末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素

刘佳澳, 吴永华, 刘升发, 乔淑卿, 陶菁, 齐文菁, 刘季花

刘佳澳,吴永华,刘升发,等. 末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素[J]. 海洋地质与第四纪地质,2024,44(5): 189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801
引用本文: 刘佳澳,吴永华,刘升发,等. 末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素[J]. 海洋地质与第四纪地质,2024,44(5): 189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801
LIU Jiaao,WU Yonghua,LIU Shengfa,et al. Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period[J]. Marine Geology & Quaternary Geology,2024,44(5):189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801
Citation: LIU Jiaao,WU Yonghua,LIU Shengfa,et al. Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period[J]. Marine Geology & Quaternary Geology,2024,44(5):189-201. DOI: 10.16562/j.cnki.0256-1492.2024022801

末次冰期以来阿拉伯海底层水体氧含量变化及其驱动因素

基金项目: 全球变化与海气相互作用(二期)专项“ 西印度洋WIND-CJ06区块海洋底质与底栖生物调查 ”(GASI-01-WIND-CJ06);国家自然科学基金项目“MIS7期以来热带西印度洋底层水演化及其环境气候效应”(42376083)
详细信息
    作者简介:

    刘佳澳(1999—),男,硕士研究生,海洋地质专业,E-mail:jiaaoliu1999@163.com

    通讯作者:

    吴永华(1974—),男, 副研究员,主要从事古海洋与古环境研究,E-mail:yhwu@fio.org.cn

  • 中图分类号: P736

Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period

  • 摘要:

    末次冰期以来阿拉伯海水体氧含量变化在时空上具有显著的差异。目前对其空间变化规律及主导因素尚缺乏系统的研究,尤其缺乏对千年尺度上深层水氧含量变化过程及其控制因素的综合分析。本文基于阿拉伯海中部深水区WIND-CJ06-6与WIND-CJ06-13两个岩芯的XRF岩芯扫描结果,结合前人已发表的指示阿拉伯海水体氧含量变化数据,重建了末次冰期以来千年尺度阿拉伯海不同海域和深度的水体氧含量变化历史并分析了其驱动因素。阿拉伯海水深小于1 500 m的水体在千年尺度上的氧含量变化受到表层初级生产力和中层水流通性的共同控制,但在不同时期主导因素不同;在B/A(Bølling–Ållerød)到YD(Younger Dryas)期间,阿拉伯海西北部表层生产力显著高于同时期其他海域,导致了中层水体的氧含量在西北部降低而在其他海域增高的空间差异。阿拉伯海水深大于1 500 m的水体氧含量在末次冰期以来整体上受北大西洋深层水(NADW)强弱的控制,在LGM(Last Glacial Maximum)到HS1(Heinrich stadial 1)阶段则受到南大洋通风增强的影响,水体氧含量显著升高。

    Abstract:

    Variations in the oxygen content of water column in the Arabian Sea since the Last Glacial Period have significant differences in space and time. However, regarding the spatial variation patterns and dominating factors, systematic studies are scarce, especially on the mechanism of changes in oxygen content in deep water and the controlling factors on a millennial scale. Based on XRF core scanning results from two cores, WIND-CJ06-6 and WIND-CJ06-13, in the central deep water of the Arabian Sea and previously published data, we reconstructed the processes and analyzed the drivers of the variations in oxygen content in the Arabian Sea in different areas and depths on millennial scale since the Last Glacial Period. Results show that the variations in oxygen content in the Arabian Sea in water depths less than 1500 m on the millennial scale are controlled jointly by the surface primary productivity and mesopelagic water fluxes, and the dominant factors varied in different periods. Surface productivity in the northwestern part of the Arabian Sea was significantly higher than that in the rest of the sea during the transition period from B/A (Bølling-Ållerød) to YD (Younger Dryas) events, resulting in spatial difference: the oxygen content in the intermediate water was high in the NW Arabian Sea but low in the rest of the sea. The oxygen content in water column in the Arabian Sea at depths greater than 1500 m was mainly controlled by the strength of the North Atlantic Deep Water (NADW) since the Last Glacial Maximum (LGM), and the oxygen content in water was significantly increased due to enhanced ventilation in the Southern Ocean from the LGM to the HS1 (Heinrich Stadial 1) stage.

  • 多年以来,前人针对西湖凹陷平湖组沉积环境开展了大量的研究,形成了多种认识,如彭伟欣[1]认为平湖组下段平中地区为海湾环境、平北地区为淡化海湾沉积环境,平湖组中段在平中、平北地区均为潮坪—沼泽环境,平湖组上段在平中、平北地区均已演化为河控三角洲环境;刘成鑫[2]利用古生物化石资料研究,认为平湖组上部为陆相沉积,中下部为海相沉积;杨彩虹[3]认为平湖斜坡带平湖组沉积接近浅水环境下辫状河三角洲的沉积特征等。总结前人的观点,多数学者认为西湖凹陷平湖组沉积处于半封闭海湾环境,海陆过渡相三角洲是最主要的沉积体系类型,差别在于海洋潮汐作用和海岸带河流作用哪个更强,或起主导作用。另外,对于研究区沉积体系及潮汐作用的研究仍停留在定性阶段,缺乏量化分析开展精细研究。

    本文在前人研究基础上,综合利用沉积构造、岩性组合、测井、地震等资料对A气田平湖组沉积环境和沉积体系类型展开系统研究,识别了河控三角洲、潮汐影响三角洲及潮控三角洲三种沉积体系类型;借助小波分析、频谱检测等手段及相对海平面变化曲线对研究区周期性海平面升降展开定量探讨,进而指导区域等时地层格架的建立,在沉积模式的指导下结合地震属性,预测有利砂体发育位置,对下一步勘探开发具有一定的指导意义。

    西湖凹陷总体构造格架具有东西分带、南北分块的特征,主要可划分为三个一级构造单元,及东部边缘断裂带、中央反转构造带、西部斜坡带,A气田位于西湖凹陷西部斜坡带(图1)。经历了古新世—始新世断陷(裂谷期)、渐新世—中新世拗陷(准前陆期)及上新世至今区域沉降(陆架广盆)三个主要地质历史阶段。因其所处的构造位置特殊,又经历了瓯江运动、玉泉运动和龙井运动等构造运动,从而形成了一套具海陆交互相的沉积格局,其中平湖组处于断–拗转换期,是西湖凹陷重要含油气目的层[4-6]

    图  1  A气田工区位置及井位综合柱状图
    Figure  1.  Tectonic map and integrated column of Gas field A

    纵向上,A气田自下而上钻遇7套新生界地层(图1):始新统平湖组(T40—T30),渐新统花港组(T30—T20),中新统龙井组、玉泉组、柳浪组(T20—T10),上新统三潭组(T10—T0)和第四系东海群[7]。根据上海分公司研究成果表明,平湖组沉积时期为32~40.4 Ma,结合本气田各井钻遇的区域性标志层、沉积旋回、地层厚度、电性等地质特征,对A气田进行三级层序划分:平上段(SQ3)对应P1—P4砂层组,平中段(SQ2)对应P5—P8砂层组,气田内部平下段(SQ1)地层未钻遇。

    通过对A气田及周边平湖组岩心观察分析(表1),可以揭示平湖组沉积环境纵向变化规律:P11—P5受潮汐影响显著,为典型潮间带沉积环境;P4—P1以潮上带河道沉积为主。

    P11—P5层沉积构造极为丰富,除了发育典型波状层理、透镜状层理、脉状层理,还可见大量的黏土层,黏土层组合形成潮汐韵律层理。局部夹杂褐色泥岩段,泥岩段厚度一般为1~2 cm,指示潮间带间歇性暴露的特征。

    P4—P1砂层组以分流河道砂体为主,发育块状层理、平行层理、斜层理、爬升层理,同时局部可见小型羽状交错层理,生物扰动等沉积构造,表明潮汐作用弱,水体较浅。

    在受潮汐作用的影响或潮控沉积体系之中,水体环境频繁变化,GR测井曲线上表现出高齿化程度;在河流作用的沉积体系之中,水体环境相对稳定,变换频次低,GR测井曲线上表现出低齿化程度。齿化程度与相邻GR值的差异有关。因此,本文将△GR值(测井曲线齿化程度)作为在河潮交互区域定量化表征河控与潮控沉积体系的参数值。△GR为相邻两个GR的差值,各深度的△GR等于该深度的GR减去上覆(下伏)地层相邻地层的GR值。

    通过对X3井平湖组地层△GR计算分析(图2),X3井△GR值呈现明显的三段式:2890.72~3092.72 m(P1—P4),△GR齿化程度较低(△GR<10),河控作用占主导;3092.72~3294.72 m(P5—P7),△GR齿化程度略微增大(10<△GR<15),沉积体系以受潮汐影响三角洲沉积体系为主;3294.72~3698.72 m(P8—P11),△GR齿化程度较大(15<△GR<20),表明该层段受潮汐影响显著,水体环境波动频繁。

    图  2  X3井平湖组地层不同沉积体系△GR响应特征
    Figure  2.  △GR responses to different depositional systems of Pinghu Formation, well X3

    采用同样方法,对区域上X3-X2-X1三口井展开沉积体系表征(图3),分析表明,纵向上自平湖组底至顶部△GR齿化程度降低,△GR值变小,表明潮汐作用减弱,沉积体系由潮控三角洲沉积体系渐变为潮–河联控三角洲沉积体系再转变为河控三角洲沉积体系;平面上自高带至低带,△GR齿化程度逐渐增大,潮汐作用逐渐增强。

    图  3  X3-X2-X1井平湖组沉积体系表征
    Figure  3.  Depositional system characterization of Pinghu Formation, wells X3, X2 and X1

    通过对研究区岩心、测井资料证实平湖组中下段地层受潮汐影响程度显著,而潮汐的作用与天体之间的相互作用密切相关,其表现形式为海平面周期性升降,文章基于米兰科维奇旋回理论,对海平面变化的周期性进行探讨。

    稳定沉积地层的岩心、露头以及与气候变化相关联的替代性指标均可用于米兰科维奇旋回的研究[8-10],本文采用连续采样的测井数据GR作为高频旋回研究对象,采样间隔0.125 m。对研究区深度域的GR数据进行频谱分析,根据频谱峰值对应的频率(旋回厚度倒数)比值与理论轨道周期比值进行比对(误差≤5%),以确定相应天文周期。

    目前,气田内部共4口钻井(X4、X5、X1、X6井),其中X1井完钻深度最深,且地层保留较完整,未受剥蚀。所以,以X1井为例,对该井平湖组GR曲线进行归一化、去噪预处理之后进行频谱检测[11]。频谱检测采用Boris Priehs教授基于Matlab开发的Redfit图形用户界面(最新版本见https://www.marum.de/Prof.-Dr.-michael-schulz/Michael-Schulz-Software.html),分析结果显示处于90%可信度之上的主要旋回厚度为80.1、22、8、4.1 m(图4),比例关系约为20:5:2:1,与米兰科维奇理论周期比(405 ka:95 ka:40 ka:19 ka)21:5:2:1非常接近[12-13]。因此,认为X1井平湖组沉积受天文周期所驱动。

    图  4  X1井频谱分析
    x轴表示频率,其倒数代表旋回厚度,y轴表示振幅,代表频率的显著程度。
    Figure  4.  Spectrum analysis of Well X1
    x axis represents frequency, the count backwards represents the cycle thickness, y axis represents the spectral amplitude which represents the significant degree of frequency.

    地层中的米氏沉积旋回与四、五、六级高频层序的持续时间相当,一般认为四级层序(中期旋回)受偏心率长周期控制,五级层序(短期旋回)受控于偏心率短周期,六级层序(超短周期)受控于斜率以及岁差[14]。通过小波变换[15-17],分别以从原始测井GR曲线中滤出405 ka偏心率滤波曲线作为四级层序划分的依据,从而确定X1井高频层序划分方案,同时以405 ka滤波曲线为调谐曲线,以理论偏心率周期405 ka周期曲线为目标曲线,建立平湖组高分辨天文年代标尺(图5)。共在X1井中识别11.5个由405 ka长偏心率周期所控制的四级沉积旋回,持续时间大约为4655 ka,以平湖组顶部年龄32 Ma(±0.5)为控制年龄,可推算X1井所钻遇地层底部年龄为36.655 Ma。对比36.655~32 Ma全球海平面变化[18],X1井所钻遇地层沉积时期,海平面整体表现为先上升后下降的过程,其中以P7沉积时期海平面上升速率最大,P5之后海平面呈缓慢下降趋势。

    图  5  X1井平湖组天文年代标尺
    Figure  5.  Astronomical timescale of the Pinghu Formation, well X1

    已证实平湖组沉积受米氏旋回周期所驱动,其中以405 ka长偏心率周期最为显著。通过小波变换,提取GR曲线中主要旋回周期(长偏心率周期)所对应的小波系数,分别与定量化表征河控与潮控沉积体系的参数ΔGR以及反映相对水体变化的INPEFA曲线进行对比分析[19-20],分析表明P4及以下地层ΔGR变化峰值、小波系数及代表相对水体变化的INPEFA曲线峰值三者之间具有非常高的匹配性(图6),P4之上地层由于河控体系占主导,不受全球海平面变化的控制。因此可以推断,在X1井平湖组P4—P7地层中,海平面呈规律性升降,每次海平面升降间隔时间约405 ka。

    图  6  X1井平湖组INPEFA曲线、小波系数、△GR对应关系图
    ①—⑦代表7次海侵。
    Figure  6.  INPEFA curve, wavelet coefficient, △ GR corresponding graph of Pinghu Formation, well X1
    ①—⑦ represent the seven transgressions.

    通过上述定量分析,西湖凹陷A气田平湖组受潮汐作用影响显著,期间共发生7次规模较大的区域性海平面升降,以煤层作为辅助标志层对气田内平湖组开展高频层序划分与对比(图7)。

    图  7  西湖凹陷A气田高频层序划分
    Figure  7.  High frequency sequence division of Gas field A in Xihu Depression

    P4之上地层由于以陆相沉积为主,不受海平面升降影响,因此无法依据相对海平面的升降对该段地层展开高频旋回划分。在西湖凹陷A气田平湖组P4—P7地层中共识别7个高频旋回,每个高频层序内部包括上升半旋回和下降半旋回,即一个完整的海平面上升及下降周期,每一个高频旋回周期时间跨度约为405 ka。

    在高频等时地层格架建立的基础上,重点对P7、P6两层砂体对比与平面展布特征展开分析,以揭示砂体发育规律。

    P7沉积时期(35.491~35.116 Ma),处于全球海平面快速上升阶段,整体砂地比较低,以泥岩沉积为主,局部发育较薄河道砂及潮汐沙坝等沉积微相,砂体以指型、漏斗型为主,局部存在微齿箱型(图8)。平均渗透率9.3 mD,平均孔隙度12.8%。平面上,三角洲发育规模较小,受潮汐作用、波浪改造影响,砂体沿断层展布(图9)。

    图  8  西湖凹陷A气田P7层砂体对比图
    Figure  8.  Comparison of P7 sand bodies in Gas field A of Xihu Depression
    图  9  西湖凹陷A气田P7层常规地震振幅属性图和P7层沉积微相图
    Figure  9.  Conventional seismic amplitude attribute of layer P7in gas field A of Xihu Sag, Sedimentary microfacies of P7layer in gas field A of Xihu Sag.

    P6沉积时期(35.116~34.576 Ma),全球海平面缓慢上升,可容纳空间持续增大,砂体主要由两期潮汐沙坝叠置而成,厚度14~19 m,局部发育小型水下分流河道砂,测井曲线以漏斗型为主(图10),平均渗透率4.95 mD,孔隙度11.5%。平面上,受潮汐影响,三角洲前缘朵体被切割改造,常规地震切片可见明显潮沟,最大宽度可达700 m(图11)。

    图  10  西湖凹陷A气田P6层砂体对比图
    Figure  10.  Comparison of P6 sand bodies in gas field A of Xihu Depression
    图  11  西湖凹陷A气田P6层常规地震振幅属性图和P6砂层组沉积微相图
    Figure  11.  Conventional seismic amplitude attribute of layer P6in gas field A of Xihu Sag, Sedimentary microfacies of layer P6 in gas field A of Xihu Sag.

    对比P7、P6两层砂体发育特征,P7—P6储层物性与埋深呈负相关,结合沉积背景,P7、P6砂层组处于海平面快速上升至缓慢上升阶段,砂体受潮汐作用的淘洗、改造,储层物性改善明显,所以潮汐作用对深层优势储层的发育有不可忽视的作用。目前已钻井集中在气田中高部位,低部位受潮汐影响更强,因此推测潮下带潮汐改造砂体可以作为A气田深层优质储集体,是未来有利勘探开发方向。

    (1)综合利用岩心、测井(△GR)等资料对西湖凹陷A气田沉积环境进行定量表征,纵向上可划分潮控三角洲沉积体系、潮河联控沉积体系及河控沉积体系,其中潮控三角洲沉积体系10<△GR<20,岩心上可见典型潮汐韵律层理;潮-河联控沉积体系10<△GR <15,岩心上生物扰动现象逐渐增多,局部可见透镜状、脉状层理;河控沉积体系中△GR<10,岩心上生物扰动现象丰富,砂岩以块状层理为主,局部夹杂褐色泥砾。

    (2)基于米兰科维奇理论,通过小波、频谱分析等手段并结合全球海平面变化曲线对西湖凹陷A气田平湖组地层周期性海平面升降进行探讨分析,证实A气田平湖组地层沉积受米兰科维奇旋回所驱动,期间共发生7次较大规模海平面升降事件,每次事件间隔大约为一个长偏心率周期(405 ka),并依此指导A气田平湖组等时层序格架的建立。

    (3)在层序格架建立基础上,重点对靶区内P7、P6两层砂体发育特征进行解剖,分析表明潮汐作用对靶区内砂体改造作用较强,有利于优势储层发育。结合平面属性、沉积展布规律,认为低部位潮汐改造砂体是未来有利勘探开发方向。

  • 图  1   区域水文和研究站位

    a:印度洋表层洋流(黑色实线指示夏季表层流,黑色虚线指示冬季表层流。SC:索马里洋流。SMC:夏季风环流;WMC:冬季风环流;WICC:西印度沿岸流;EICC:东印度沿岸流)、中层水(棕色虚线)以及深层水(紫色实线)示意图(灰色虚线框指示图b范围)改自[36-37];b:站位分布(红色三角形为本次研究站位,黑点为收集站位);c:现代阿拉伯海水体氧含量剖面图,数据来源于World Ocean Atlas 2018[38]

    Figure  1.   Regional hydrography and research stations

    a: Indian Ocean surface currents (solid black lines indicate summer surface currents, dashed black lines were winter surface currents. SC: Somali Current. SMC: summer monsoon circulation; WMC: winter monsoon circulation; WICC: West Indian Coastal Current; EICC: East India Coastal Current), intermediate water (brown dashed line), and deep water (purple solid line) (gray dashed box indicating range in Fig.1b) adapted from [36-37]; b: station distribution (red triangles are the current study stations and black dots are collected stations); c: Modern Arabian Sea water column oxygen content profiles with data from World Ocean Atlas 2018[38].

    图  2   末次冰期以来阿拉伯海不同站位水体氧含量综合对比

    各站位详细信息见表2。

    Figure  2.   Comprehensive comparison of variations in seawater oxygen content at different stations in the Arabian Sea since the last glacial period

    Details of each station are shown in Table 2.

    图  3   阿拉伯海水体氧含量从LGM到早全新世不同阶段的变化

    a:LGM—早全新世,b:LGM—HS1,c:HS1—B/A,d:B/A—YD,e:YD—早全新世。其中蓝色填充代表氧含量降低,黄色填充代表氧含量增加,灰色填充代表无明显变化。正方形代表氮同位素数据、三角形为氧化还原敏感元素数据,圆点代表有孔虫数据。水平虚线代表现代OMZ的影响深度,竖直虚线代表阿拉伯海东西部的分界。各站位详细信息见表2

    Figure  3.   Variation of oxygen content in Arabian Sea water in different periods from LGM to Early Holocene

    a: LGM-Early Holocene, b: LGM-HS1, c: HS1-B/A, d: B/A-YD, e: YD-Early Holocene. Blue: decrease in oxygen content; yellow: increase in oxygen content; gray: ambiguous variation. Squares: nitrogen isotope data; triangles: redox-sensitive element data; dots: foraminiferal data. Dashed line: the depth of influence of the modern OMZ; vertical dotted line: the boundary between east and west of the Arabian Sea. Details of each station are shown in Table 2.

    图  4   末次冰期以来NADW、AAIW以及南亚夏季风强度与阿拉伯海OMZ影响区表层生产力变化的对比

    a:北大西洋GGC5岩芯沉积231Pa/230Th(棕色) [72]与ODP1063岩芯231Pa/230Th(绿色)指示NADW强度[73],b:南大西洋KNR159-36GGC岩芯εNd记录[67],c:印度东北部Mawmluh Cave 石笋δ 18O记录[71],d:阿拉伯海西部海域(WAS)岩芯NIOP905 Ba/Al 记录[14],e:阿拉伯海北部海域(NAS)NIOP464岩芯总有机碳(TOC)质量累积速率(MAR)[74],f:阿拉伯海东部海域(EAS)SK17岩芯富营养浮游有孔虫指数数据[53],g:阿拉伯海西北部海域(NWAS)MD00-2354岩芯初级生产力数据[9]

    Figure  4.   Comparison among NADW, AAIW, and South Asian in summer monsoon intensity with changes in surface productivity in the OMZ (Minimum Oxygen Zone) affected area of the Arabian Sea since the last glacial period

    a: 231Pa/230Th (brown) in core GGC5 (McManus et al., 2004) and 231Pa/230Th in core ODP1063 (green) of North Atlantic Ocean, indicating NADW intensity[72], b: the εNd record of KNR159-36GGC core in South Atlantic Ocean [67], c: δ 18O record of stalagmite in Mawmluh Cave on northeast of Indian [71], d: Ba/Al record in core NIOP905 of Western Arabian Sea (WAS) [14], e: Total Organic Carbon (TOC) Mass Accumulation Rate (MAR) in core NIOP464 of the Northern Arabian Sea (NAS) [74], Eutrophic planktonic foraminiferal index. Data are from core SK17 in the eastern Arabian Sea (EAS) [53], g: Primary productivity data are from core MD00-2354 in the northwestern Arabian Sea (NWAS) [9].

    表  1   WIND-CJ06-6 和 WIND-CJ06-13孔AMS14C测年及日历年校正

    Table  1   AMS14C dating and calendar year correction for cores WIND-CJ06-6 and WIND-CJ06-13

    站位名称 深度/cm AMS14C 年龄/aBP 日历年龄/cal.aBP
    CJ06-64~58 900 ± 309 360(9 155~9 523)
    24~2511 770 ± 3013 047(12 847~13 228)
    44~4517 220 ± 5019 836(19 538~20 129)
    64~6524 420 ± 9027 668(27 369~27 924)
    84~8530 360 ± 16034 016(33 636~34 358)
    CJ06-133~44 040 ± 303 826(3 611~4 046)
    23~2411 910 ± 3013 190(13 011~13 378)
    43~4420 180 ± 4023 279(23 008~23 626)
    63~6427 920 ± 6031 103(30 921~31 295)
    83~8433 610 ± 12037 338(36 907~37 852)
    下载: 导出CSV

    表  2   研究站位汇总

    Table  2   Information of research stations

    站位 位置 水深/m 指标 来源
    CJ06-13 14.54°N、65.8°E 3 909 Mn/Ti 本文
    CJ06-6 16.3°N、65.8°E 3 680 Mn/Ti 本文
    TN047/6GGC 17.38°N、58.8°E 3 652 有孔虫孔隙度 [44]
    SK304A/05 5.92°N、79.6°E 3 408 Mo/Ti [19]
    3101G 6°N、74°E 2 680 Mn/Al [45]
    SK185-20 10°N、71.83°E 2 523 Uau [17]
    SK117/GC08 15.5°N、71.03°E 2 500 Mo [20]
    MD900963 5.05°N、73.88°E 2 446 Uau [46]
    SK129/CR05 9.33°N、71.98°E 2 300 U/Th [18]
    RC27-42 16.5°N、59.8°E 2 020 有孔虫孔隙度 [47]
    RC27-61 16.65°N、59.52°E 1 893 有孔虫孔隙度 [48]
    AAS9/21 14.51°N、72.65°E 1 807 U/Th [49]
    GeoB3004 14.61°N、52.92°E 1 803 有孔虫组合 [50]
    3104G 12.9°N、71.9°E 1 680 Mn/Al [45]
    NIOP905 10.77°N、51.95°E 1 586 N同位素 [14]
    TN041/2PG 17.7°N、57.83°E 1 428 有孔虫孔隙度 [12]
    MD76-131 15.53°N、72.57°E 1 230 有孔虫组合 [51]
    NIOP455 23.56°N、65.95°E 1 002 Mn/Al [52]
    SK17 15.25°N、72.97°E 840 有孔虫组合 [53]
    MD04-2876 24.84°N、64°E 828 N同位素 [54]
    RC27-23 17.99°N、57.59°E 820 N同位素 [55]
    ODP723 18.05°N、57.61°E 808 N同位素 [15]
    SO90-111KL 23.1°N、66.49°E 774 N同位素 [56]
    TN041-8PG/JPC 17.81°N、57.51°E 761 有孔虫孔隙度 [57]
    RC27-14 18.25°N、57.66°E 596 N同位素 [55]
    NIOP478 24.21°N、65.66°E 565 Mn/Al [54]
    NIOP484 19.5°N、58.43°E 516 Mn/Al [54]
    下载: 导出CSV
  • [1]

    Codispoti L A, Christensen J P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean[J]. Marine Chemistry, 1985, 16(4):277-300. doi: 10.1016/0304-4203(85)90051-9

    [2]

    Bunzel D, Schmiedl G, Lindhorst S, et al. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea[J]. Climate of the Past, 2017, 13(12):1791-1813. doi: 10.5194/cp-13-1791-2017

    [3]

    Majumder J, Gupta A K, Kumar P, et al. Late Quaternary variations in the Oxygen Minimum Zone linked to monsoon shifts as seen in the sediment of the outer continental shelf of the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 591:110891. doi: 10.1016/j.palaeo.2022.110891

    [4]

    Schmiedl G, Leuschner D C. Oxygenation changes in the deep western Arabian Sea during the last 190, 000 years: productivity versus deepwater circulation[J]. Paleoceanography, 2005, 20(2):PA2008.

    [5]

    Singh A D, Holbourn A, Kuhnt W. Editorial preface to special issue: recent advances in Indian Ocean paleoceanography and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615:111443. doi: 10.1016/j.palaeo.2023.111443

    [6]

    Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6):607-621. doi: 10.1029/98PA02203

    [7]

    Lachkar Z, Lévy M, Smith S. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity[J]. Biogeosciences, 2018, 15(1):159-186. doi: 10.5194/bg-15-159-2018

    [8]

    Nair R R, Ittekkot V, Manganini S J, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218):749-751. doi: 10.1038/338749a0

    [9]

    Zhou X Q, Duchamp-Alphonse S, Kageyama M, et al. Variations of primary productivity in the northwestern Arabian sea during the last 23, 000 years and their paleoclimatological implications[J]. Paleoceanography and Paleoclimatology, 2022, 37(10):e2022PA004453. doi: 10.1029/2022PA004453

    [10]

    Banakar V K, Oba T, Chodankar A R, et al. Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during the last glacial cycle[J]. Marine Geology, 2005, 219(2-3):99-108. doi: 10.1016/j.margeo.2005.05.004

    [11]

    Schulte S, Rostek F, Bard E, et al. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea[J]. Earth and Planetary Science Letters, 1999, 173(3):205-221. doi: 10.1016/S0012-821X(99)00232-0

    [12]

    Lu W Y, Costa K M, Oppo D W. Reconstructing the oxygen depth profile in the arabian sea during the last glacial Period[J]. Paleoceanography and Paleoclimatology, 2023, 38(6):e2023PA004632. doi: 10.1029/2023PA004632

    [13]

    Singh A D, Rai A K, Verma K, et al. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP[J]. Quaternary International, 2015, 374:118-125. doi: 10.1016/j.quaint.2014.11.052

    [14]

    Ivanochko T S, Ganeshram R S, Brummer G J A, et al. Variations in tropical convection as an amplifier of global climate change at the millennial scale[J]. Earth and Planetary Science Letters, 2005, 235(1-2):302-314. doi: 10.1016/j.jpgl.2005.04.002

    [15]

    Altabet M A, Francois R, Murray D W, et al. Climate-related variations in denitrification in the Arabian sea from sediment 15N/14N ratios[J]. Nature, 1995, 373(6514):506-509. doi: 10.1038/373506a0

    [16]

    Burdanowitz N, Schmiedl G, Gaye B, et al. Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years - a multi-proxy approach[J]. Biogeosciences, 2024, 21(6):1477-1499. doi: 10.5194/bg-21-1477-2024

    [17]

    Sarkar A, Bhattacharya S K, Sarin M M. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):1009-1016. doi: 10.1016/0016-7037(93)90036-V

    [18]

    Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027

    [19]

    Chandana K R, Bhushan R, Jull A J T. Evidence of poor bottom water ventilation during LGM in the equatorial Indian Ocean[J]. Frontiers in Earth Science, 2017, 5:84. doi: 10.3389/feart.2017.00084

    [20]

    Mir I A, Mascarenhas M B L. Redox Changes during the past 100 ka in the deeper eastern Arabian sea: a study based on trace elements and multivariate statistical analysis[J]. Water, 2023, 15(7):1252. doi: 10.3390/w15071252

    [21]

    Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2012, 5(2):151-156. doi: 10.1038/ngeo1352

    [22]

    Morrison J M, Codispoti L A, Smith S L, et al. The oxygen minimum zone in the Arabian Sea during 1995[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(8-9):1903-1931. doi: 10.1016/S0967-0645(99)00048-X

    [23]

    Olson D B, Hitchcock G L, Fine R A, et al. Maintenance of the low-oxygen layer in the central Arabian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(3):673-685. doi: 10.1016/0967-0645(93)90051-N

    [24]

    Swallow J C. Some aspects of the physical oceanography of the Indian Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(6-8):639-650. doi: 10.1016/0198-0149(84)90032-3

    [25]

    Gupta A K, Srinivasan M S. Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP site 214 during the Late Neogene[J]. Marine Micropaleontology, 1992, 19(4):355-367. doi: 10.1016/0377-8398(92)90038-L

    [26]

    You Y Z. Intermediate water circulation and ventilation of the Indian Ocean derived from water-mass contributions[J]. Journal of Marine Research, 1998, 56(5):1029-1067. doi: 10.1357/002224098765173455

    [27]

    Mantyla A W, Reid J L. Abyssal characteristics of the World Ocean waters[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1983, 30(8):805-833. doi: 10.1016/0198-0149(83)90002-X

    [28]

    Rutberg R L, Hemming S R, Goldstein S L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6789):935-938. doi: 10.1038/35016049

    [29]

    Piotrowski A M, Banakar V K, Scrivner A E, et al. Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 2009, 285(1-2):179-189. doi: 10.1016/j.jpgl.2009.06.007

    [30]

    Johnson G C, Warren B A, Olson D B. A deep boundary current in the Arabian Basin[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6):653-661. doi: 10.1016/0198-0149(91)90004-Y

    [31]

    Mantyla A W, Reid J L. On the origins of deep and bottom waters of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2):2417-2439. doi: 10.1029/94JC02564

    [32]

    McCave I N, Kiefer T, Thornalley D J R, et al. Deep flow in the Madagascar-Mascarene Basin over the last 150 000 years[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1826):81-99. doi: 10.1098/rsta.2004.1480

    [33]

    Thomas A L, Henderson G M, Robinson L F. Interpretation of the 231Pa/230Th paleocirculation proxy: new water-column measurements from the southwest Indian Ocean[J]. Earth and Planetary Science Letters, 2006, 241(3-4):493-504. doi: 10.1016/j.jpgl.2005.11.031

    [34]

    He Z T, Qiao S Q, Jin L A, et al. Clay mineralogy and geochemistry of surface sediments in the equatorial western Indian Ocean and implications for sediment sources and the Antarctic bottom water inputs[J]. Journal of Asian Earth Sciences, 2023, 254:105741. doi: 10.1016/j.jseaes.2023.105741

    [35]

    Reid J L. On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports[J]. Progress in Oceanography, 2003, 56(1):137-186. doi: 10.1016/S0079-6611(02)00141-6

    [36]

    Ma R F, Sépulcre S, Licari L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd/Ca records and benthic assemblage analyses[J]. Climate of the Past, 2022, 18(8):1757-1774. doi: 10.5194/cp-18-1757-2022

    [37]

    Schott F A, Mccreary Jr J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1):1-123. doi: 10.1016/S0079-6611(01)00083-0

    [38]

    Garcia H E, Weathers K W, Paver C R, et al. World Ocean Atlas 2018, volume 3: dissolved oxygen, apparent oxygen utilization, and dissolved oxygen saturation[R]. Silver Spring: NOAA Atlas NESDIS, 2019.

    [39]

    Callahan J E. The structure and circulation of deep water in the Antarctic[J]. Deep Sea Research and Oceanographic Abstracts, 1972, 19(8):563-575. doi: 10.1016/0011-7471(72)90040-X

    [40]

    Carter L, McCave I N, Williams M J M. Chapter 4 circulation and water masses of the southern ocean: a review[J]. Developments in Earth and Environmental Sciences, 2008, 8:85-114.

    [41]

    Reid J L, Lynn R J. On the influence of the Norwegian-Greenland and Weddell seas upon the bottom waters of the Indian and Pacific oceans[J]. Deep Sea Research and Oceanographic Abstracts, 1971, 18(11):1063-1088. doi: 10.1016/0011-7471(71)90094-5

    [42]

    Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the Past, 2022, 18(8):1797-1813. doi: 10.5194/cp-18-1797-2022

    [43]

    Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP)[J]. Radiocarbon, 2020, 62(4):779-820. doi: 10.1017/RDC.2020.68

    [44]

    Dahl K A, Oppo D W. Sea surface temperature pattern reconstructions in the Arabian Sea[J]. Paleoceanography, 2006, 21(1):PA1014.

    [45]

    Agnihotri R, Sarin M M, Somayajulu B L K, et al. Late-Quaternary biogenic productivity and organic carbon deposition in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(1-2):43-60. doi: 10.1016/S0031-0182(03)00385-7

    [46]

    Pailler D, Bard E, Rostek F, et al. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession[J]. Geochimica et Cosmochimica Acta, 2002, 66(5):849-865. doi: 10.1016/S0016-7037(01)00817-1

    [47]

    Pourmand A, Marcantonio F, Bianchi T S, et al. A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea[J]. Paleoceanography, 2007, 22(4):PA4208.

    [48]

    Clemens S C, Prell W L. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments[J]. Paleoceanography, 1990, 5(2):109-145. doi: 10.1029/PA005i002p00109

    [49]

    Godad S P, Naik S S, Naidu P D. 70 kyr record of denitrification and oxygenation changes in the eastern Arabian Sea[J]. Geochemical Journal, 2017, 51(4):329-336. doi: 10.2343/geochemj.2.0472

    [50]

    Schmiedl G, Mackensen A. Multispecies stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deepwater oxygenation in the Arabian Sea[J]. Paleoceanography, 2006, 21(4):PA4213.

    [51]

    Ganeshram R S, Pedersen T F, Calvert S E, et al. Glacial-interglacial variability in denitrification in the world's oceans: causes and consequences[J]. Paleoceanography, 2000, 15(4):361-376. doi: 10.1029/1999PA000422

    [52]

    Den Dulk M, Reichart G J, Memon G M, et al. Benthic foraminiferal response to variations in surface water productivity and oxygenation in the northern Arabian Sea[J]. Marine Micropaleontology, 1998, 35(1-2):43-66. doi: 10.1016/S0377-8398(98)00015-2

    [53]

    Singh A D, Jung S J A, Anand P, et al. Rapid switch in monsoon-wind induced surface hydrographic conditions of the eastern Arabian Sea during the last deglaciation[J]. Quaternary International, 2018, 479:3-11. doi: 10.1016/j.quaint.2018.03.027

    [54]

    Reichart G J, Schenau S J, De Lange G J, et al. Erratum to “Synchroneity of oxygen minimum zone intensity on the Oman and Pakistan Margins at sub-Milankovitch time scales”: [Marine Geology 185 (2002) 283–302][J]. Marine Geology, 2002, 192(4):437-438. doi: 10.1016/S0025-3227(02)00563-7

    [55]

    Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J]. Nature, 2002, 415(6868):159-162. doi: 10.1038/415159a

    [56]

    Von Rad U, Schulz H, Riech V, et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30, 000 years documented in laminated sediments off Pakistan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1-2):129-161. doi: 10.1016/S0031-0182(99)00042-5

    [57]

    Lu W Y, Wang Y, Oppo D W, et al. Comparing paleo-oxygenation proxies (benthic foraminiferal surface porosity, I/Ca, authigenic uranium) on modern sediments and the glacial Arabian Sea[J]. Geochimica et Cosmochimica Acta, 2022, 331:69-85. doi: 10.1016/j.gca.2022.06.001

    [58]

    Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews, 1993, 35(3):249-284. doi: 10.1016/0012-8252(93)90040-E

    [59]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [60]

    Wei G J, Liu Y, Li X H, et al. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea[J]. Geochemical Journal, 2003, 37(5):593-602. doi: 10.2343/geochemj.37.593

    [61]

    Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J]. Global Biogeochemical Cycles, 1994, 8(1):103-116. doi: 10.1029/93GB03396

    [62]

    Glock N, Erdem Z, Schönfeld J. The Peruvian oxygen minimum zone was similar in extent but weaker during the Last Glacial Maximum than Late Holocene[J]. Communications Earth & Environment, 2022, 3(1):307.

    [63]

    Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera[J]. Scientific Reports, 2018, 8(1):9456. doi: 10.1038/s41598-018-27793-4

    [64]

    de Stigter H C. Recent and fossil benthic foraminifera in the Adriatic Sea: distribution patterns in relation to organic carbon flux and oxygen concentration at the seabed[D]. Utrecht: University Utrecht, 1996.

    [65]

    Gooday A J, Bernhard J M, Levin L A, et al. Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(1-2):25-54. doi: 10.1016/S0967-0645(99)00099-5

    [66]

    Rohling E J, Zachariasse W J. Red Sea outflow during the last glacial maximum[J]. Quaternary International, 1996, 31:77-83. doi: 10.1016/1040-6182(95)00023-C

    [67]

    Pahnke K, Goldstein S L, Hemming S R. Abrupt changes in Antarctic Intermediate Water circulation over the past 25, 000 years[J]. Nature Geoscience, 2008, 1(12):870-874. doi: 10.1038/ngeo360

    [68]

    Ziegler M, Lourens L J, Tuenter E, et al. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation[J]. Paleoceanography, 2010, 25(3):PA3213.

    [69]

    Naik D K, Saraswat R, Lea D W, et al. Last glacial-interglacial productivity and associated changes in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483:147-156. doi: 10.1016/j.palaeo.2016.07.014

    [70]

    Tierney J E, Zhu J, King J, et al. Glacial cooling and climate sensitivity revisited[J]. Nature, 2020, 584(7822):569-573. doi: 10.1038/s41586-020-2617-x

    [71]

    Dutt S, Gupta A K, Clemens S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B. P[J]. Geophysical Research Letters, 2015, 42(13):5526-5532. doi: 10.1002/2015GL064015

    [72]

    McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    [73]

    Lippold J, Grützner J, Winter D, et al. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation?[J]. Geophysical Research Letters, 2009, 36(12):L12601.

    [74]

    Reichart G J, Den Dulk M, Visser H J, et al. A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134(1-4):149-169. doi: 10.1016/S0031-0182(97)00071-0

    [75]

    Goswami V, Singh S K, Bhushan R. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column[J]. Geochimica et Cosmochimica Acta, 2014, 145:30-49. doi: 10.1016/j.gca.2014.09.006

    [76]

    Ödalen M, Nycander J, Oliver K I C, et al. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model[J]. Biogeosciences, 2018, 15(5):1367-1393. doi: 10.5194/bg-15-1367-2018

    [77]

    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3):81-115. doi: 10.1016/0304-4203(95)00008-F

    [78]

    Nambiar R, Bhushan R, Raj H. Paleoredox conditions of bottom water in the northern Indian Ocean since 39 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110766. doi: 10.1016/j.palaeo.2021.110766

    [79]

    Nisha K, Naik S S, Kumar P, et al. Radiocarbon evidence for reduced deep water ventilation of the northern Indian Ocean during the last glacial maxima and early deglaciation[J]. Earth and Planetary Science Letters, 2023, 607:118067. doi: 10.1016/j.jpgl.2023.118067

    [80]

    Bryan S P, Marchitto T M, Lehman S J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: evidence from the Arabian Sea[J]. Earth and Planetary Science Letters, 2010, 298(1-2):244-254. doi: 10.1016/j.jpgl.2010.08.025

    [81]

    Pérez-Asensio J N, Tachikawa K, Vidal L, et al. Glacial expansion of carbon-rich deep waters into the Southwestern Indian Ocean over the last 630 kyr[J]. Global and Planetary Change, 2023, 230:104283. doi: 10.1016/j.gloplacha.2023.104283

    [82]

    Gebbie G. How much did glacial North Atlantic water shoal?[J]. Paleoceanography, 2014, 29(3):190-209. doi: 10.1002/2013PA002557

    [83]

    Oppo D W, Gebbie G, Huang K F, et al. Data constraints on glacial Atlantic water mass geometry and properties[J]. Paleoceanography and Paleoclimatology, 2018, 33(9):1013-1034. doi: 10.1029/2018PA003408

    [84]

    Cliff E, Khatiwala S, Schmittner A. Glacial deep ocean deoxygenation driven by biologically mediated air-sea disequilibrium[J]. Nature Geoscience, 2021, 14(1):43-50. doi: 10.1038/s41561-020-00667-z

    [85]

    Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920):1443-1448. doi: 10.1126/science.1167441

    [86]

    Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep southern ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982):1147-1151. doi: 10.1126/science.1183627

    [87]

    Wang Y, Costa K M, Lu W Y, et al. Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation[J]. Science Advances, 2024, 10(3):eadk2506. doi: 10.1126/sciadv.adk2506

    [88]

    Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2):542-549. doi: 10.1002/2014GL061957

  • 期刊类型引用(3)

    1. 张兰,何贤科,段冬平,常吟善,汪文基,刘英辉. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究. 海洋地质与第四纪地质. 2023(04): 140-149 . 本站查看
    2. 吕鹏,雷蕾,孙莉,王健伟,闫华,林立新,刘世鹏,葛家旺,吴文雯. 东海盆地西湖凹陷W气田平湖组煤系潮控砂体储层地震预测. 海洋地质前沿. 2023(10): 66-76 . 百度学术
    3. 江东辉,杜学斌,李昆,周锋. 东海西湖凹陷保俶斜坡带平湖组“古地貌—古水系—古坡折”特征及其对沉积体系的控制. 石油实验地质. 2022(05): 771-779+789 . 百度学术

    其他类型引用(1)

图(4)  /  表(2)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  4
  • PDF下载量:  38
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-05-06
  • 刊出日期:  2024-10-27

目录

/

返回文章
返回