末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素

刘佳澳, 吴永华, 刘升发, 乔淑卿, 陶菁, 齐文菁, 刘季花

刘佳澳,吴永华,刘升发,等. 末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素[J]. 海洋地质与第四纪地质,2024,44(5): 189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801
引用本文: 刘佳澳,吴永华,刘升发,等. 末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素[J]. 海洋地质与第四纪地质,2024,44(5): 189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801
LIU Jiaao,WU Yonghua,LIU Shengfa,et al. Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period[J]. Marine Geology & Quaternary Geology,2024,44(5):189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801
Citation: LIU Jiaao,WU Yonghua,LIU Shengfa,et al. Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period[J]. Marine Geology & Quaternary Geology,2024,44(5):189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801

末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素

基金项目: 全球变化与海气相互作用(二期)专项“ 西印度洋WIND-CJ06区块海洋底质与底栖生物调查 ”(GASI-01-WIND-CJ06);国家自然科学基金项目“MIS7期以来热带西印度洋底层水演化及其环境气候效应”(42376083)
详细信息
    作者简介:

    刘佳澳(1999—),男,硕士研究生,海洋地质专业,E-mail:jiaaoliu1999@163.com

    通讯作者:

    吴永华(1974—),男, 副研究员,主要从事古海洋与古环境研究,E-mail:yhwu@fio.org.cn

  • 中图分类号: P736

Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period

  • 摘要:

    末次冰期以来阿拉伯海水体氧含量变化在时空上具有显著的差异。目前对其空间变化规律及主导因素尚缺乏系统的研究,尤其缺乏对千年尺度上深层水氧含量变化过程及其控制因素的综合分析。本文基于阿拉伯海中部深水区WIND-CJ06-6与WIND-CJ06-13两个岩芯的XRF岩芯扫描结果,结合前人已发表的指示阿拉伯海水体氧含量变化数据,重建了末次冰期以来千年尺度阿拉伯海不同海域和深度的水体氧含量变化历史并分析了其驱动因素。阿拉伯海水深小于1 500 m的水体在千年尺度上的氧含量变化受到表层初级生产力和中层水流通性的共同控制,但在不同时期主导因素不同;在B/A(Bølling–Ållerød)到YD(Younger Dryas)期间,阿拉伯海西北部表层生产力显著高于同时期其他海域,导致了中层水体的氧含量在西北部降低而在其他海域增高的空间差异。阿拉伯海水深大于1 500 m的水体氧含量在末次冰期以来整体上受北大西洋深层水(NADW)强弱的控制,在LGM(Last Glacial Maximum)到HS1(Heinrich stadial 1)阶段则受到南大洋通风增强的影响,水体氧含量显著升高。

    Abstract:

    Variations in the oxygen content of water column in the Arabian Sea since the Last Glacial Period have significant differences in space and time. However, regarding the spatial variation patterns and dominating factors, systematic studies are scarce, especially on the mechanism of changes in oxygen content in deep water and the controlling factors on a millennial scale. Based on XRF core scanning results from two cores, WIND-CJ06-6 and WIND-CJ06-13, in the central deep water of the Arabian Sea and previously published data, we reconstructed the processes and analyzed the drivers of the variations in oxygen content in the Arabian Sea in different areas and depths on millennial scale since the Last Glacial Period. Results show that the variations in oxygen content in the Arabian Sea in water depths less than 1500 m on the millennial scale are controlled jointly by the surface primary productivity and mesopelagic water fluxes, and the dominant factors varied in different periods. Surface productivity in the northwestern part of the Arabian Sea was significantly higher than that in the rest of the sea during the transition period from B/A (Bølling-Ållerød) to YD (Younger Dryas) events, resulting in spatial difference: the oxygen content in the intermediate water was high in the NW Arabian Sea but low in the rest of the sea. The oxygen content in water column in the Arabian Sea at depths greater than 1500 m was mainly controlled by the strength of the North Atlantic Deep Water (NADW) since the Last Glacial Maximum (LGM), and the oxygen content in water was significantly increased due to enhanced ventilation in the Southern Ocean from the LGM to the HS1 (Heinrich Stadial 1) stage.

  • 烃源岩时空分布是影响并控制油气资源分布的主要因素[1],但由于沉积环境变化导致烃源岩时空分布存在明显差异。前人对于湖相烃源岩的研究[2-6],普遍认为强烈裂陷期古水体深,湖泊底部较易形成欠补偿的还原环境,有利于有机质保存。但对于拗陷期是否具备优质湖相烃源岩发育条件缺乏系统研究和认识,普遍认为拗陷期湖水浅、风大、湖底充氧,有机质可能难以保存[2]。本文针对桑托斯盆地盐下拗陷期开展古生物学与地球化学研究,探讨古湖泊的沉积古地理-古气候背景以及沉积水介质的物理化学条件,从而重建烃源岩沉积环境,并总结拗陷期烃源岩发育模式,为拗陷期湖泊烃源岩发育条件提供新的案例。

    桑托斯盆地位于巴西东南部海域,北邻坎波斯盆地,南邻佩洛塔斯盆地,盆地面积约32.7万km2,水深0~3200 m(图1)。桑托斯盆地与北部的坎波斯盆地和埃斯皮里图桑托盆地共同构成大坎波斯盆地,它们具有相似的构造演化和沉积充填史,为典型的被动大陆边缘盆地,石油地质条件均十分优越,目前已获得大量油气发现[7-9]

    图  1  桑托斯盆地地理位置及重点井位
    Figure  1.  Location of the Santos Basin and key wells

    桑托斯盆地是一个典型的被动大陆边缘盆地,其形成演化与中生代以来冈瓦纳大陆的解体以及大西洋的扩张有关。构造演化和沉积充填可以划分为3个沉积构造演化阶段[10-11]:早白垩世裂谷期湖相沉积、Aptian过渡期盐岩沉积和晚白垩世—新生代漂移期海相沉积(图2)。

    图  2  桑托斯盆地地层-构造演化综合柱状图
    Figure  2.  An integrated stratigraphic column showing tectonic evolution of the Santos Basin

    其中早白垩世裂谷期,盆地构造活动强烈,断裂普遍发育,形成了多个东北走向的大型隆起和坳陷带,表现出隆坳相间的断陷结构。盆地总体较为宽缓,表现出湖广水深的特征,主要沉积了一套厚层的陆相河湖体系。整体上,裂谷期经历了4个演化阶段(图3):

    图  3  研究区盐下裂谷期构造演化剖面图
    Figure  3.  Tectonic evolution profile of pre-salt rift in the study area

    (1)初始断陷阶段(Neocomian-Barremian早期):以发育小位移的板状基底断层为主,地壳均匀伸展,且断层活动性差异小。同时伴随着多区带强烈火山活动,地层充填整体上以Camboriu组喷发玄武岩为主,这也为晚期生物灰岩发育提供了古构造背景,局部地区为湖泊、冲积扇相的砂泥岩沉积。

    (2)强烈断陷阶段(Barremian中期):断层活动强烈,基底断块差异升降和掀斜变形,表现出垒堑相间的断陷结构。区域伸展速率和沉降幅度大,沉积环境呈现湖广水深的特点,以发育巨厚的Picarras组(PIC组)湖相地层为主。

    (3)断拗转换阶段(Barremian晚期—Aptian早期):断裂活动整体减弱,伸展位移相对均匀地分布在不同断层上,地形高差小,表现出坳陷的结构。沉积充填Itapema组(ITP组),浅水区发育贝壳灰岩,深水区为湖相页岩、泥灰岩沉积。

    (4)拗陷阶段(Aptian中—晚期):区内断裂发育少且活动微弱,发育稳定分布的Barra Velha组(BV组),岩性以藻叠层石灰岩为主,较深水区则发育湖相页岩和泥灰岩。

    其中在Camboriu组、ITP组、BV组沉积时期,盆地内多区带均伴随着强烈火山活动,发育大量喷发溢流相玄武岩,局部发育侵入岩,以辉绿岩为主,局部发育辉长岩、煌斑岩(图4)。

    图  4  研究区典型岩浆岩薄片
    Figure  4.  Typical thin section images of magmatic rocks in the study area

    区域钻井证实断陷期PIC组—断拗转换期ITP组深湖相泥页岩和泥灰岩为一套广泛分布的优质湖相烃源岩,而关于拗陷期BV组是否广泛具备优质烃源岩发育条件,有待进一步证实。

    桑托斯盆地在裂谷期整体处于微咸水-半咸水环境,有机质以蓝藻类和细菌为主,无定型有机质占有机质总量的90%以上(图5)。整体上具有有机质类型好、丰度高、生烃潜力大的特点。

    图  5  研究区盐下断陷湖相烃源岩有机质组成
    Figure  5.  Organic matter composition of pre-salt lacustrine source rock in study area

    裂谷期沉积时期,盆地整体气候干燥,沉积物中以代表干旱环境的克拉梭粉、阔三沟粉、似木贼孢、三气囊花粉为主,仅近岸存在小范围湿润环境,河流体系整体不发育,陆源碎屑供给少,这正是桑托斯盆地盐下裂谷期湖相碳酸盐岩发育的有利条件[12-15]

    BV组沉积时期,地球化学分析显示,水体营养丰富,营养物质输入丰富[16]。这主要是由于盆地及周缘火山岩发育,同时伴随着间歇性火山活动,而干燥的气候背景下,湖盆主要依赖地下水进行补给,地下水流经火山岩会溶解其营养元素,携带至湖盆中,同时间歇性火山活动也会不定期带来丰富的火山灰等营养物质[6],具备了藻类勃发的古地理背景与物源供给条件。

    湖相烃源岩的发育与湖泊古水体盐度关系密切,主要是由于古盐度可直接影响古湖泊水体分层,从而影响有机质保存条件,强烈的水体分层可以在浅水背景下的湖底形成强还原环境[16-17]。本文通过对桑托斯盆地盐下湖相介形虫盐度标志种和水深标志种的分析,重建沉积时期古水体盐度和深度变化。

    湖水盐度会影响沉积期湖盆中造礁或成滩生物的繁盛程度,其中贝壳类等软体动物在低盐度淡水水体中较为繁盛,而各类造礁微生物在盐度相对较高的半咸水-咸水水体中更为繁盛。

    从贝壳灰岩至微生物礁灰岩存在一个氧同位素正偏的趋势(图6),表明自贝壳灰岩至微生物礁灰岩沉积时期,蒸发作用逐渐增强。其中在ITP组贝壳灰岩样品中,以偏负的碳氧同位素指标为主,这表明在沉积贝壳灰岩时期,沉积水体盐度相对较低,为正常盐度水体,适于贝壳类生物群落发育;而在BV组微生物礁灰岩样品中,以显著正偏的氧同位素指标为特征,指示水体中因轻同位素组分流失而使得沉积物中富集重同位素组分,也即在微生物礁灰岩沉积时期,由于蒸发作用和海侵作用导致湖盆水体咸化,盐度相对较高,而这样的水体环境不适宜贝壳类生物的生存,但可以促进造礁微生物的繁盛。同时,在两期沉积内部同位素变化不大,表明水体盐度在两个沉积时期均较为稳定,适于发育湖相生物灰岩沉积。

    图  6  研究区典型井碳氧同位素特征图
    Figure  6.  Carbon-oxygen isotope features in typical wells

    随后,基于对盐下碳酸盐岩样品中介形虫化石古生态学分析[18],进一步确定了沉积时期古水深及盐度。介形虫对盐度反应非常敏感,随着盐度升高,仅能在淡水和低盐度水体中生存的淡水种-微咸水种快速消失,取而代之为半咸水种和咸水种。在巴西盐下湖相生物灰岩中的介形虫化石,根据盐度指标可分为淡水种、微咸水种、半咸水种和咸水种四类。在贝壳灰岩沉积期介形虫以淡水种—微咸水种占绝对优势,指示ITP组贝壳灰岩沉积期为淡水—微咸水环境;而叠层石灰岩沉积期则以半咸水—咸水种占明显优势(图7),指示BV组微生物礁灰岩沉积期为半咸水—咸水环境。

    图  7  研究区典型井盐下地层介形虫分布特征
    Figure  7.  The distribution of ostracods in pre-salt strata in typical wells

    此外,盐下生物灰岩沉积时期整体为浅湖环境,且呈现水退的趋势,但在断陷晚期ITP组贝壳灰岩的发育初期和末期,以及拗陷期BV组的发育中期,发生多期较大规模的幕式海侵。这一论断已被学者通过多种资料证实,如Mello和Hessel[19]从贝壳灰岩地层中的生物标识化合物、地质和古微生物等数据推断了在早Barremian时期就存在海侵作用;Silva-Telles Jr等[20]在贝壳灰岩与泥岩互层中识别出了螺旋锥状有孔虫,提出坎波斯盆地在OS-1010至OS-1100生物带地层中存在海侵现象;同时,通过钻井岩芯分析发现多井段存在海绿石。海侵作用导致水体盐度增加,并带来丰富的营养物质。

    前人通过对国内外不同盆地优质烃源岩研究分析,发现优质烃源岩形成的必要条件是湖泊具有一定的生物生产力[2-6],从而为优质烃源岩发育提供物质基础。

    桑托斯盆地盐下裂谷期沉积时期,盆地整体气候干旱,沉积物中以代表干旱环境的克拉梭粉-阔三沟粉-似木贼孢-三气囊花粉为主,仅含少量代表潮湿环境的孢粉,指示近岸小范围的湿润环境。干旱气候背景下,河流水系不发育,陆源碎屑供给较少,这正是桑托斯盆地盐下发育大规模碳酸盐岩的原因之一。地球化学分析结果显示[21]图8),沉积时期水体营养丰富,但其中Al含量整体相对较小,仅局部含量相对较高,而Al被认为是陆源物质输入的代表元素,低含量指示陆源物质输入较少,主要以地下的水化学输入为主。

    图  8  研究区盐下地层化学元素含量分析 [21]
    Figure  8.  The analysis of chemical element content in the pre-salt strata [21]

    桑托斯盆地及周边早白垩世火山岩发育,且干旱的气候背景下,古湖盆主要依靠地下水对湖泊进行补给,此外,在ITP组和BV组沉积时期,湖盆发育了多期海侵,海侵事件同样会带来大量营养元素,丰富的营养供给使得造礁生物、浮游生物藻类勃发,由此可见,在拗陷期BV组沉积时期,水体营养丰富,藻类勃发,古生产力较高。

    区域钻井揭示断陷期PIC组-断拗转换期ITP组深湖相泥页岩和泥灰岩烃源岩干酪根类型主要为Ⅰ型,TOC含量1%~15.9%,平均可达5.1%,HI可达500~1084 mg HC/g TOC,S1+S2平均可达37 mg/g(图9)。而对于拗陷期BV组烃源岩,目前仅有5个样品点,均位于构造高部位叠层石灰岩发育区,为泥质微生物灰岩(图10),其TOC为1.7%~3.77%,生烃潜力及干酪根类型与断陷期烃源岩类似,体现了优质湖相烃源岩的特点。

    图  9  研究区盐下湖相烃源岩地化指标关系图
    A:S1+S2与TOC关系图,B:HI与OI关系图。
    Figure  9.  Geochemical indicators of lacustrine source rock in study area
    A: diagram of SI+S2 vs. TOC, B: diagram of HI vs. OI
    图  10  研究区BV组烃源岩岩芯样品照片
    Figure  10.  Core samples photos of source rocks in the BV Formation in study area

    高的古生产力,并不代表沉积物中有机质丰度高,沉积下来的有机质经历氧化消耗而残存下来的方可被埋藏保存。可见,有机质能否得以保存对烃源岩的形成至关重要。

    古生物分析显示,拗陷期BV组沉积时期,为宽浅、半咸水—咸水环境,从而可形成稳定的盐度分层,在湖泊顶部为低盐度富氧层,而在底部形成的高盐度缺氧层则为强还原环境,有利于有机质保存。较高的古生产力、良好的保存条件为拗陷期烃源岩发育提供了可能。由于目前盐下钻井主要钻探高部位碳酸盐岩发育区,目前掌握资料中尚未有钻井揭示洼陷区BV组烃源岩,但从地震上可见典型的盐下优质湖相烃源岩反射特征——低频连续强反射(图11)。同时,桑托斯盆地共轭的西非宽扎盆地,已有钻井揭示近200 m拗陷期优质湖相烃源岩,TOC为3%~6%,部分可达9.5%。

    图  11  研究区盐下拗陷期BV组湖相烃源岩典型地震相特征
    Figure  11.  Typical seismic characteristics of the source rock in BV Formation

    拗陷期BV组烃源岩发育是否在一定程度上拓宽了桑托斯盐下勘探潜力,早期认为裂陷期PIC-ITP组烃源岩为盆地盐下主力烃源岩,主要发育于深洼区,拗陷期烃源岩发育在一定程度上扩展了烃源岩的平面分布范围。

    桑托斯盆地盐下拗陷期BV组沉积时期,整体构造稳定,为宽浅湖盆。

    地化分析显示,反映陆源输入的Al含量整体偏低,指示陆源输入较少,主要以地下水化学输入为主。同时由于周缘周期性火山活动及间接性海侵为湖泊提供了丰富的营养元素,沉积时期古水体整体营养丰富,藻类勃发,古生产力高。

    在干旱气候背景下,蒸发作用对古水体盐度增加有一定影响。桑托斯盆地碳、氧同位素的分析结果显示,从ITP组贝壳灰岩至BV组微生物礁灰岩存在一个氧同位素正偏的趋势,表明自贝壳灰岩至微生物礁灰岩沉积时期,蒸发作用逐渐增强。同时,古水体盐度敏感介形虫种属显示,在拗陷期BV组沉积时期,整体以半咸水—咸水种占明显优势,指示沉积时期为半咸水—咸水环境,使得湖泊水体有了稳定的盐度分层,坳陷沉积中心较易形成高盐度缺氧还原环境,利于有机质保存,从而发育相对优质的拗陷期湖相烃源岩(图12)。

    图  12  研究区盐下拗陷期BV组烃源岩发育模式
    Figure  12.  The development model for the source rock of the BV Formation in study area

    (1)桑托斯盆地盐下拗陷期BV组沉积时期,湖泊水体营养丰富,藻类勃发,古生产力高。同时由于沉积时期水体盐度较高,为半咸水—咸水环境,虽为宽浅湖泊,但干旱的气候背景下,较易形成盐度分层,从而在湖泊底层形成稳定的强还原环境,利于有机质保存。整体上,桑托斯盆地盐下拗陷期BV组具备优质烃源岩发育条件。

    (2)研究区拗陷期烃源岩发育不仅拓宽了桑托斯盐下优质湖相烃源岩发育层系,同时由于断陷期优质湖相烃源岩主要分布于深洼区,而拗陷期优质烃源岩分布相对更为广泛,这在一定程度上扩展了盐下优质湖相烃源岩平面展布范围,提升了盆地勘探潜力。同时本文相关研究在一定程度上完善了湖相烃源岩发育沉积模式,填补了前人关于拗陷期是否发育烃源岩认识的空白。

  • 图  1   区域水文和研究站位

    a:印度洋表层洋流(黑色实线指示夏季表层流,黑色虚线指示冬季表层流。SC:索马里洋流。SMC:夏季风环流;WMC:冬季风环流;WICC:西印度沿岸流;EICC:东印度沿岸流)、中层水(棕色虚线)以及深层水(紫色实线)示意图(灰色虚线框指示图b范围)改自[36-37];b:站位分布(红色三角形为本次研究站位,黑点为收集站位);c:现代阿拉伯海水体氧含量剖面图,数据来源于World Ocean Atlas 2018[38]

    Figure  1.   Regional hydrography and research stations

    a: Indian Ocean surface currents (solid black lines indicate summer surface currents, dashed black lines were winter surface currents. SC: Somali Current. SMC: summer monsoon circulation; WMC: winter monsoon circulation; WICC: West Indian Coastal Current; EICC: East India Coastal Current), intermediate water (brown dashed line), and deep water (purple solid line) (gray dashed box indicating range in Fig.1b) adapted from [36-37]; b: station distribution (red triangles are the current study stations and black dots are collected stations); c: Modern Arabian Sea water column oxygen content profiles with data from World Ocean Atlas 2018[38].

    图  2   末次冰期以来阿拉伯海不同站位水体氧含量综合对比

    各站位详细信息见表2。

    Figure  2.   Comprehensive comparison of variations in seawater oxygen content at different stations in the Arabian Sea since the last glacial period

    Details of each station are shown in Table 2.

    图  3   阿拉伯海水体氧含量从LGM到早全新世不同阶段的变化

    a:LGM—早全新世,b:LGM—HS1,c:HS1—B/A,d:B/A—YD,e:YD—早全新世。其中蓝色填充代表氧含量降低,黄色填充代表氧含量增加,灰色填充代表无明显变化。正方形代表氮同位素数据、三角形为氧化还原敏感元素数据,圆点代表有孔虫数据。水平虚线代表现代OMZ的影响深度,竖直虚线代表阿拉伯海东西部的分界。各站位详细信息见表2

    Figure  3.   Variation of oxygen content in Arabian Sea water in different periods from LGM to Early Holocene

    a: LGM-Early Holocene, b: LGM-HS1, c: HS1-B/A, d: B/A-YD, e: YD-Early Holocene. Blue: decrease in oxygen content; yellow: increase in oxygen content; gray: ambiguous variation. Squares: nitrogen isotope data; triangles: redox-sensitive element data; dots: foraminiferal data. Dashed line: the depth of influence of the modern OMZ; vertical dotted line: the boundary between east and west of the Arabian Sea. Details of each station are shown in Table 2.

    图  4   末次冰期以来NADW、AAIW以及南亚夏季风强度与阿拉伯海OMZ影响区表层生产力变化的对比

    a:北大西洋GGC5岩芯沉积231Pa/230Th(棕色) [72]与ODP1063岩芯231Pa/230Th(绿色)指示NADW强度[73],b:南大西洋KNR159-36GGC岩芯εNd记录[67],c:印度东北部Mawmluh Cave 石笋δ 18O记录[71],d:阿拉伯海西部海域(WAS)岩芯NIOP905 Ba/Al 记录[14],e:阿拉伯海北部海域(NAS)NIOP464岩芯总有机碳(TOC)质量累积速率(MAR)[74],f:阿拉伯海东部海域(EAS)SK17岩芯富营养浮游有孔虫指数数据[53],g:阿拉伯海西北部海域(NWAS)MD00-2354岩芯初级生产力数据[9]

    Figure  4.   Comparison among NADW, AAIW, and South Asian in summer monsoon intensity with changes in surface productivity in the OMZ (Minimum Oxygen Zone) affected area of the Arabian Sea since the last glacial period

    a: 231Pa/230Th (brown) in core GGC5 (McManus et al., 2004) and 231Pa/230Th in core ODP1063 (green) of North Atlantic Ocean, indicating NADW intensity[72], b: the εNd record of KNR159-36GGC core in South Atlantic Ocean [67], c: δ 18O record of stalagmite in Mawmluh Cave on northeast of Indian [71], d: Ba/Al record in core NIOP905 of Western Arabian Sea (WAS) [14], e: Total Organic Carbon (TOC) Mass Accumulation Rate (MAR) in core NIOP464 of the Northern Arabian Sea (NAS) [74], Eutrophic planktonic foraminiferal index. Data are from core SK17 in the eastern Arabian Sea (EAS) [53], g: Primary productivity data are from core MD00-2354 in the northwestern Arabian Sea (NWAS) [9].

    表  1   WIND-CJ06-6 和 WIND-CJ06-13孔AMS14C测年及日历年校正

    Table  1   AMS14C dating and calendar year correction for cores WIND-CJ06-6 and WIND-CJ06-13

    站位名称 深度/cm AMS14C 年龄/aBP 日历年龄/cal.aBP
    CJ06-64~58 900 ± 309 360(9 155~9 523)
    24~2511 770 ± 3013 047(12 847~13 228)
    44~4517 220 ± 5019 836(19 538~20 129)
    64~6524 420 ± 9027 668(27 369~27 924)
    84~8530 360 ± 16034 016(33 636~34 358)
    CJ06-133~44 040 ± 303 826(3 611~4 046)
    23~2411 910 ± 3013 190(13 011~13 378)
    43~4420 180 ± 4023 279(23 008~23 626)
    63~6427 920 ± 6031 103(30 921~31 295)
    83~8433 610 ± 12037 338(36 907~37 852)
    下载: 导出CSV

    表  2   研究站位汇总

    Table  2   Information of research stations

    站位 位置 水深/m 指标 来源
    CJ06-13 14.54°N、65.8°E 3 909 Mn/Ti 本文
    CJ06-6 16.3°N、65.8°E 3 680 Mn/Ti 本文
    TN047/6GGC 17.38°N、58.8°E 3 652 有孔虫孔隙度 [44]
    SK304A/05 5.92°N、79.6°E 3 408 Mo/Ti [19]
    3101G 6°N、74°E 2 680 Mn/Al [45]
    SK185-20 10°N、71.83°E 2 523 Uau [17]
    SK117/GC08 15.5°N、71.03°E 2 500 Mo [20]
    MD900963 5.05°N、73.88°E 2 446 Uau [46]
    SK129/CR05 9.33°N、71.98°E 2 300 U/Th [18]
    RC27-42 16.5°N、59.8°E 2 020 有孔虫孔隙度 [47]
    RC27-61 16.65°N、59.52°E 1 893 有孔虫孔隙度 [48]
    AAS9/21 14.51°N、72.65°E 1 807 U/Th [49]
    GeoB3004 14.61°N、52.92°E 1 803 有孔虫组合 [50]
    3104G 12.9°N、71.9°E 1 680 Mn/Al [45]
    NIOP905 10.77°N、51.95°E 1 586 N同位素 [14]
    TN041/2PG 17.7°N、57.83°E 1 428 有孔虫孔隙度 [12]
    MD76-131 15.53°N、72.57°E 1 230 有孔虫组合 [51]
    NIOP455 23.56°N、65.95°E 1 002 Mn/Al [52]
    SK17 15.25°N、72.97°E 840 有孔虫组合 [53]
    MD04-2876 24.84°N、64°E 828 N同位素 [54]
    RC27-23 17.99°N、57.59°E 820 N同位素 [55]
    ODP723 18.05°N、57.61°E 808 N同位素 [15]
    SO90-111KL 23.1°N、66.49°E 774 N同位素 [56]
    TN041-8PG/JPC 17.81°N、57.51°E 761 有孔虫孔隙度 [57]
    RC27-14 18.25°N、57.66°E 596 N同位素 [55]
    NIOP478 24.21°N、65.66°E 565 Mn/Al [54]
    NIOP484 19.5°N、58.43°E 516 Mn/Al [54]
    下载: 导出CSV
  • [1]

    Codispoti L A, Christensen J P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean[J]. Marine Chemistry, 1985, 16(4):277-300. doi: 10.1016/0304-4203(85)90051-9

    [2]

    Bunzel D, Schmiedl G, Lindhorst S, et al. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea[J]. Climate of the Past, 2017, 13(12):1791-1813. doi: 10.5194/cp-13-1791-2017

    [3]

    Majumder J, Gupta A K, Kumar P, et al. Late Quaternary variations in the Oxygen Minimum Zone linked to monsoon shifts as seen in the sediment of the outer continental shelf of the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 591:110891. doi: 10.1016/j.palaeo.2022.110891

    [4]

    Schmiedl G, Leuschner D C. Oxygenation changes in the deep western Arabian Sea during the last 190, 000 years: productivity versus deepwater circulation[J]. Paleoceanography, 2005, 20(2):PA2008.

    [5]

    Singh A D, Holbourn A, Kuhnt W. Editorial preface to special issue: recent advances in Indian Ocean paleoceanography and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615:111443. doi: 10.1016/j.palaeo.2023.111443

    [6]

    Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6):607-621. doi: 10.1029/98PA02203

    [7]

    Lachkar Z, Lévy M, Smith S. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity[J]. Biogeosciences, 2018, 15(1):159-186. doi: 10.5194/bg-15-159-2018

    [8]

    Nair R R, Ittekkot V, Manganini S J, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218):749-751. doi: 10.1038/338749a0

    [9]

    Zhou X Q, Duchamp-Alphonse S, Kageyama M, et al. Variations of primary productivity in the northwestern Arabian sea during the last 23, 000 years and their paleoclimatological implications[J]. Paleoceanography and Paleoclimatology, 2022, 37(10):e2022PA004453. doi: 10.1029/2022PA004453

    [10]

    Banakar V K, Oba T, Chodankar A R, et al. Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during the last glacial cycle[J]. Marine Geology, 2005, 219(2-3):99-108. doi: 10.1016/j.margeo.2005.05.004

    [11]

    Schulte S, Rostek F, Bard E, et al. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea[J]. Earth and Planetary Science Letters, 1999, 173(3):205-221. doi: 10.1016/S0012-821X(99)00232-0

    [12]

    Lu W Y, Costa K M, Oppo D W. Reconstructing the oxygen depth profile in the arabian sea during the last glacial Period[J]. Paleoceanography and Paleoclimatology, 2023, 38(6):e2023PA004632. doi: 10.1029/2023PA004632

    [13]

    Singh A D, Rai A K, Verma K, et al. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP[J]. Quaternary International, 2015, 374:118-125. doi: 10.1016/j.quaint.2014.11.052

    [14]

    Ivanochko T S, Ganeshram R S, Brummer G J A, et al. Variations in tropical convection as an amplifier of global climate change at the millennial scale[J]. Earth and Planetary Science Letters, 2005, 235(1-2):302-314. doi: 10.1016/j.jpgl.2005.04.002

    [15]

    Altabet M A, Francois R, Murray D W, et al. Climate-related variations in denitrification in the Arabian sea from sediment 15N/14N ratios[J]. Nature, 1995, 373(6514):506-509. doi: 10.1038/373506a0

    [16]

    Burdanowitz N, Schmiedl G, Gaye B, et al. Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years - a multi-proxy approach[J]. Biogeosciences, 2024, 21(6):1477-1499. doi: 10.5194/bg-21-1477-2024

    [17]

    Sarkar A, Bhattacharya S K, Sarin M M. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):1009-1016. doi: 10.1016/0016-7037(93)90036-V

    [18]

    Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027

    [19]

    Chandana K R, Bhushan R, Jull A J T. Evidence of poor bottom water ventilation during LGM in the equatorial Indian Ocean[J]. Frontiers in Earth Science, 2017, 5:84. doi: 10.3389/feart.2017.00084

    [20]

    Mir I A, Mascarenhas M B L. Redox Changes during the past 100 ka in the deeper eastern Arabian sea: a study based on trace elements and multivariate statistical analysis[J]. Water, 2023, 15(7):1252. doi: 10.3390/w15071252

    [21]

    Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2012, 5(2):151-156. doi: 10.1038/ngeo1352

    [22]

    Morrison J M, Codispoti L A, Smith S L, et al. The oxygen minimum zone in the Arabian Sea during 1995[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(8-9):1903-1931. doi: 10.1016/S0967-0645(99)00048-X

    [23]

    Olson D B, Hitchcock G L, Fine R A, et al. Maintenance of the low-oxygen layer in the central Arabian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(3):673-685. doi: 10.1016/0967-0645(93)90051-N

    [24]

    Swallow J C. Some aspects of the physical oceanography of the Indian Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(6-8):639-650. doi: 10.1016/0198-0149(84)90032-3

    [25]

    Gupta A K, Srinivasan M S. Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP site 214 during the Late Neogene[J]. Marine Micropaleontology, 1992, 19(4):355-367. doi: 10.1016/0377-8398(92)90038-L

    [26]

    You Y Z. Intermediate water circulation and ventilation of the Indian Ocean derived from water-mass contributions[J]. Journal of Marine Research, 1998, 56(5):1029-1067. doi: 10.1357/002224098765173455

    [27]

    Mantyla A W, Reid J L. Abyssal characteristics of the World Ocean waters[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1983, 30(8):805-833. doi: 10.1016/0198-0149(83)90002-X

    [28]

    Rutberg R L, Hemming S R, Goldstein S L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6789):935-938. doi: 10.1038/35016049

    [29]

    Piotrowski A M, Banakar V K, Scrivner A E, et al. Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 2009, 285(1-2):179-189. doi: 10.1016/j.jpgl.2009.06.007

    [30]

    Johnson G C, Warren B A, Olson D B. A deep boundary current in the Arabian Basin[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6):653-661. doi: 10.1016/0198-0149(91)90004-Y

    [31]

    Mantyla A W, Reid J L. On the origins of deep and bottom waters of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2):2417-2439. doi: 10.1029/94JC02564

    [32]

    McCave I N, Kiefer T, Thornalley D J R, et al. Deep flow in the Madagascar-Mascarene Basin over the last 150 000 years[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1826):81-99. doi: 10.1098/rsta.2004.1480

    [33]

    Thomas A L, Henderson G M, Robinson L F. Interpretation of the 231Pa/230Th paleocirculation proxy: new water-column measurements from the southwest Indian Ocean[J]. Earth and Planetary Science Letters, 2006, 241(3-4):493-504. doi: 10.1016/j.jpgl.2005.11.031

    [34]

    He Z T, Qiao S Q, Jin L A, et al. Clay mineralogy and geochemistry of surface sediments in the equatorial western Indian Ocean and implications for sediment sources and the Antarctic bottom water inputs[J]. Journal of Asian Earth Sciences, 2023, 254:105741. doi: 10.1016/j.jseaes.2023.105741

    [35]

    Reid J L. On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports[J]. Progress in Oceanography, 2003, 56(1):137-186. doi: 10.1016/S0079-6611(02)00141-6

    [36]

    Ma R F, Sépulcre S, Licari L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd/Ca records and benthic assemblage analyses[J]. Climate of the Past, 2022, 18(8):1757-1774. doi: 10.5194/cp-18-1757-2022

    [37]

    Schott F A, Mccreary Jr J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1):1-123. doi: 10.1016/S0079-6611(01)00083-0

    [38]

    Garcia H E, Weathers K W, Paver C R, et al. World Ocean Atlas 2018, volume 3: dissolved oxygen, apparent oxygen utilization, and dissolved oxygen saturation[R]. Silver Spring: NOAA Atlas NESDIS, 2019.

    [39]

    Callahan J E. The structure and circulation of deep water in the Antarctic[J]. Deep Sea Research and Oceanographic Abstracts, 1972, 19(8):563-575. doi: 10.1016/0011-7471(72)90040-X

    [40]

    Carter L, McCave I N, Williams M J M. Chapter 4 circulation and water masses of the southern ocean: a review[J]. Developments in Earth and Environmental Sciences, 2008, 8:85-114.

    [41]

    Reid J L, Lynn R J. On the influence of the Norwegian-Greenland and Weddell seas upon the bottom waters of the Indian and Pacific oceans[J]. Deep Sea Research and Oceanographic Abstracts, 1971, 18(11):1063-1088. doi: 10.1016/0011-7471(71)90094-5

    [42]

    Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the Past, 2022, 18(8):1797-1813. doi: 10.5194/cp-18-1797-2022

    [43]

    Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP)[J]. Radiocarbon, 2020, 62(4):779-820. doi: 10.1017/RDC.2020.68

    [44]

    Dahl K A, Oppo D W. Sea surface temperature pattern reconstructions in the Arabian Sea[J]. Paleoceanography, 2006, 21(1):PA1014.

    [45]

    Agnihotri R, Sarin M M, Somayajulu B L K, et al. Late-Quaternary biogenic productivity and organic carbon deposition in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(1-2):43-60. doi: 10.1016/S0031-0182(03)00385-7

    [46]

    Pailler D, Bard E, Rostek F, et al. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession[J]. Geochimica et Cosmochimica Acta, 2002, 66(5):849-865. doi: 10.1016/S0016-7037(01)00817-1

    [47]

    Pourmand A, Marcantonio F, Bianchi T S, et al. A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea[J]. Paleoceanography, 2007, 22(4):PA4208.

    [48]

    Clemens S C, Prell W L. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments[J]. Paleoceanography, 1990, 5(2):109-145. doi: 10.1029/PA005i002p00109

    [49]

    Godad S P, Naik S S, Naidu P D. 70 kyr record of denitrification and oxygenation changes in the eastern Arabian Sea[J]. Geochemical Journal, 2017, 51(4):329-336. doi: 10.2343/geochemj.2.0472

    [50]

    Schmiedl G, Mackensen A. Multispecies stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deepwater oxygenation in the Arabian Sea[J]. Paleoceanography, 2006, 21(4):PA4213.

    [51]

    Ganeshram R S, Pedersen T F, Calvert S E, et al. Glacial-interglacial variability in denitrification in the world's oceans: causes and consequences[J]. Paleoceanography, 2000, 15(4):361-376. doi: 10.1029/1999PA000422

    [52]

    Den Dulk M, Reichart G J, Memon G M, et al. Benthic foraminiferal response to variations in surface water productivity and oxygenation in the northern Arabian Sea[J]. Marine Micropaleontology, 1998, 35(1-2):43-66. doi: 10.1016/S0377-8398(98)00015-2

    [53]

    Singh A D, Jung S J A, Anand P, et al. Rapid switch in monsoon-wind induced surface hydrographic conditions of the eastern Arabian Sea during the last deglaciation[J]. Quaternary International, 2018, 479:3-11. doi: 10.1016/j.quaint.2018.03.027

    [54]

    Reichart G J, Schenau S J, De Lange G J, et al. Erratum to “Synchroneity of oxygen minimum zone intensity on the Oman and Pakistan Margins at sub-Milankovitch time scales”: [Marine Geology 185 (2002) 283–302][J]. Marine Geology, 2002, 192(4):437-438. doi: 10.1016/S0025-3227(02)00563-7

    [55]

    Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J]. Nature, 2002, 415(6868):159-162. doi: 10.1038/415159a

    [56]

    Von Rad U, Schulz H, Riech V, et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30, 000 years documented in laminated sediments off Pakistan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1-2):129-161. doi: 10.1016/S0031-0182(99)00042-5

    [57]

    Lu W Y, Wang Y, Oppo D W, et al. Comparing paleo-oxygenation proxies (benthic foraminiferal surface porosity, I/Ca, authigenic uranium) on modern sediments and the glacial Arabian Sea[J]. Geochimica et Cosmochimica Acta, 2022, 331:69-85. doi: 10.1016/j.gca.2022.06.001

    [58]

    Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews, 1993, 35(3):249-284. doi: 10.1016/0012-8252(93)90040-E

    [59]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [60]

    Wei G J, Liu Y, Li X H, et al. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea[J]. Geochemical Journal, 2003, 37(5):593-602. doi: 10.2343/geochemj.37.593

    [61]

    Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J]. Global Biogeochemical Cycles, 1994, 8(1):103-116. doi: 10.1029/93GB03396

    [62]

    Glock N, Erdem Z, Schönfeld J. The Peruvian oxygen minimum zone was similar in extent but weaker during the Last Glacial Maximum than Late Holocene[J]. Communications Earth & Environment, 2022, 3(1):307.

    [63]

    Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera[J]. Scientific Reports, 2018, 8(1):9456. doi: 10.1038/s41598-018-27793-4

    [64]

    de Stigter H C. Recent and fossil benthic foraminifera in the Adriatic Sea: distribution patterns in relation to organic carbon flux and oxygen concentration at the seabed[D]. Utrecht: University Utrecht, 1996.

    [65]

    Gooday A J, Bernhard J M, Levin L A, et al. Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(1-2):25-54. doi: 10.1016/S0967-0645(99)00099-5

    [66]

    Rohling E J, Zachariasse W J. Red Sea outflow during the last glacial maximum[J]. Quaternary International, 1996, 31:77-83. doi: 10.1016/1040-6182(95)00023-C

    [67]

    Pahnke K, Goldstein S L, Hemming S R. Abrupt changes in Antarctic Intermediate Water circulation over the past 25, 000 years[J]. Nature Geoscience, 2008, 1(12):870-874. doi: 10.1038/ngeo360

    [68]

    Ziegler M, Lourens L J, Tuenter E, et al. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation[J]. Paleoceanography, 2010, 25(3):PA3213.

    [69]

    Naik D K, Saraswat R, Lea D W, et al. Last glacial-interglacial productivity and associated changes in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483:147-156. doi: 10.1016/j.palaeo.2016.07.014

    [70]

    Tierney J E, Zhu J, King J, et al. Glacial cooling and climate sensitivity revisited[J]. Nature, 2020, 584(7822):569-573. doi: 10.1038/s41586-020-2617-x

    [71]

    Dutt S, Gupta A K, Clemens S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B. P[J]. Geophysical Research Letters, 2015, 42(13):5526-5532. doi: 10.1002/2015GL064015

    [72]

    McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    [73]

    Lippold J, Grützner J, Winter D, et al. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation?[J]. Geophysical Research Letters, 2009, 36(12):L12601.

    [74]

    Reichart G J, Den Dulk M, Visser H J, et al. A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134(1-4):149-169. doi: 10.1016/S0031-0182(97)00071-0

    [75]

    Goswami V, Singh S K, Bhushan R. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column[J]. Geochimica et Cosmochimica Acta, 2014, 145:30-49. doi: 10.1016/j.gca.2014.09.006

    [76]

    Ödalen M, Nycander J, Oliver K I C, et al. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model[J]. Biogeosciences, 2018, 15(5):1367-1393. doi: 10.5194/bg-15-1367-2018

    [77]

    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3):81-115. doi: 10.1016/0304-4203(95)00008-F

    [78]

    Nambiar R, Bhushan R, Raj H. Paleoredox conditions of bottom water in the northern Indian Ocean since 39 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110766. doi: 10.1016/j.palaeo.2021.110766

    [79]

    Nisha K, Naik S S, Kumar P, et al. Radiocarbon evidence for reduced deep water ventilation of the northern Indian Ocean during the last glacial maxima and early deglaciation[J]. Earth and Planetary Science Letters, 2023, 607:118067. doi: 10.1016/j.jpgl.2023.118067

    [80]

    Bryan S P, Marchitto T M, Lehman S J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: evidence from the Arabian Sea[J]. Earth and Planetary Science Letters, 2010, 298(1-2):244-254. doi: 10.1016/j.jpgl.2010.08.025

    [81]

    Pérez-Asensio J N, Tachikawa K, Vidal L, et al. Glacial expansion of carbon-rich deep waters into the Southwestern Indian Ocean over the last 630 kyr[J]. Global and Planetary Change, 2023, 230:104283. doi: 10.1016/j.gloplacha.2023.104283

    [82]

    Gebbie G. How much did glacial North Atlantic water shoal?[J]. Paleoceanography, 2014, 29(3):190-209. doi: 10.1002/2013PA002557

    [83]

    Oppo D W, Gebbie G, Huang K F, et al. Data constraints on glacial Atlantic water mass geometry and properties[J]. Paleoceanography and Paleoclimatology, 2018, 33(9):1013-1034. doi: 10.1029/2018PA003408

    [84]

    Cliff E, Khatiwala S, Schmittner A. Glacial deep ocean deoxygenation driven by biologically mediated air-sea disequilibrium[J]. Nature Geoscience, 2021, 14(1):43-50. doi: 10.1038/s41561-020-00667-z

    [85]

    Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920):1443-1448. doi: 10.1126/science.1167441

    [86]

    Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep southern ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982):1147-1151. doi: 10.1126/science.1183627

    [87]

    Wang Y, Costa K M, Lu W Y, et al. Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation[J]. Science Advances, 2024, 10(3):eadk2506. doi: 10.1126/sciadv.adk2506

    [88]

    Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2):542-549. doi: 10.1002/2014GL061957

图(4)  /  表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  4
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-05-06
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回