Changes in bottom water oxygen level of the Arabian Sea and the driving factors since the Last Glacial Period
-
摘要:
末次冰期以来阿拉伯海水体氧含量变化在时空上具有显著的差异。目前对其空间变化规律及主导因素尚缺乏系统的研究,尤其缺乏对千年尺度上深层水氧含量变化过程及其控制因素的综合分析。本文基于阿拉伯海中部深水区WIND-CJ06-6与WIND-CJ06-13两个岩芯的XRF岩芯扫描结果,结合前人已发表的指示阿拉伯海水体氧含量变化数据,重建了末次冰期以来千年尺度阿拉伯海不同海域和深度的水体氧含量变化历史并分析了其驱动因素。阿拉伯海水深小于1 500 m的水体在千年尺度上的氧含量变化受到表层初级生产力和中层水流通性的共同控制,但在不同时期主导因素不同;在B/A(Bølling–Ållerød)到YD(Younger Dryas)期间,阿拉伯海西北部表层生产力显著高于同时期其他海域,导致了中层水体的氧含量在西北部降低而在其他海域增高的空间差异。阿拉伯海水深大于1 500 m的水体氧含量在末次冰期以来整体上受北大西洋深层水(NADW)强弱的控制,在LGM(Last Glacial Maximum)到HS1(Heinrich stadial 1)阶段则受到南大洋通风增强的影响,水体氧含量显著升高。
Abstract:Variations in the oxygen content of water column in the Arabian Sea since the Last Glacial Period have significant differences in space and time. However, regarding the spatial variation patterns and dominating factors, systematic studies are scarce, especially on the mechanism of changes in oxygen content in deep water and the controlling factors on a millennial scale. Based on XRF core scanning results from two cores, WIND-CJ06-6 and WIND-CJ06-13, in the central deep water of the Arabian Sea and previously published data, we reconstructed the processes and analyzed the drivers of the variations in oxygen content in the Arabian Sea in different areas and depths on millennial scale since the Last Glacial Period. Results show that the variations in oxygen content in the Arabian Sea in water depths less than
1500 m on the millennial scale are controlled jointly by the surface primary productivity and mesopelagic water fluxes, and the dominant factors varied in different periods. Surface productivity in the northwestern part of the Arabian Sea was significantly higher than that in the rest of the sea during the transition period from B/A (Bølling-Ållerød) to YD (Younger Dryas) events, resulting in spatial difference: the oxygen content in the intermediate water was high in the NW Arabian Sea but low in the rest of the sea. The oxygen content in water column in the Arabian Sea at depths greater than1500 m was mainly controlled by the strength of the North Atlantic Deep Water (NADW) since the Last Glacial Maximum (LGM), and the oxygen content in water was significantly increased due to enhanced ventilation in the Southern Ocean from the LGM to the HS1 (Heinrich Stadial 1) stage.-
Keywords:
- oxygen content /
- surface productivity /
- intermediate water /
- deep water /
- Last Glacial Period /
- Arabian Sea
-
-
图 1 区域水文和研究站位
a:印度洋表层洋流(黑色实线指示夏季表层流,黑色虚线指示冬季表层流。SC:索马里洋流。SMC:夏季风环流;WMC:冬季风环流;WICC:西印度沿岸流;EICC:东印度沿岸流)、中层水(棕色虚线)以及深层水(紫色实线)示意图(灰色虚线框指示图b范围)改自[36-37];b:站位分布(红色三角形为本次研究站位,黑点为收集站位);c:现代阿拉伯海水体氧含量剖面图,数据来源于World Ocean Atlas 2018[38]。
Figure 1. Regional hydrography and research stations
a: Indian Ocean surface currents (solid black lines indicate summer surface currents, dashed black lines were winter surface currents. SC: Somali Current. SMC: summer monsoon circulation; WMC: winter monsoon circulation; WICC: West Indian Coastal Current; EICC: East India Coastal Current), intermediate water (brown dashed line), and deep water (purple solid line) (gray dashed box indicating range in Fig.1b) adapted from [36-37]; b: station distribution (red triangles are the current study stations and black dots are collected stations); c: Modern Arabian Sea water column oxygen content profiles with data from World Ocean Atlas 2018[38].
图 3 阿拉伯海水体氧含量从LGM到早全新世不同阶段的变化
a:LGM—早全新世,b:LGM—HS1,c:HS1—B/A,d:B/A—YD,e:YD—早全新世。其中蓝色填充代表氧含量降低,黄色填充代表氧含量增加,灰色填充代表无明显变化。正方形代表氮同位素数据、三角形为氧化还原敏感元素数据,圆点代表有孔虫数据。水平虚线代表现代OMZ的影响深度,竖直虚线代表阿拉伯海东西部的分界。各站位详细信息见表2。
Figure 3. Variation of oxygen content in Arabian Sea water in different periods from LGM to Early Holocene
a: LGM-Early Holocene, b: LGM-HS1, c: HS1-B/A, d: B/A-YD, e: YD-Early Holocene. Blue: decrease in oxygen content; yellow: increase in oxygen content; gray: ambiguous variation. Squares: nitrogen isotope data; triangles: redox-sensitive element data; dots: foraminiferal data. Dashed line: the depth of influence of the modern OMZ; vertical dotted line: the boundary between east and west of the Arabian Sea. Details of each station are shown in Table 2.
图 4 末次冰期以来NADW、AAIW以及南亚夏季风强度与阿拉伯海OMZ影响区表层生产力变化的对比
a:北大西洋GGC5岩芯沉积231Pa/230Th(棕色) [72]与ODP1063岩芯231Pa/230Th(绿色)指示NADW强度[73],b:南大西洋KNR159-36GGC岩芯εNd记录[67],c:印度东北部Mawmluh Cave 石笋δ 18O记录[71],d:阿拉伯海西部海域(WAS)岩芯NIOP905 Ba/Al 记录[14],e:阿拉伯海北部海域(NAS)NIOP464岩芯总有机碳(TOC)质量累积速率(MAR)[74],f:阿拉伯海东部海域(EAS)SK17岩芯富营养浮游有孔虫指数数据[53],g:阿拉伯海西北部海域(NWAS)MD00-2354岩芯初级生产力数据[9]。
Figure 4. Comparison among NADW, AAIW, and South Asian in summer monsoon intensity with changes in surface productivity in the OMZ (Minimum Oxygen Zone) affected area of the Arabian Sea since the last glacial period
a: 231Pa/230Th (brown) in core GGC5 (McManus et al., 2004) and 231Pa/230Th in core ODP1063 (green) of North Atlantic Ocean, indicating NADW intensity[72], b: the εNd record of KNR159-36GGC core in South Atlantic Ocean [67], c: δ 18O record of stalagmite in Mawmluh Cave on northeast of Indian [71], d: Ba/Al record in core NIOP905 of Western Arabian Sea (WAS) [14], e: Total Organic Carbon (TOC) Mass Accumulation Rate (MAR) in core NIOP464 of the Northern Arabian Sea (NAS) [74], Eutrophic planktonic foraminiferal index. Data are from core SK17 in the eastern Arabian Sea (EAS) [53], g: Primary productivity data are from core MD00-2354 in the northwestern Arabian Sea (NWAS) [9].
表 1 WIND-CJ06-6 和 WIND-CJ06-13孔AMS14C测年及日历年校正
Table 1 AMS14C dating and calendar year correction for cores WIND-CJ06-6 and WIND-CJ06-13
站位名称 深度/cm AMS14C 年龄/aBP 日历年龄/cal.aBP CJ06-6 4~5 8 900 ± 30 9 360(9 155~9 523) 24~25 11 770 ± 30 13 047(12 847~13 228) 44~45 17 220 ± 50 19 836(19 538~20 129) 64~65 24 420 ± 90 27 668(27 369~27 924) 84~85 30 360 ± 160 34 016(33 636~34 358) CJ06-13 3~4 4 040 ± 30 3 826(3 611~4 046) 23~24 11 910 ± 30 13 190(13 011~13 378) 43~44 20 180 ± 40 23 279(23 008~23 626) 63~64 27 920 ± 60 31 103(30 921~31 295) 83~84 33 610 ± 120 37 338(36 907~37 852) 表 2 研究站位汇总
Table 2 Information of research stations
站位 位置 水深/m 指标 来源 CJ06-13 14.54°N、65.8°E 3 909 Mn/Ti 本文 CJ06-6 16.3°N、65.8°E 3 680 Mn/Ti 本文 TN047/6GGC 17.38°N、58.8°E 3 652 有孔虫孔隙度 [44] SK304A/05 5.92°N、79.6°E 3 408 Mo/Ti [19] 3101G 6°N、74°E 2 680 Mn/Al [45] SK185-20 10°N、71.83°E 2 523 Uau [17] SK117/GC08 15.5°N、71.03°E 2 500 Mo [20] MD900963 5.05°N、73.88°E 2 446 Uau [46] SK129/CR05 9.33°N、71.98°E 2 300 U/Th [18] RC27-42 16.5°N、59.8°E 2 020 有孔虫孔隙度 [47] RC27-61 16.65°N、59.52°E 1 893 有孔虫孔隙度 [48] AAS9/21 14.51°N、72.65°E 1 807 U/Th [49] GeoB3004 14.61°N、52.92°E 1 803 有孔虫组合 [50] 3104G 12.9°N、71.9°E 1 680 Mn/Al [45] NIOP905 10.77°N、51.95°E 1 586 N同位素 [14] TN041/2PG 17.7°N、57.83°E 1 428 有孔虫孔隙度 [12] MD76-131 15.53°N、72.57°E 1 230 有孔虫组合 [51] NIOP455 23.56°N、65.95°E 1 002 Mn/Al [52] SK17 15.25°N、72.97°E 840 有孔虫组合 [53] MD04-2876 24.84°N、64°E 828 N同位素 [54] RC27-23 17.99°N、57.59°E 820 N同位素 [55] ODP723 18.05°N、57.61°E 808 N同位素 [15] SO90-111KL 23.1°N、66.49°E 774 N同位素 [56] TN041-8PG/JPC 17.81°N、57.51°E 761 有孔虫孔隙度 [57] RC27-14 18.25°N、57.66°E 596 N同位素 [55] NIOP478 24.21°N、65.66°E 565 Mn/Al [54] NIOP484 19.5°N、58.43°E 516 Mn/Al [54] -
[1] Codispoti L A, Christensen J P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean[J]. Marine Chemistry, 1985, 16(4):277-300. doi: 10.1016/0304-4203(85)90051-9
[2] Bunzel D, Schmiedl G, Lindhorst S, et al. A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea[J]. Climate of the Past, 2017, 13(12):1791-1813. doi: 10.5194/cp-13-1791-2017
[3] Majumder J, Gupta A K, Kumar P, et al. Late Quaternary variations in the Oxygen Minimum Zone linked to monsoon shifts as seen in the sediment of the outer continental shelf of the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 591:110891. doi: 10.1016/j.palaeo.2022.110891
[4] Schmiedl G, Leuschner D C. Oxygenation changes in the deep western Arabian Sea during the last 190, 000 years: productivity versus deepwater circulation[J]. Paleoceanography, 2005, 20(2):PA2008.
[5] Singh A D, Holbourn A, Kuhnt W. Editorial preface to special issue: recent advances in Indian Ocean paleoceanography and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 615:111443. doi: 10.1016/j.palaeo.2023.111443
[6] Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6):607-621. doi: 10.1029/98PA02203
[7] Lachkar Z, Lévy M, Smith S. Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity[J]. Biogeosciences, 2018, 15(1):159-186. doi: 10.5194/bg-15-159-2018
[8] Nair R R, Ittekkot V, Manganini S J, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218):749-751. doi: 10.1038/338749a0
[9] Zhou X Q, Duchamp-Alphonse S, Kageyama M, et al. Variations of primary productivity in the northwestern Arabian sea during the last 23, 000 years and their paleoclimatological implications[J]. Paleoceanography and Paleoclimatology, 2022, 37(10):e2022PA004453. doi: 10.1029/2022PA004453
[10] Banakar V K, Oba T, Chodankar A R, et al. Monsoon related changes in sea surface productivity and water column denitrification in the Eastern Arabian Sea during the last glacial cycle[J]. Marine Geology, 2005, 219(2-3):99-108. doi: 10.1016/j.margeo.2005.05.004
[11] Schulte S, Rostek F, Bard E, et al. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea[J]. Earth and Planetary Science Letters, 1999, 173(3):205-221. doi: 10.1016/S0012-821X(99)00232-0
[12] Lu W Y, Costa K M, Oppo D W. Reconstructing the oxygen depth profile in the arabian sea during the last glacial Period[J]. Paleoceanography and Paleoclimatology, 2023, 38(6):e2023PA004632. doi: 10.1029/2023PA004632
[13] Singh A D, Rai A K, Verma K, et al. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP[J]. Quaternary International, 2015, 374:118-125. doi: 10.1016/j.quaint.2014.11.052
[14] Ivanochko T S, Ganeshram R S, Brummer G J A, et al. Variations in tropical convection as an amplifier of global climate change at the millennial scale[J]. Earth and Planetary Science Letters, 2005, 235(1-2):302-314. doi: 10.1016/j.jpgl.2005.04.002
[15] Altabet M A, Francois R, Murray D W, et al. Climate-related variations in denitrification in the Arabian sea from sediment 15N/14N ratios[J]. Nature, 1995, 373(6514):506-509. doi: 10.1038/373506a0
[16] Burdanowitz N, Schmiedl G, Gaye B, et al. Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years - a multi-proxy approach[J]. Biogeosciences, 2024, 21(6):1477-1499. doi: 10.5194/bg-21-1477-2024
[17] Sarkar A, Bhattacharya S K, Sarin M M. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):1009-1016. doi: 10.1016/0016-7037(93)90036-V
[18] Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027
[19] Chandana K R, Bhushan R, Jull A J T. Evidence of poor bottom water ventilation during LGM in the equatorial Indian Ocean[J]. Frontiers in Earth Science, 2017, 5:84. doi: 10.3389/feart.2017.00084
[20] Mir I A, Mascarenhas M B L. Redox Changes during the past 100 ka in the deeper eastern Arabian sea: a study based on trace elements and multivariate statistical analysis[J]. Water, 2023, 15(7):1252. doi: 10.3390/w15071252
[21] Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2012, 5(2):151-156. doi: 10.1038/ngeo1352
[22] Morrison J M, Codispoti L A, Smith S L, et al. The oxygen minimum zone in the Arabian Sea during 1995[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(8-9):1903-1931. doi: 10.1016/S0967-0645(99)00048-X
[23] Olson D B, Hitchcock G L, Fine R A, et al. Maintenance of the low-oxygen layer in the central Arabian Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(3):673-685. doi: 10.1016/0967-0645(93)90051-N
[24] Swallow J C. Some aspects of the physical oceanography of the Indian Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(6-8):639-650. doi: 10.1016/0198-0149(84)90032-3
[25] Gupta A K, Srinivasan M S. Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP site 214 during the Late Neogene[J]. Marine Micropaleontology, 1992, 19(4):355-367. doi: 10.1016/0377-8398(92)90038-L
[26] You Y Z. Intermediate water circulation and ventilation of the Indian Ocean derived from water-mass contributions[J]. Journal of Marine Research, 1998, 56(5):1029-1067. doi: 10.1357/002224098765173455
[27] Mantyla A W, Reid J L. Abyssal characteristics of the World Ocean waters[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1983, 30(8):805-833. doi: 10.1016/0198-0149(83)90002-X
[28] Rutberg R L, Hemming S R, Goldstein S L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6789):935-938. doi: 10.1038/35016049
[29] Piotrowski A M, Banakar V K, Scrivner A E, et al. Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 2009, 285(1-2):179-189. doi: 10.1016/j.jpgl.2009.06.007
[30] Johnson G C, Warren B A, Olson D B. A deep boundary current in the Arabian Basin[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6):653-661. doi: 10.1016/0198-0149(91)90004-Y
[31] Mantyla A W, Reid J L. On the origins of deep and bottom waters of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2):2417-2439. doi: 10.1029/94JC02564
[32] McCave I N, Kiefer T, Thornalley D J R, et al. Deep flow in the Madagascar-Mascarene Basin over the last 150 000 years[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1826):81-99. doi: 10.1098/rsta.2004.1480
[33] Thomas A L, Henderson G M, Robinson L F. Interpretation of the 231Pa/230Th paleocirculation proxy: new water-column measurements from the southwest Indian Ocean[J]. Earth and Planetary Science Letters, 2006, 241(3-4):493-504. doi: 10.1016/j.jpgl.2005.11.031
[34] He Z T, Qiao S Q, Jin L A, et al. Clay mineralogy and geochemistry of surface sediments in the equatorial western Indian Ocean and implications for sediment sources and the Antarctic bottom water inputs[J]. Journal of Asian Earth Sciences, 2023, 254:105741. doi: 10.1016/j.jseaes.2023.105741
[35] Reid J L. On the total geostrophic circulation of the Indian Ocean: flow patterns, tracers, and transports[J]. Progress in Oceanography, 2003, 56(1):137-186. doi: 10.1016/S0079-6611(02)00141-6
[36] Ma R F, Sépulcre S, Licari L, et al. Changes in productivity and intermediate circulation in the northern Indian Ocean since the last deglaciation: new insights from benthic foraminiferal Cd/Ca records and benthic assemblage analyses[J]. Climate of the Past, 2022, 18(8):1757-1774. doi: 10.5194/cp-18-1757-2022
[37] Schott F A, Mccreary Jr J P. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1):1-123. doi: 10.1016/S0079-6611(01)00083-0
[38] Garcia H E, Weathers K W, Paver C R, et al. World Ocean Atlas 2018, volume 3: dissolved oxygen, apparent oxygen utilization, and dissolved oxygen saturation[R]. Silver Spring: NOAA Atlas NESDIS, 2019.
[39] Callahan J E. The structure and circulation of deep water in the Antarctic[J]. Deep Sea Research and Oceanographic Abstracts, 1972, 19(8):563-575. doi: 10.1016/0011-7471(72)90040-X
[40] Carter L, McCave I N, Williams M J M. Chapter 4 circulation and water masses of the southern ocean: a review[J]. Developments in Earth and Environmental Sciences, 2008, 8:85-114.
[41] Reid J L, Lynn R J. On the influence of the Norwegian-Greenland and Weddell seas upon the bottom waters of the Indian and Pacific oceans[J]. Deep Sea Research and Oceanographic Abstracts, 1971, 18(11):1063-1088. doi: 10.1016/0011-7471(71)90094-5
[42] Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the Past, 2022, 18(8):1797-1813. doi: 10.5194/cp-18-1797-2022
[43] Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP)[J]. Radiocarbon, 2020, 62(4):779-820. doi: 10.1017/RDC.2020.68
[44] Dahl K A, Oppo D W. Sea surface temperature pattern reconstructions in the Arabian Sea[J]. Paleoceanography, 2006, 21(1):PA1014.
[45] Agnihotri R, Sarin M M, Somayajulu B L K, et al. Late-Quaternary biogenic productivity and organic carbon deposition in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(1-2):43-60. doi: 10.1016/S0031-0182(03)00385-7
[46] Pailler D, Bard E, Rostek F, et al. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession[J]. Geochimica et Cosmochimica Acta, 2002, 66(5):849-865. doi: 10.1016/S0016-7037(01)00817-1
[47] Pourmand A, Marcantonio F, Bianchi T S, et al. A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea[J]. Paleoceanography, 2007, 22(4):PA4208.
[48] Clemens S C, Prell W L. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments[J]. Paleoceanography, 1990, 5(2):109-145. doi: 10.1029/PA005i002p00109
[49] Godad S P, Naik S S, Naidu P D. 70 kyr record of denitrification and oxygenation changes in the eastern Arabian Sea[J]. Geochemical Journal, 2017, 51(4):329-336. doi: 10.2343/geochemj.2.0472
[50] Schmiedl G, Mackensen A. Multispecies stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deepwater oxygenation in the Arabian Sea[J]. Paleoceanography, 2006, 21(4):PA4213.
[51] Ganeshram R S, Pedersen T F, Calvert S E, et al. Glacial-interglacial variability in denitrification in the world's oceans: causes and consequences[J]. Paleoceanography, 2000, 15(4):361-376. doi: 10.1029/1999PA000422
[52] Den Dulk M, Reichart G J, Memon G M, et al. Benthic foraminiferal response to variations in surface water productivity and oxygenation in the northern Arabian Sea[J]. Marine Micropaleontology, 1998, 35(1-2):43-66. doi: 10.1016/S0377-8398(98)00015-2
[53] Singh A D, Jung S J A, Anand P, et al. Rapid switch in monsoon-wind induced surface hydrographic conditions of the eastern Arabian Sea during the last deglaciation[J]. Quaternary International, 2018, 479:3-11. doi: 10.1016/j.quaint.2018.03.027
[54] Reichart G J, Schenau S J, De Lange G J, et al. Erratum to “Synchroneity of oxygen minimum zone intensity on the Oman and Pakistan Margins at sub-Milankovitch time scales”: [Marine Geology 185 (2002) 283–302][J]. Marine Geology, 2002, 192(4):437-438. doi: 10.1016/S0025-3227(02)00563-7
[55] Altabet M A, Higginson M J, Murray D W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J]. Nature, 2002, 415(6868):159-162. doi: 10.1038/415159a
[56] Von Rad U, Schulz H, Riech V, et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30, 000 years documented in laminated sediments off Pakistan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1-2):129-161. doi: 10.1016/S0031-0182(99)00042-5
[57] Lu W Y, Wang Y, Oppo D W, et al. Comparing paleo-oxygenation proxies (benthic foraminiferal surface porosity, I/Ca, authigenic uranium) on modern sediments and the glacial Arabian Sea[J]. Geochimica et Cosmochimica Acta, 2022, 331:69-85. doi: 10.1016/j.gca.2022.06.001
[58] Burdige D J. The biogeochemistry of manganese and iron reduction in marine sediments[J]. Earth-Science Reviews, 1993, 35(3):249-284. doi: 10.1016/0012-8252(93)90040-E
[59] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012
[60] Wei G J, Liu Y, Li X H, et al. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea[J]. Geochemical Journal, 2003, 37(5):593-602. doi: 10.2343/geochemj.37.593
[61] Altabet M A, Francois R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J]. Global Biogeochemical Cycles, 1994, 8(1):103-116. doi: 10.1029/93GB03396
[62] Glock N, Erdem Z, Schönfeld J. The Peruvian oxygen minimum zone was similar in extent but weaker during the Last Glacial Maximum than Late Holocene[J]. Communications Earth & Environment, 2022, 3(1):307.
[63] Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera[J]. Scientific Reports, 2018, 8(1):9456. doi: 10.1038/s41598-018-27793-4
[64] de Stigter H C. Recent and fossil benthic foraminifera in the Adriatic Sea: distribution patterns in relation to organic carbon flux and oxygen concentration at the seabed[D]. Utrecht: University Utrecht, 1996.
[65] Gooday A J, Bernhard J M, Levin L A, et al. Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(1-2):25-54. doi: 10.1016/S0967-0645(99)00099-5
[66] Rohling E J, Zachariasse W J. Red Sea outflow during the last glacial maximum[J]. Quaternary International, 1996, 31:77-83. doi: 10.1016/1040-6182(95)00023-C
[67] Pahnke K, Goldstein S L, Hemming S R. Abrupt changes in Antarctic Intermediate Water circulation over the past 25, 000 years[J]. Nature Geoscience, 2008, 1(12):870-874. doi: 10.1038/ngeo360
[68] Ziegler M, Lourens L J, Tuenter E, et al. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation[J]. Paleoceanography, 2010, 25(3):PA3213.
[69] Naik D K, Saraswat R, Lea D W, et al. Last glacial-interglacial productivity and associated changes in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483:147-156. doi: 10.1016/j.palaeo.2016.07.014
[70] Tierney J E, Zhu J, King J, et al. Glacial cooling and climate sensitivity revisited[J]. Nature, 2020, 584(7822):569-573. doi: 10.1038/s41586-020-2617-x
[71] Dutt S, Gupta A K, Clemens S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B. P[J]. Geophysical Research Letters, 2015, 42(13):5526-5532. doi: 10.1002/2015GL064015
[72] McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494
[73] Lippold J, Grützner J, Winter D, et al. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation?[J]. Geophysical Research Letters, 2009, 36(12):L12601.
[74] Reichart G J, Den Dulk M, Visser H J, et al. A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134(1-4):149-169. doi: 10.1016/S0031-0182(97)00071-0
[75] Goswami V, Singh S K, Bhushan R. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column[J]. Geochimica et Cosmochimica Acta, 2014, 145:30-49. doi: 10.1016/j.gca.2014.09.006
[76] Ödalen M, Nycander J, Oliver K I C, et al. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model[J]. Biogeosciences, 2018, 15(5):1367-1393. doi: 10.5194/bg-15-1367-2018
[77] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3):81-115. doi: 10.1016/0304-4203(95)00008-F
[78] Nambiar R, Bhushan R, Raj H. Paleoredox conditions of bottom water in the northern Indian Ocean since 39 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110766. doi: 10.1016/j.palaeo.2021.110766
[79] Nisha K, Naik S S, Kumar P, et al. Radiocarbon evidence for reduced deep water ventilation of the northern Indian Ocean during the last glacial maxima and early deglaciation[J]. Earth and Planetary Science Letters, 2023, 607:118067. doi: 10.1016/j.jpgl.2023.118067
[80] Bryan S P, Marchitto T M, Lehman S J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: evidence from the Arabian Sea[J]. Earth and Planetary Science Letters, 2010, 298(1-2):244-254. doi: 10.1016/j.jpgl.2010.08.025
[81] Pérez-Asensio J N, Tachikawa K, Vidal L, et al. Glacial expansion of carbon-rich deep waters into the Southwestern Indian Ocean over the last 630 kyr[J]. Global and Planetary Change, 2023, 230:104283. doi: 10.1016/j.gloplacha.2023.104283
[82] Gebbie G. How much did glacial North Atlantic water shoal?[J]. Paleoceanography, 2014, 29(3):190-209. doi: 10.1002/2013PA002557
[83] Oppo D W, Gebbie G, Huang K F, et al. Data constraints on glacial Atlantic water mass geometry and properties[J]. Paleoceanography and Paleoclimatology, 2018, 33(9):1013-1034. doi: 10.1029/2018PA003408
[84] Cliff E, Khatiwala S, Schmittner A. Glacial deep ocean deoxygenation driven by biologically mediated air-sea disequilibrium[J]. Nature Geoscience, 2021, 14(1):43-50. doi: 10.1038/s41561-020-00667-z
[85] Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920):1443-1448. doi: 10.1126/science.1167441
[86] Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep southern ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982):1147-1151. doi: 10.1126/science.1183627
[87] Wang Y, Costa K M, Lu W Y, et al. Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation[J]. Science Advances, 2024, 10(3):eadk2506. doi: 10.1126/sciadv.adk2506
[88] Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2):542-549. doi: 10.1002/2014GL061957