东海内陆架沉积气候信息的端元分析模型反演[J]. 海洋地质与第四纪地质, 2006, 26(2):25-32

    ZHANG Xiaodong, XU shumei, ZHAI Shikui, et al. The inversion of climate information from the sediment of inner shelf of East China Sea using end-member model[J]. Marine Geology & Quaternary Geology, 2006, 26(2):25-32.]

    [34] 朱林, 陈晓红, 郭兴杰, 等. 近十年来长江口北支动力地貌演化过程[J]. 上海国土资源, 2022, 43(2):78-83 doi: 10.3969/j.issn.2095-1329.2022.02.014

    ZHU Lin, CHEN Xiaohong, GUO Xingjie, et al. Dynamic geomorphology evolution of the North Branch of the Yangtze River Estuary in recent ten years[J]. Shanghai Land & Resources, 2022, 43(2):78-83.] doi: 10.3969/j.issn.2095-1329.2022.02.014

    [35]

    Zhan Q, Li M T, Liu X Q, et al. Sedimentary transition of the Yangtze subaqueous delta during the past century: inspiration for delta response to future decline of sediment supply[J]. Marine Geology, 2020, 428:106279. doi: 10.1016/j.margeo.2020.106279

    [36] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4):1-16

    SU Jilan. A review of circulation dynamics of the coastal oceans near China[J]. Acta Oceanologica Sinica, 2001, 23(4):1-16.]

    [37] 郭志刚, 杨作升, 范德江, 等. 长江口泥质区的季节性沉积效应[J]. 地理学报, 2003, 58(4):591-597 doi: 10.3321/j.issn:0375-5444.2003.04.014

    GUO Zhigang, YANG Zuosheng, FAN Dejiang, et al. Seasonal sedimentary effect on the Changjiang Estuary mud area[J]. Acta Geographica Sinica, 2003, 58(4):591-597.] doi: 10.3321/j.issn:0375-5444.2003.04.014

    [38] 吴增斌, 郭磊城, 吴雪枫, 等. 2020年特大洪水作用下长江口南槽水沙输移特征[J]. 海洋与湖沼, 2022, 53(2):295-304 doi: 10.11693/hyhz20210800194

    WU Zengbin, GUO Leicheng, WU Xuefeng, et al. A field study of hydrodynamics and sediment transport in the south passage of the Changjiang River estuary during big river flood in July 2020[J]. Oceanologia et Limnologia Sinica, 2022, 53(2):295-304.] doi: 10.11693/hyhz20210800194

    [39]

    Tang R N, Dai Z J, Mei X F, et al. Joint impacts of dams and floodplain on the rainfall-induced extreme flood in the Changjiang (Yangtze) River[J]. Journal of Hydrology, 2023, 627:130428. doi: 10.1016/j.jhydrol.2023.130428

    [40]

    Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11):1237-1248. doi: 10.1002/esp.261

    [41]

    Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    [42]

    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12):4494-4506. doi: 10.1002/2015GC006070

    [43] 王兆夺, 于东生. 泉州湾表层沉积物粒度特征分析[J]. 应用海洋学学报, 2015, 34(3):326-333 doi: 10.3969/J.ISSN.2095-4972.2015.03.004

    WANG Zhaoduo, YU Dongsheng. Characteristics of grain sizes in surface sediments of Quanzhou Bay[J]. Journal of Applied Oceanography, 2015, 34(3):326-333.] doi: 10.3969/J.ISSN.2095-4972.2015.03.004

    [44] 薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5):75-89.]

    [45]

    Khan N S, Horton B P, McKee K L, et al. Tracking sedimentation from the historic A. D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA[J]. Geology, 2013, 41(4):391-394. doi: 10.1130/G33805.1

    [46] 李华勇, 袁俊英, 杨艺萍, 等. 山东弥河流域现代洪水沉积特征与水动力过程反演[J]. 海洋地质与第四纪地质, 2022, 42(2):178-189

    LI Huayong, YUAN Junying, YANG Yiping, et al. Characteristics of modern flood deposits in the Drainage basin of Mi River, Shandong Province and the reconstruction of hydrodynamic processes[J]. Marine Geology & Quaternary Geology, 2022, 42(2):178-189.]

    [47] 董坚, 何青, 林建良, 等. 长江口特大洪水浑浊带悬沙粒度分布特征[J]. 海洋通报, 2023, 42(1):48-58

    DONG Jian, HE Qing, LIN Jianliang, et al. The distribution of suspended sediment grain size in Changjiang Estuary turbidity maximum zone during the extreme flood[J]. Marine Science Bulletin, 2023, 42(1):48-58.]

    [48]

    Yang H F, Yang S L, Meng Y, et al. Recent coarsening of sediments on the southern Yangtze subaqueous delta front: a response to river damming[J]. Continental Shelf Research, 2018, 155:45-51. doi: 10.1016/j.csr.2018.01.012

    [49]

    Wang Y H, Dong P, Oguchi T, et al. Long-term (1842–2006) morphological change and equilibrium state of the Changjiang (Yangtze) Estuary, China[J]. Continental Shelf Research, 2013, 56:71-81. doi: 10.1016/j.csr.2013.02.006

    [50]

    Zhang R, Li T G, Russell J, et al. High-resolution reconstruction of historical flood events in the Changjiang River catchment based on geochemical and biomarker records[J]. Chemical Geology, 2018, 499:58-70. doi: 10.1016/j.chemgeo.2018.09.003

    [51]

    Mei X F, Dai Z J, Darby S E, et al. Landward shifts of the maximum accretion zone in the tidal reach of the Changjiang estuary following construction of the Three Gorges Dam[J]. Journal of Hydrology, 2021, 592:125789. doi: 10.1016/j.jhydrol.2020.125789

    [52] 陆子骞, 张国安, 张卫国, 等. 泥沙来源减少后长江口最大浑浊带变化研究[J]. 泥沙研究, 2022, 47(3):67-72

    LU Ziqian, ZHANG Guoan, ZHANG Weiguo, et al. Processes of the maximum turbidity zone of the Yangtze Estuary under the background of reduced sediment sources[J]. Journal of Sediment Research, 2022, 47(3):67-72.]

    [53] 陈雅望, 盛辉, 许庆华, 等. 近40年来长江口沉积物粒度变化及其对底床冲淤的响应[J]. 水利水运工程学报, 2021, (5):8-18 doi: 10.12170/20210628002

    CHEN Yawang, SHENG Hui, XU Qinghua, et al. Analysis of sediment grain size change and its response to erosion and deposition pattern within the Yangtze River Estuary for the past 40 years[J]. Hydro-Science and Engineering, 2021, (5):8-18.] doi: 10.12170/20210628002

    [54]

    Wang J, Dai Z J, Mei X F, et al. Tropical cyclones significantly alleviate mega-deltaic erosion induced by high riverine flow[J]. Geophysical Research Letters, 2020, 47(19):e2020GL089065. doi: 10.1029/2020GL089065

  • 期刊类型引用(5)

    1. 刘延莉,刘静静. 全球典型被动陆缘盆地油气成藏特征. 世界地质. 2022(01): 129-138 . 百度学术
    2. 李明刚,许晓明,李燕,赵阳,郭允. 塞阿拉-普蒂瓜尔盆地油气地质特征及勘探潜力评价. 长江大学学报(自然科学版). 2022(06): 11-19 . 百度学术
    3. 徐建永,赵牛斌,徐仕琨,赵新伟. 莺歌海盆地中新统海相烃源岩发育主控因素及模式. 地质科技通报. 2021(02): 54-63 . 百度学术
    4. 韩嵩,王嗣敏,李杰,康洪全,逄林安. 南大西洋两岸盆地白垩系森诺曼—土仑阶烃源岩特征差异及其主控因素. 中国海上油气. 2021(02): 78-88 . 百度学术
    5. 邓运华,贾怀存,刘琼. 大西洋被动陆缘盆地深水区油气藏形成机理与勘探实践. 中国海上油气. 2021(06): 1-10 . 百度学术

    其他类型引用(0)

图(7)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  10
  • PDF下载量:  55
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-05-06
  • 录用日期:  2024-05-06
  • 网络出版日期:  2024-07-02
  • 刊出日期:  2025-04-27

目录

/

返回文章
返回