长江流域全新世极端洪水事件研究进展与启示

Holocene extreme flood events in the Yangtze River Basin: Research progress and implications

  • 摘要: 随着全球气候变暖和人类活动加剧,全球洪水事件的发生频率与强度正在快速变化,揭示洪水发生规律及其驱动机制是当前古洪水水文学和全球变化研究的热点问题。长江流域作为中国洪涝灾害最为严重的区域之一,其洪水活动近年来呈现快速异常变化,较短的现代器测记录已不能满足未来洪水灾害风险预测的需求,迫切需要通过各种长时间尺度记录揭示过去时期长江流域洪水事件与气候变化之间的关系。本文通过综述各种极端洪水事件的地质记录和历史记录,确定全新世以来极端洪水事件的频发期,并与区域关键气候代用指标进行对比,发现洪水事件频发期主要跟气候的急剧突变和强烈的人类活动有关。然而准确预测长江流域洪水事件未来演化趋势,需不断加强各种代用记录的综合研究,进一步探索洪水发生机制与气候变化和人类活动耦合关系,并加强有关数值模拟方面的研究,以便于为未来长江流域的洪涝灾害防御、城乡规划优化布局、资源合理开发利用提供科学依据和决策支持。

     

    Abstract: With global warming and the intensification of human activities, the frequency and magnitude of large river flood events are increasing in recent years. To reveal the regularity of flood occurrence and its driving mechanism is a hot issue in the study of paleoflood hydrology and global change. As one of the regions with the most severe flood disasters in China, the Yangtze River Basin has shown rapid and abnormal changes in flood activities in recent years. Short modern measurement records can no longer meet the needs of future flood disaster risk prediction, and it is urgent to reveal the relationship between flood events and climate change in the Yangtze River Basin in the past through various long-term records. By summarizing the geological and historical records of various extreme flood events, the frequent periods of extreme flood events since the Holocene were determined and compared with key regional climate proxies. However, to accurately predict the future evolution trend of flood events in the Yangtze River Basin, it is necessary to strengthen continuously the comprehensive research of various proxy records, to further explore the coupling relationship of flood occurrence mechanisms to climate changes and human activities, and to strengthen research on numerical simulation. This study provided a scientific basis and decision support for future flood disaster prevention, urban and rural planning optimization layout, and rational resource development and utilization in the Yangtze River Basin.

     

/

返回文章
返回