红河断裂带对南海西部盆地成盆过程影响机制实验研究

张家轩, 郭玲莉, 张京京, 陶圩, 赵淑娟, 王光增, 李三忠

张家轩,郭玲莉,张京京,等. 红河断裂带对南海西部盆地成盆过程影响机制实验研究[J]. 海洋地质与第四纪地质,2025,45(2): 79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101
引用本文: 张家轩,郭玲莉,张京京,等. 红河断裂带对南海西部盆地成盆过程影响机制实验研究[J]. 海洋地质与第四纪地质,2025,45(2): 79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101
ZHANG Jiaxuan,GUO Lingli,ZHANG Jingjing,et al. Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study[J]. Marine Geology & Quaternary Geology,2025,45(2):79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101
Citation: ZHANG Jiaxuan,GUO Lingli,ZHANG Jingjing,et al. Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study[J]. Marine Geology & Quaternary Geology,2025,45(2):79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101

红河断裂带对南海西部盆地成盆过程影响机制实验研究

基金项目: 崂山实验室科技创新项目“基于数字孪生的全球深时地貌重塑与资源环境预测”(LSKJ202204400);国家自然科学基金创新研究群体项目“海底古地貌重建”(42121005);国家自然科学基金重大计划重点支持项目(92058211);李三忠教授泰山学者攀登计划项目(tspd20210305);邢会林教授泰山学者特聘专家计划项目(tstp20221112)
详细信息
    作者简介:

    张家轩(1998—),男,硕士研究生,主要从事海洋地质学研究,E-mail:zhangjiaxuan@stu.ouc.edu.cn

    通讯作者:

    郭玲莉(1985—),女,副教授,硕士生导师,从事构造地质学及海洋地质学研究,E-mail:guolingli@ouc.edu.cn

  • 中图分类号: P736.1

Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study

  • 摘要:

    红河断裂带的走滑运动对南海西部盆地格架的形成具有一定的影响作用,本研究通过解构青藏高原隆升间歇期红河断裂带的走滑运动过程,探讨红河断裂带与南海西部盆地之间成因的关联性问题。通过砂箱物理模拟实验,模拟研究了印欧板块碰撞背景下红河断裂带的走滑作用对南海西部盆地的形成机制,特别是对莺歌海盆地和中建南盆地的成盆影响。实验结果表明莺歌海盆地和中建南盆地雏形受控于红河断裂带走滑运动所产生的NW向剪切作用,南海打开过程的近SN向伸展作用使盆地规模增大。南海西部莺歌海盆地和中建南盆地早期形成过程中红河断裂带的走滑位移被盆地的边界断层以及内部断层吸收进而控制了盆地35~23 Ma的发育演化。

    Abstract:

    The strike-slip movement of the Red River Fault Zone (RRFZ) affected the formation of the basin in the western part of the South China Sea (SCS) to a certain degree. To characterize the tectonic features of the RRFZ during the uplift interval of the Tibetan Plateau and analyze the relationship between the strike-slip in RRFZ and the basins, especially Yinggehai Basin and Zhongjiannan Basin in the western SCS, sandbox analogue modelling experiments were performed in the context of the India-Eurasia collision. Results indicate that the prototypes of the two basins are controlled by the NW-oriented shear stresses generated by the strike-slip movement of the RRFZ, and the SN-oriented tensional stresses with the SCS opening up and the basin sizes expanding. During the early formation stage of the two basins, the displacement due to the strike-slipping was absorbed by the boundary faults and internal faults of the basins, thus controlling the evolution of the basins during the stage from 35 to 23 Ma.

  • 天然气水合物是一种笼状结构的类冰状结晶化合物,主要是由甲烷和水分子结合而成,因其在冻土地区和海洋大陆边缘广泛分布、与海底稳定性相关,以及可能对全球气候具有潜在影响而广受关注[1-2]。新西兰Hikurangi大陆边缘每两年左右发生一次慢滑移事件[3],有关证据显示,多期次水合物形成分解可能是造成该区产生蠕变的重要原因之一[4]

    2017年11月—2018年1月执行了“蠕变中的天然气水合物滑动和Hikurangi随钻测井”为主旨的IODP372航次。该航次的主要目的之一是调查天然气水合物和海底滑坡的关系,因此,在新西兰Hikurangi边缘Tuaheni滑坡复合体(Tuaheni Landslide Complex,TLC)的U1517站位进行了随钻测井工作(图1)。该站位钻井的主要任务是通过在滑坡体和天然气水合物稳定区进行测井和采样,研究水合物与蠕变的关系。

    图  1  滑坡复合体和U1517站位位置图[36]
    Figure  1.  Location map showing the Tuaheni landslide complex and U1517 Site in Hikurangi margin[36]

    20世纪末,研究人员在新西兰Hikurangi边缘发现地震高振幅异常和似海底反射(BSR)标志[4-7]。该区域反射地震[8-11]、电磁[12-14]、甲烷渗漏、海水甲烷浓度、与渗漏相关的沉积坍塌和冷泉等证据均指示有天然气水合物存在[15-19]。通过反射地震发现,Hikurangi大陆边缘的Tuaheni滑坡复合体显示了活动蠕变变形的特征,且蠕变中的近陆边缘与海底天然气水合物稳定带底部的尖灭相一致[4],因此,科学家认为水合物分解—形成过程可能与新西兰Hikurangi边缘的多期次慢滑移密切相关[4, 20-21]。TLC地区水合物分布和含量估算是研究蠕变与水合物关系的必要环节。Mountjoy提出3种机制解释浅层天然气水合物是如何导致慢滑移,主要认为是由于水合物的分解导致沉积物液化失稳、水合物分解对地层孔隙压力的影响和水合物含量对地层提供的不同支撑模式的影响[4]。不同饱和度的水合物对沉积物的支撑模式不同[22],因此,准确估算慢滑移区域水合物的饱和度可以进一步分析天然气水合物导致TLC慢滑移的原因,IODP372航次测井和取心为水合物饱和度估算提供了可靠资料。

    由于声速和电阻率对水合物储层最为敏感,常用声学、电学模型来估算天然气水合物饱和度[23-24]。基于电阻率的模型有阿尔奇方程[25]和连通性方程[26];基于声速的模型有权重方程(Weighted equation,WE)[27]、等效介质理论(Effective Media Theory,EMT)模型[28]、改进的Biot-Gassmann理论(Biot-Gassmann Theory by Lee,BGTL)模型[29-30]和简化三相介质方程(Simplified Three-Phase Equation,STPE)[31]等,其中,常用于测井应用的模型主要是STPE和等效介质理论[32]两种。由于STPE模型参数较易获取,所以多次被实际应用于估算天然气水合物饱和度,均得到理想的预测效果[33-34];Hu等采用超声探测技术和时域反射技术实时探测了沉积物的纵横波速度和水合物饱和度的变化情况,检验了多种理论模型,发现BGTL理论预测的纵、横波速度更接近实测值[35],但BGTL模型中与岩石固结程度相关参数难以通过实际地层数据计算,从而导致较少被应用于测井数据估算水合物饱和度。本文主要通过STPE与BGTL模型对U1517站位水合物饱和度进行研究,在BGTL模型使用新的参数选取方法,使参数获取更为简易,计算过程中,根据岩性划分不同层段对应的矿物成分含量,用于纵波速度模型计算,以精确模型判断水合物储层深度分布和天然气水合物饱和度计算。

    IODP372航次U1517站位测井位于38°S、178°E(图1),井深约205 mbsf。该航次通过随钻测井采集了井径、声波速度、伽马密度、孔隙度、自然伽马和电阻率等数据,其中纵波数据在160~168 mbsf层段内未获取。通过对LDEO(Lamont Doherty Earth Observatory)数据库提供的U1517站位原始测井数据进行解释分析,并拟合背景趋势线,结果如图2所示,实测纵波声速与背景拟合声速相比,速度增加出现在94~160 mbsf层段,氯离子浓度异常出现在104~160 mbsf层段;在94~104 mbsf层段纵波速度和孔隙度等明显增加,而电阻率与密度减小,氯离子浓度并无异常,该层段的异常与21~28 mbsf层段相似,可能为井孔和局部岩性变化造成(图中黄色区域)。天然气水合物稳定区大概位于104~160 mbsf,并且在130~145 mbsf层段(图中绿色区域),纵波速度、电阻率和井径明显增加,密度减小。该航次从U1517站位获得多个柱状样品,使用红外热像仪进行扫描,温度异常表明天然气水合物的存在,并发现在岩心的上层沉积物或其岩心采集器中有甲烷释放[37]图3所示为地层因子与纵波速度交会图,由于含天然气水合物的沉积物具有较高的纵波速度和地层因子,所以含天然气水合物的沉积地层的交会图显示高于饱和水沉积地层[34],在130~145 mbsf层段显示较高的地层因子和纵波速度。

    图  2  U1517站位测井数据
    蓝色实线为实测数据,红色实线为拟合背景趋势,黑色虚线为BSR。
    Figure  2.  Well logs at Site U1517
    The blue lines are measured logging data and the red lines are fitted background trends; the black dashed line is BSR.
    图  3  U1517站位井地层因子与纵波速度交会图
    黑色实线为0~90 mbsf拟合背景趋势线。
    Figure  3.  Cross plot of formation factor versus the measured P-wave velocities at Site U1517
    The black line is fitted background trends of 0~90 mbsf.

    依据国际大洋发现计划出版物(International Ocean Discovery Program Publications)[36]获取矿物类型及含量数据,基于该数据,根据岩性划分不同层段对应的矿物成分含量,结果如图4所示,用于纵波速度模型计算,以精确天然气水合物饱和度计算值。岩石骨架的不同矿物类型的物性参数如表1所示。

    表  1  骨架组分及物性参数
    Table  1.  Constants used for the modeling
    矿物成分密度/(g/cm3体积模量/GPa剪切模量/GPa参考文献
    总黏土矿物2.5820.96.6[38]
    石英2.653844[33]
    长石2.6375.625.6[39]
    方解石2.7176.832 [39]
    天然气水合物(5 MPa, 273 K)0.9258.413.54[38]
    海水12.290[33]
    下载: 导出CSV 
    | 显示表格
    图  4  U1517站位所取岩心的岩性和岩石矿物成分相对含量数据
    黑线为依据岩性平均矿物成分相对含量。
    Figure  4.  Simplified lithostratigraphic column with bulk powder XRD results, Site U1517
    Black line is average mineral composition based on core data.

    含天然气水合物储层具有相对较高的纵横波速度。本次研究中使用STPE模拟U1517站位井的纵波速度,其中用于纵波速度(Vp)建模的STPE[31, 33]使用等式(1)对水合物储层的纵波速度建模:

    $${V_{\rm{p}}} = \sqrt {\frac{{k + {\rm{4}}\mu /{\rm{3}}}}{\rho }} , \; {V_{\rm{s}}} = \sqrt {\frac{\mu }{\rho }} $$ (1)

    式中ρ是含天然气水合物沉积模型的体积密度,k是体积模量,μ是剪切模量。建模参数ε是解释在加强主体沉积物骨架方面天然气水合物形成相对于压实的影响减小,Lee和Waite推荐使用ε=0.12为建模数值[30]。在VpVs建模中使用的参数α使用等式(2)计算:

    $${\alpha _{\rm{i}}} = {\alpha _0}{({p_0}/{p_i})^{\rm{n}}} \approx {\alpha _0}{({d_0}/{d_{\rm{i}}})^{\rm{n}}}$$ (2)

    式中α0是有效压力p0和深度d0的固结参数,αi是有效压力pi和深度di的固结参数,固结参数可以使用饱和水沉积物的速度来估算[40]。固结参数取决于固结程度和该区域的有效压力,Mindlin认为体积模和剪切模量为有效压力的1/3幂[41],因此不同位置,根据研究区域的主要岩性,α的值随深度而变化[40]。通过建模速度基线和实测纵波速度之间的最佳拟合选定α的值[40],本次研究用于U1517站位井的固结参数αi=42(60/di1/3。使用上述参数,获得了井下剖面背景纵波速度和天然气水合物饱和度,饱和水沉积地层VP符合程度较高(图5图6),黑色实线为航次实测纵波速度,红色实线为本文利用STPE模型计算结果,如图5所示,104~160 mbsf层段内测井实测VP大于理论基线速度,可能属于天然气水合物储层区,利用航次实测数据和模型结果计算出水合物饱和度(图6)。结果显示,在104~160 mbsf的深度区间内平均饱和度约为5.2%,最高饱和度达到22.7%,其中130~145 mbsf层段内水合物饱和度较高,平均饱和度为7.9%。

    图  5  使用STPE在U1517站位井测量的纵波速度和计算的基线速度的比较
    Figure  5.  Measured and calculated baseline P-wave velocities with STPE at the Site U1517
    图  6  使用STPE计算水合物储层区的背景纵波速度及饱和度
    Figure  6.  Measured and calculated baseline resistivities and P-wave velocities at the Site U1517

    BGTL理论建立在经典的BGT理论(Biot-Gassmann Theory)上,在预测速度时不仅考虑了分压的影响,而且还考虑了岩石的孔隙度、固结度等因素的影响[35]。在BGTL模型计算中,将天然气水合物作为基质中的一种矿物成分。本研究用于VP建模的BGTL模型使用等式(1)进行。

    公式(1)中沉积介质的剪切模量μ可由下式计算:

    $$ \mu=\frac{\mu_{\rm{ma}}{ G}^2\left(1-\varPhi\right)^{2{ n}}{ k}}{{{k_{\rm{ma}}}}+4\mu_{\rm{ma}}\left[1-{ G}^2\left(1-\varPhi\right)^{2{ n}}\right]/3} $$ (3)

    式中,kma为岩石骨架的体积模量;μma为岩石骨架的剪切模量;Φ为孔隙度;常数G主要用来校正由基质中的黏土引起的差异。Han等通过实验室数据表明G = 1对清洁砂岩有利[42],随着黏土体积增加,G将按下式(4)计算减少:

    $${{G}} = 0.955\;2 + 0.044\;8{{\rm{e}}^{ - {C_{\rm{v}}}{\rm{/}}0.067\;14}}$$ (4)

    式中,泥质含量Cv可使用来自U1517A井的伽马射线测井数据通过公式(5)[34]估算:

    $${C_{\rm{v}}} = 0.083({2^{{\rm{GCUR}} \times {{\rm{I}}_{{\rm{GR}}}}}} - 1)$$ (5)

    式中,GCUR是与地层有关的经验系数,新地层(古新近系地层)GCUR=3.7[43],IGR为通过伽马测井数据计算的伽马射线指数,可由公式(6)计算:

    $${{\rm{I}}_{{\rm{GR}}}} = \frac{{{\rm{G}}{{\rm{R}}_{{\rm{log}}}} - {\rm{G}}{{\rm{R}}_{{\rm{min}}}}}}{{{\rm{G}}{{\rm{R}}_{{\rm{max}}}} - {\rm{G}}{{\rm{R}}_{{\rm{min}}}}}}$$ (6)

    式中,GRlog为测井伽马值,GRmin为砂岩层伽马值,GRmax为泥岩层伽马值。

    公式(3)中参数n取决于分压大小及岩石的固结程度,可由公式(7)得到:

    $${{n}} = [{\rm{1}}{{\rm{0}}^{({\rm{0}}.{\rm{426}} - {\rm{0}}.{\rm{235Log10}}p)}}]{{/m}}$$ (7)

    测量数据表明m≈5适合于固结沉积物,m≈1.5适用于疏松沉积物[29];如图7所示利用BGTL预测饱和水沉积地层段(0~90 mbsf)速度和实测纵波速度对比,其中使用P=8.0 MPa和CV=58%,改变m值预测速度,在高孔隙度低纵波速度时m=2.5预测速度拟合程度高,而在低孔隙度高声速时,m值应小于2.5,大于1。在可能含天然气水合物地层(104~160 mbsf)的中子孔隙度主要为45%~65%,因此,本次研究建模使用m=2.5。

    图  7  BGTL预测和实测纵波速度
    Figure  7.  Measured and predicted P-wave velocities

    使用上述参数,获得了井下剖面背景纵波速度和天然气水合物饱和度(图8图9),如图所示,黑色实线为航次实测纵波速度,红色实线为本文使用BGTL模型计算结果,绿色区域为利用航次实测与模型速度计算的水合物饱和度,104~160 mbsf层段内测井实测VP大于理论饱和水背景VP,可能属于水合物储层区,因此导出水合物饱和度。结果显示,在104~160 mbsf的深度区间内平均饱和度约为6.0%,最高饱和度达到21.6%,其中130~145 mbsf层段内平均水合物饱和度为8.5%。

    图  8  使用BGTL模型在U1517站位井测量的纵波速度和计算的基线速度比较
    Figure  8.  Measured and calculated baseline P-wave velocities with BGTL at the Site U1517
    图  9  使用BGTL模型计算水合物储层区的背景纵波速度及饱和度
    Figure  9.  Background P-wave velocities and gas hydrate saturations at Site U1517 with BGTL

    图10为U1517站位井在104~160 mbsf层段的测井曲线,通过测井数据和背景基线看出存在3层纵波速度和电阻率明显异常的含水合物层段,同时,井径、密度和伽马测井数据均有不同程度的异常。在112~114 mbsf层段,环电阻率和声波速度明显增加,最高峰值分别为9.25 Ω·m和1.79 km/s,可能为含天然气水合物的薄层;在130~145 mbsf层段,环电阻率和声波速度最高峰值分别为2.88 Ω·m和1.90 km/s,属于较厚层的含水合物区域;在150~160 mbsf层段,密度与自然伽马降低较为明显,环电阻率和声波速度最高峰值分别为1.97 Ω·m和1.83 km/s。

    图  10  U1517站位井井径、纵波速度、电阻率、密度和伽马测井曲线
    Vp为实测声波速度,Vpw为背景速度值;Rt-Ring为环电阻率;Rt-P40L为低频随钻相移电阻;R0为背景电阻率值。
    Figure  10.  The well logs from site U1517A showing the caliper, P-wave velocity, resistivity, density and gamma ray
    Vp is measured velocity, Vpw is calculated velocity baseline, Rt-Ring is ring resistivity, Rt-P40L is 400 kHz phasor resistivity, R0 is calculated resistivity baseline.

    图11所示,由纵波速度数据通过STPE和BGTL模型估算了U1517站位井104~160 mbsf层段的天然气水合物饱和度,并与IODP372航次科学家利用阿尔奇公式和氯离子浓度两种方法计算结果相比较。STPE、BGTL和航次科学家利用阿尔奇公式3种模型在104~160 mbsf层段计算的平均饱和度分别为5.2%、6.0%和6.5%,130~145 mbsf层段的平均饱和度分别为7.9%、8.5%和9.6%;130~145 mbsf层段符合航次科学家使用氯离子浓度含量估算的高饱和度层段。112~114 mbsf和130~145 mbsf层段,阿尔奇公式估算的最高饱和度分别为56%和49%,大于BGTL和STPE计算结果,但是电阻率识别高饱和度薄层水合物约为2~5 cm,而声波测井分辨率约为15 cm,该薄层饱和度异常可能由于声波测井无法探测到而引起的,同时井径也发生变化,可能影响随钻测井速度与电阻率。氯离子异常在局部地层出现异常高值,从岩心分析看,异常高值与薄砂层相对应。因此,在104~160 mbsf层段3种方法估算的饱和度随深度变化相似,表明不同测井数据之间差异不大,且天然气水合物平均饱和度最高的层段为130~145 mbsf。使用STPE和BGTL模型计算的饱和水地层(0~90 mbsf)的纵波速度与实测纵波速度比较见图12所示,对于U1517井BGTL模型比STPE模型更适用于该站位水合物饱和度估算。

    图  11  根据BGTL、STPE与电阻率、氯离子估算的天然气水合物饱和度的对比
    Figure  11.  The gas hydrate saturation calculated by BGTL, STPE compared with the hydrate saturation calculated by the Expedition 372 scientists used the Archie equation and the chloride concentration
    图  12  STPE与BGTL在饱和水地层(0~90 mbsf)预测纵波速度与实测纵波速度对比
    Figure  12.  The measured P-wave velocity compared with the calculated results of the STPE and BGTL in water-saturated sediments (0~90 mbsf)

    (1)通过U1517站位随钻测井和岩心数据综合分析,证实了该站位黏土质粉砂岩性不同层位存在天然气水合物,水合物呈层状分布。天然气水合物储层区域在104~160 mbsf层段,其中存在3层纵波速度和电阻率明显异常的含水合物层段(112~114、130~145和150~160 mbsf),112~114 mbsf层段可能为薄的天然气水合物层,而130~145 mbsf层段相较于其他层段水合物饱和度相对较高。其中112~114 mbsf层段天然气水合物饱和度最高,130~145 mbsf层段为主要天然气水合物赋存区域。

    (2)依据LWD和取心数据,在计算过程中,根据岩性划分不同井段对应的矿物成分含量,用于纵波速度模型计算,并使用饱和水地层孔隙度与纵波速度拟合得到BGTL模型参数的方法,使BGTL模型更便于应用到测井资料估算水合物饱和度,通过STPE和BGTL模型计算出了U1517站位的水合物饱和度,并比较分析两种模型在饱和水地层的预测与实测纵波速度表明BGTL拟合度高于STPE;计算结果与航次科学家估算的饱和度相比,平均饱和度相近,3种方法计算的水合物饱和度值随深度变化相似,表明计算结果的合理性。

    致谢:本研究所用样品和数据由IODP372航次提供,中国IODP办公室提供了胡高伟参加航次的旅费资助,在此一并致谢!

  • 图  1   新生代南海地区大地构造背景[52, 56]

    Figure  1.   Tectonic setting of the Cenozoic SCS region[52, 56]

    图  2   南海西部构造运动[39, 64]

    Figure  2.   Tectonic movements in the western SCS[39, 64]

    图  3   实验设计

    a:模型基底设计图(顶视图;数字1和2为印支地块,3为南海北缘,4为南海南缘;FR为红河断裂带,FW1和FW2为南海西缘断裂,Fs为马江-黑水河断裂);b:模型立体图(图3a顺时针旋转180°的立体效果;黑色实线框平行短边方向为实验莺歌海盆地的剖面切割方向,橙色实线框平行短边方向为实验中建南盆地的剖面切割方向;块体位置与电机位置对应于a图);c:模型剖面图(位置见图3b中AA')。红色虚线框为数字散斑计算区域,蓝色虚线框为3D扫描区域。

    Figure  3.   The experimental design diagram

    a: Model substrate design diagram (top view. Numbers 1 and 2 show the Indochina Block, 3 shows the northern edge of the SCS, and 4 shows the southern edge of the SCS. FR: the RRFZ; FW1 and FW2: the western margin fault of the South China Sea; Fs: the Song Ma Fault); b: the cut-out view of the experimental apparatus (The stereoscopic effect by 180° clockwise rotation of Fig. 3a. The direction of the short parallel edges of the black solid line box is the direction of the section cut in the experimental Yinggehai Basin, and the direction of the short parallel edges of the green solid line box is the direction of the section cut in the experimental Zhongjiannan Basin. The block position and the motor position corresponds to Fig. 3a); c: model section (see Fig. 3b for AA' location). The red dashed boxes are the digital speckle calculation area, and the blue ones are the 3D scanning area.

    图  4   模型一平面演化

    数字散斑区域见图3b红色虚线框。黄色箭头推动块体实现断裂带的走滑作用,蓝色剪头拉张块体实现海盆打开。第1列:实验图像; 第2列:模型演化解释图;第3列:体应变(ƐV), 红色和蓝色分别代表拉张和挤压,颜色越深代表强度越高;第4列:最大剪应变(Ʈn),颜色从蓝色变为红色代表最大剪应变逐渐变大。D1为电机1的位移量,D2为电机2的位移量。

    Figure  4.   Model 1 Vertical view (red dashed box in Fig. 3b for the DSCM (digital speckle correlation method) area)

    Yellow arrows represent the push direction towards the block to generate the strike-slip, and blue arrows represent the tension of the block to mimicking the opening of the sea basin. The first column: experimental diagram; the second column: model evolution interpretation diagram; the third column: volume strain (ƐV), red and blue represent tension and compression respectively, the darker the color, the higher the strength; the fourth column: maximum shear strain (Ʈn), change in color from blue to red represents a gradual increase in maximum shear strain. D1 is the displacement of motor 1 and D2 is the displacement of motor 2.

    图  5   印支地块弱挤出作用模型3D扫描结果

    扫描区域见图3b蓝色虚线框。a: 断层F2出现时基底断裂位置关系,b: F3出现时基底断裂位置关系,c: 实验加载结束时盆地与基底断裂位置关系。

    Figure  5.   3D scanning results of the weak extrusion model of the Indochina Block

    The blue dashed box in Fig. 3b. a: The basement fault location relationship at the time of the appearance of fault F2, b: the basement fault location relationship at the time of the appearance of F3, c: the location relationship between basin and basement fault at the end of experimental loading.

    图  6   模型一的盆地剖面构造特征

    盆地1代表莺歌海盆地,盆地2代表中建南盆地。剖面中“F”断层与模型表面断层对应,“f”断层为次级断层或伸展断层,剖面图例同图3c

    Figure  6.   Diagram of the internal vertical section of Model 1

    Basin 1 represents the Yinggehai Basin and Basin 2 represents the Zhongjiannan Basin. F indicates major faults in the section correspond to those at the model surface, and f signifies secondary or extension faults. For the sectional illustration please see the legend to Fig. 3c.

    图  7   模型二平面演化

    数字散斑区域见图3b红色虚线框。黄色箭头推动块体实现断裂带的走滑作用,蓝色剪头拉张块体实现海盆打开。第1列:实验图像; 第2列:模型演化解释图;第3列:体应变(ƐV), 红色和蓝色分别代表拉张和挤压,颜色越深代表强度越高;第4列:最大剪应变(Ʈn),颜色从蓝色变为红色代表最大剪应变逐渐变大。D1为电机1的位移量,D2为电机2的位移量。

    Figure  7.   Vertical view of Model 2 (the red dashed box in Fig. 3b is the DSCM (digital speckle correlation method) area)

    Yellow arrows represent the push to the block to generate the strike-slip of the fault zone, and blue arrows represent the tension of the block to realize the opening of the sea basin. The first column: experimental diagram; the second column: model evolution interpretation diagram; the third column: volume strain (ƐV), red and blue represent tension and compression respectively, the darker the color, the higher the strength; the fourth column: maximum shear strain (Ʈn), change in color from blue to red represents a gradual increase in maximum shear strain. D1 is the displacement of motor 1 and D2 is the displacement of motor 2.

    图  9   模型二盆地剖面特征

    盆地1代表莺歌海盆地,盆地2代表中建南盆地。剖面中“F”断层与模型表面断层对应,“f ”断层为次级断层或伸展断层,剖面图例同图3c

    Figure  9.   Diagram of the internal vertical section of Model 2

    Basin 1: the Yinggehai Basin,Basin 2: the Zhongjiannan Basin. F marks the major faults in the section correspond to those on the model surface, and f denotes the secondary or extension faults. For the sectional illustration please see the legend to Fig. 3c.

    图  8   印支地块强挤出作用模型3D扫描结果

    3D扫描区域见图3b蓝色虚线框。a: 断层F1出现时基底断裂位置关系,b: F3出现时基底断裂位置关系,c: 实验加载结束时盆地与基底断裂位置关系。

    Figure  8.   3D scanning results of the strong extrusion model of the Indochina Block

    Blue dashed box in Fig. 3b for the 3D scan area. a: The basement fault location at the time of the appearance of fault F1, b: the basement fault location at the time of the appearance of F3, c: the location relationship between basin and basement fault at the end of experimental loading.

    图  10   南海西部地震剖面与模型剖面对比图

    模型一剖面28对应AA',模型一剖面15与模型二剖面27对应BB',模型一剖面11与模型二剖面14对应CC',模型二剖面12对应DD'。

    Figure  10.   Comparison between seismic sections and model sections of the western SCS

    Model 1 section 28 corresponds to AA', model 1 section 15 and model 2 section 27 corresponds to BB', model 1 section 11 and model 2 section 14 corresponds to CC', and model 2 section 12 corresponds to DD'.

    图  11   南海西部区域构造演化示意图[39, 69, 97]

    Figure  11.   Tectonic evolution of the western part of the SCS[39, 69, 97]

    表  1   实验材料及参数

    Table  1   Experimental materials and parameters

    材料和物理设置 实验参数 性质 相似比
    PVC泡沫板 抗压强度:0.6~25.0 MPa 刚性
    硅胶垫 拉张强度:4.0~12.5 MPa 张性
    石英砂 粒径:120~180 μm 摩尔-库仑准则
    玻璃微珠 粒径:80~100 μm 摩尔-库仑准则
    走滑位移量 5 cm 10−7
    地层厚度 6 cm 10−5
    下载: 导出CSV

    表  2   实验参数设计

    Table  2   Experimental parameters design

    模型 FR、FW
    位移量/cm
    模型尺寸/cm FR、FW加载速率
    /(cm/s)
    Fs加载速率
    /(cm/s)
    南海北缘
    加载速率
    /(cm/s)
    南海南缘
    加载速率
    /(cm/s)
    印支地块弱挤出模型 5 60×40×7 4×10−3 2×10−3 6×10−3 6×10−3
    印支地块强挤出模型 5 60×40×7 4×10−3 2×10−3 6×10−3 6×10−3
    下载: 导出CSV
  • [1] 张连生, 钟大赉. 从红河剪切带走滑运动看东亚大陆新生代构造[J]. 地质科学, 1996, 31(4):327-341

    ZHANG Liansheng, ZHONG Dalai. The Red River strike-slip shear zone and Cenozoic tectonics of East Asia Continent[J]. Chinese Journal of Geology, 1996, 31(4):327-341.]

    [2]

    Molnar P, Fitch T J, Wu F T. Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia[J]. Earth and Planetary Science Letters, 1973, 19(2):101-112. doi: 10.1016/0012-821X(73)90104-0

    [3]

    Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 1984, 307(5946):17-22. doi: 10.1038/307017a0

    [4]

    Chang C F, Chen N S, Coward M P, et al. Preliminary conclusions of the Royal Society and Academia Sinica 1985 Geotraverse of Tibet[J]. Nature, 1986, 323(6088):501-507. doi: 10.1038/323501a0

    [5]

    Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: an experimental approach[J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B12):15085-15117. doi: 10.1029/JB093iB12p15085

    [6]

    Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264(5584):319-324. doi: 10.1038/264319a0

    [7]

    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    [8]

    Armijo R, Tapponnier P, Han T L. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B3):2787-2838. doi: 10.1029/JB094iB03p02787

    [9]

    Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20):2905-2930. doi: 10.1029/JB082i020p02905

    [10]

    Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B7):3425-3459. doi: 10.1029/JB084iB07p03425

    [11]

    Huchon P, Le Pichon X, Rangin C. Indochina Peninsula and the collision of India and Eurasia[J]. Geology, 1994, 22(1):27-30. doi: 10.1130/0091-7613(1994)022<0027:IPATCO>2.3.CO;2

    [12]

    Li L, Lu S P, Gao R, et al. Seismic reflection imaging of a deep-penetrating red river fault in the Yinggehai Basin, northwest of the South China Sea[J]. Geophysical Research Letters, 2023, 50(19):e2023GL104598. doi: 10.1029/2023GL104598

    [13]

    Zhou D, Ru K, Chen H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1-4):161-177. doi: 10.1016/0040-1951(95)00018-6

    [14]

    Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of southeast Asia[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B4):6299-6328. doi: 10.1029/92JB02280

    [15]

    Gilley L D, Harrison T M, Leloup P H, et al. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B2):2127.

    [16]

    Zhong D L, Tapponnier P, Wu H W, et al. Large-scale strike slip fault: The major structure of intracontinental deformation after collision[J]. Chinese Science Bulletin, 1990, 35(4):304-309.

    [17]

    Wang P L, Lo C H, Lee T Y, et al. Thermochronological evidence for the movement of the Ailao Shan–Red River shear zone: A perspective from Vietnam[J]. Geology, 1998, 26(10):887-890. doi: 10.1130/0091-7613(1998)026<0887:TEFTMO>2.3.CO;2

    [18]

    Zhang L S, Schärer U. Age and origin of magmatism along the Cenozoic Red River shear belt, China[J]. Contributions to Mineralogy and Petrology, 1999, 134(1):67-85. doi: 10.1007/s004100050469

    [19]

    Schärer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: the Red River belt, China[J]. Earth and Planetary Science Letters, 1994, 126(4):379-397. doi: 10.1016/0012-821X(94)90119-8

    [20] 曹淑云, 刘俊来, Leiss B, 等. 哀牢山-红河剪切带左行走滑作用起始时间约束: 点苍山高温糜棱岩的显微构造与热年代学证据[J]. 地质学报, 2009, 83(10):1388-1400 doi: 10.3321/j.issn:0001-5717.2009.10.003

    CAO Shuyun, LIU Junlai, Leiss B, et al. Timing of initiation of left-lateral slip along the Ailao Shan-Red River shear zone: microstructural, texture and Thermochronological evidence from high temperature Mylonites in Diancang Shan, SW China[J]. Acta Geologica Sinica, 2009, 83(10):1388-1400.] doi: 10.3321/j.issn:0001-5717.2009.10.003

    [21] 孙桂华, 彭学超, 黄永健. 红河断裂带莺歌海段地质构造特征[J]. 地质学报, 2013, 87(2):154-166 doi: 10.3969/j.issn.0001-5717.2013.02.002

    SUN Guihua, PENG Xuechao, HUANG Yongjian. Geological structure characteristics of Red River Fault Zone in the Yinggehai Basin[J]. Acta Geologica Sinica, 2013, 87(2):154-166.] doi: 10.3969/j.issn.0001-5717.2013.02.002

    [22]

    Allen C R, Gillespie A R, Han Y, et al. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. GSA Bulletin, 1984, 95(6):686-700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2

    [23]

    Rangin C, Klein M, Roques D, et al. The Red River fault system in the Tonkin Gulf, Vietnam[J]. Tectonophysics, 1995, 243(3-4):209-222. doi: 10.1016/0040-1951(94)00207-P

    [24]

    Replumaz A, Lacassin R, Tapponnier P, et al. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China)[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B1):819-836. doi: 10.1029/2000JB900135

    [25]

    Sun Z, Zhou D, Zhong Z H, et al. Experimental evidence for the dynamics of the formation of the Yinggehai Basin, NW South China Sea[J]. Tectonophysics, 2003, 372(1-2):41-58. doi: 10.1016/S0040-1951(03)00230-0

    [26]

    Schoenbohm L M, Burchfiel B C, Chen L Z, et al. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. GSA Bulletin, 2006, 118(5-6):672-688. doi: 10.1130/B25816.1

    [27]

    Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    [28]

    Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan—Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1-4):3-10,13-84. doi: 10.1016/0040-1951(95)00070-4

    [29] 任纪舜, 金小赤. 红河断裂的新观察[J]. 地质论评, 1996, 42(5):439-442 doi: 10.3321/j.issn:0371-5736.1996.05.010

    REN Jishun, JIN Xiaochi. New observations of the Red River Fault[J]. Geological Review, 1996, 42(5):439-442.] doi: 10.3321/j.issn:0371-5736.1996.05.010

    [30]

    Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan—Red River shear zone, SE Asia[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B4):6683-6732. doi: 10.1029/2000JB900322

    [31]

    Leloup P H, Tapponnier P, Lacassin R, et al. Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia Journal, Vol. 163, 2006, 1025–1036[J]. Journal of the Geological Society, 2007, 164(6):1253-1260. doi: 10.1144/0016-76492007-065

    [32]

    Mazur S, Green C, Stewart M G, et al. Displacement along the Red River Fault constrained by extension estimates and plate reconstructions[J]. Tectonics, 2012, 31(5):TC5008.

    [33] 姚伯初, 曾维军, 陈艺中, 等. 南海西沙海槽, 一条古缝合线[J]. 海洋地质与第四纪地质, 1994, 14(1):1-10

    YAO Bochu, ZENG Weijun, CHEN Yizhong, et al. Xisha trough of South China Sea—an ancient suture[J]. Marine Geology & Quaternary Geology, 1994, 14(1):1-10.]

    [34] 刘海龄, 姚永坚, 沈宝云, 等. 南海西缘结合带的贯通性[J]. 地球科学——中国地质大学学报, 2015, 40(4):615-632 doi: 10.3799/dqkx.2015.049

    LIU Hailing, YAO Yongjian, SHEN Baoyun, et al. On linkage of western boundary faults of the South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4):615-632.] doi: 10.3799/dqkx.2015.049

    [35] 万玲, 姚伯初, 吴能友. 红河断裂带人海后的延伸及其构造意义[J]. 南海地质研究, 2000(12):22-32

    WAN Ling, YAO Bochu, WU Nengyou. The extending of Honghe Faults in the South China Sea and its tectonic significance[J]. Geological Research of South China Sea, 2000(12):22-32.]

    [36]

    Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343(6257):431-437. doi: 10.1038/343431a0

    [37] 姚伯初, 万玲, 吴能友. 大南海地区新生代板块构造活动[J]. 中国地质, 2004, 31(2):113-122 doi: 10.3969/j.issn.1000-3657.2004.02.001

    YAO Bochu, WAN Ling, WU Nengyou. Cenozoic plate tectonic activities in the Great South China Sea area[J]. Geology in China, 2004, 31(2):113-122.] doi: 10.3969/j.issn.1000-3657.2004.02.001

    [38] 刘宝明, 夏斌, 李绪宣, 等. 红河断裂带东南的延伸及其构造演化意义[J]. 中国科学 D辑 :地球科学, 2006, 36(10): 914-924

    LIU Baoming, XIA Bing, LI Xuxuan, et al. Southeastern extension of the Red River fault zone (RRFZ) and its tectonic evolution significance in western South China Sea[J]. Science in China Series D: Earth Sciences, 2006, 49(8): 839-850.]

    [39] 安慧婷, 李三忠, 索艳慧, 等. 南海西部新生代控盆断裂及盆地群成因[J]. 海洋地质与第四纪地质, 2012, 32(6):95-111

    AN Huiting, LI Sanzhong, SUO Yanhui, et al. Basin-controlling faults and Formation mechanism of the Cenozoic Basin groups in the western South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6):95-111.]

    [40] 雷超. 南海北部莺歌海—琼东南盆地新生代构造变形格局及其演化过程分析[D]. 中国地质大学博士学位论文, 2012

    LEI Chao. Structure and evolution of Yinggehai and Qiongdongnan Basins, South China Sea: implications for Cenozoic Tectonics in Southeast Asia. Doctor Dissertation of China University of Geosciences, 2012.

    [41] 钟志洪, 王良书, 夏斌, 等. 莺歌海盆地成因及其大地构造意义[J]. 地质学报, 2004, 78(3):302-309 doi: 10.3321/j.issn:0001-5717.2004.03.003

    ZHONG Zhihong, WANG Liangshu, XIA Bin, et al. The dynamics of Yinggehai Basin Formation and its tectonic significance[J]. Acta Geologica Sinica, 2004, 78(3):302-309.] doi: 10.3321/j.issn:0001-5717.2004.03.003

    [42] 王伟平, 姚永坚, 蔡周荣, 等. 中建南盆地后扩张期T5和T3不整合面的发育特征及对南海科学钻探的意义[J]. 地质学报, 2022, 96(8):2822-2832

    WANG Weiping, YAO Yongjian, CAI Zhourong, et al. Characteristics of unconformity T5 and T3 in the Zhongjiannan Basin and their significance for scientific drilling in the South China Sea during the post-spreading Period[J]. Acta Geologica Sinica, 2022, 96(8):2822-2832.]

    [43] 高红芳, 陈玲. 南海西部中建南盆地构造格架及形成机制分析[J]. 石油与天然气地质, 2006, 27(4):512-516 doi: 10.3321/j.issn:0253-9985.2006.04.011

    GAO Hongfang, CHEN Ling. An analysis of structural framework and Formation mechanism of Zhongjiannan Basin in the west of South China Sea[J]. Oil & Gas Geology, 2006, 27(4):512-516.] doi: 10.3321/j.issn:0253-9985.2006.04.011

    [44] 陈玲. 中建南盆地局部构造特征[J]. 海洋地质与第四纪地质, 2008, 28(5):69-75

    CHEN Ling. Analysis of local tectonic characters of Zhongjiannan Basin in South China Sea[J]. Marine Geology & Quaternary Geology, 2008, 28(5):69-75.]

    [45] 高红芳, 王衍棠, 郭丽华. 南海西部中建南盆地油气地质条件和勘探前景分析[J]. 中国地质, 2007, 34(4):592-598 doi: 10.3969/j.issn.1000-3657.2007.04.006

    GAO Hongfang, WANG Yantang, GUO Lihua. Petroleum geological conditions and prospects in the Zhongjiannan Basin in the western South China Sea[J]. Geology in China, 2007, 34(4):592-598.] doi: 10.3969/j.issn.1000-3657.2007.04.006

    [46]

    Liu H, Luan X W, Guo L L, et al. Fault distribution and Formation mechanism of a magnetic quiet zone in the northern South China Sea[J]. Geological Journal, 2016, 51(S1):331-345. doi: 10.1002/gj.2844

    [47]

    Dooley T, McClay K. Analog modeling of pull-apart basins[J]. AAPG Bulletin, 1997, 81(11):1804-1826.

    [48]

    Sims D, Ferrill D A, Stamatakos J A. Role of a ductile décollement in the development of pull-apart basins: Experimental results and natural examples[J]. Journal of Structural Geology, 1999, 21(5):533-554. doi: 10.1016/S0191-8141(99)00010-3

    [49]

    Sun Z, Zhou D, Zhong Z H, et al. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling[J]. Science in China Series D:Earth Sciences, 2006, 49(10):1053-1069. doi: 10.1007/s11430-006-1053-6

    [50]

    Wu J E, McClay K, Whitehouse P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8):1608-1623. doi: 10.1016/j.marpetgeo.2008.06.007

    [51]

    Ding W W, Li J B. Propagated rifting in the Southwest Sub-Basin, South China Sea: insights from analogue modelling[J]. Journal of Geodynamics, 2016, 100:71-86. doi: 10.1016/j.jog.2016.02.004

    [52] 李三忠, 索艳慧, 刘鑫, 等. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 2012, 32(6):55-78

    LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basin dynamics and Basin groups of the South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6):55-78.]

    [53]

    Taylor B, Hayes D E. The tectonic evolution of the South China Basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington: American Geophysical Union, 1980: 89-104.

    [54]

    Li S Z, Suo Y H, Li X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 2019, 192:91-137. doi: 10.1016/j.earscirev.2019.03.003

    [55]

    Hui G G, Li S Z, Guo L L, et al. A review of geohazards on the northern continental margin of the South China Sea[J]. Earth-Science Reviews, 2021, 220:103733. doi: 10.1016/j.earscirev.2021.103733

    [56]

    Wang P C, Li S Z, Suo Y H, et al. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: a synthesis[J]. Earth-Science Reviews, 2021, 216:103522. doi: 10.1016/j.earscirev.2021.103522

    [57]

    Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1-4):85-138. doi: 10.1016/0040-1951(95)00023-2

    [58] 徐旭辉, 高长林, 黄泽光, 等. 中国盆地形成的三大活动构造历史阶段[J]. 石油与天然气地质, 2005, 26(2):155-162 doi: 10.3321/j.issn:0253-9985.2005.02.006

    XU Xuhui, GAO Changlin, HUANG Zeguang, et al. Three stages of tectonic movements in Formation of petroliferous basins in China[J]. Oil & Gas Geology, 2005, 26(2):155-162.] doi: 10.3321/j.issn:0253-9985.2005.02.006

    [59]

    Pigott J D, Ru K. Basin superposition on the northern margin of the South China Sea[J]. Tectonophysics, 1994, 235(1-2):27-50. doi: 10.1016/0040-1951(94)90015-9

    [60]

    Morley C K. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics, 2002, 347(4):189-215. doi: 10.1016/S0040-1951(02)00061-6

    [61]

    Lei C, Ren J Y. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: implications for extreme crustal thinning ahead of a propagating ocean[J]. Marine and Petroleum Geology, 2016, 77:846-864. doi: 10.1016/j.marpetgeo.2016.07.022

    [62] 姚永坚, 姜玉坤, 曾祥辉. 南沙海域新生代构造运动特征[J]. 中国海上油气(地质), 2002, 16(2):113-117

    YAO Yongjian, JIANG Yukun, ZENG Xianghui. Cenozoic tectonic movements in Nansha area, South China Sea[J]. China Offshore Oil and Gas (Geology), 2002, 16(2):113-117.]

    [63] 张光学, 白志琳. 南海西南部万安盆地构造样式特征、成因及找油意义[J]. 石油实验地质, 1998, 20(3):210-216 doi: 10.11781/sysydz199803210

    ZHANG Guangxue, BAI Zhilin. The characteristics of structural styles and their influences on oil and gas accumulation of the Wan'an Basin in the Southwestern South China Sea[J]. Petroleum Geology & Experiment, 1998, 20(3):210-216.] doi: 10.11781/sysydz199803210

    [64] 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12):3280-3291 doi: 10.3969/j.issn.0001-5733.2011.12.026

    XIE Xinong, ZHANG Cheng, REN Jianye, et al. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12):3280-3291.] doi: 10.3969/j.issn.0001-5733.2011.12.026

    [65]

    Suo Y H, Li S Z, Jin C, et al. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 2019, 196:102884. doi: 10.1016/j.earscirev.2019.102884

    [66]

    Serra S, Nelson R A. Clay modeling of rift asymmetry and associated structures[J]. Tectonophysics, 1988, 153(1-4):307-312. doi: 10.1016/0040-1951(88)90023-6

    [67]

    McClay K, Bonora M. Analog models of restraining Stepovers in strike-slip fault systems[J]. AAPG Bulletin, 2001, 85(2):233-260.

    [68]

    McClay K R, Dooley T, Whitehouse P, et al. 4-D evolution of rift systems: insights from scaled physical models[J]. AAPG Bulletin, 2002, 86(6):935-959.

    [69]

    Sun Z, Zhong Z H, Keep M, et al. 3D analogue modeling of the South China Sea: a discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 2009, 34(4):544-556. doi: 10.1016/j.jseaes.2008.09.002

    [70]

    He W G, Shen C B, Wu L, et al. Deformational in curved fold-and-thrust belts: as a function of backstop shape and basal friction: insights from analogue modeling and application to the Pamir salient, Hindu Kush region[J]. Journal of Structural Geology, 2022, 162:104680. doi: 10.1016/j.jsg.2022.104680

    [71] 孙珍, 钟志洪, 周蒂, 等. 红河断裂带的新生代变形机制及莺歌海盆地的实验证据[J]. 热带海洋学报, 2003, 22(2):1-9 doi: 10.3969/j.issn.1009-5470.2003.02.001

    SUN Zhen, ZHONG Zhihong, ZHOU Di, et al. Deformation mechanism of Red River fault zone during Cenozoic and experimental evidences related to Yinggehai Basin Formation[J]. Journal of Tropical Oceanography, 2003, 22(2):1-9.] doi: 10.3969/j.issn.1009-5470.2003.02.001

    [72] 杨刚. 莺歌海盆地红河断裂带左旋走滑构造物理模拟研究[D]. 成都理工大学硕士学位论文, 2018

    YANG Gang. The research on the structural physical simulation of left-lateral strike-slip in Red River Fault Zonem, Yinggehai Basin[D]. Master Dissertation of Chengdu University of Technology, 2018.]

    [73] 何文刚, 沈传波, 吴磊, 等. 底辟构造启动及其沉积建造形成机制探讨: 来自物理模拟的启示[J]. 大地构造与成矿学, 2023, 47(5):1069-1084

    HE Wen’gang, SHEN Chuanbo, WU Lei, et al. Diapiric initiation and Formation mechanism: insights from analogue modelling[J]. Geotectonica et Metallogenia, 2023, 47(5):1069-1084.]

    [74]

    Venâncio M B, Da Silva F C A. Structures evolution along strike-slip fault zones: the role of rheology revealed by PIV analysis of analog modeling[J]. Tectonophysics, 2023, 851:229764. doi: 10.1016/j.tecto.2023.229764

    [75] 杨振宇, Besse J, 孙知明, 等. 印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化[J]. 地质学报, 1998, 72(2):112-125 doi: 10.3321/j.issn:0001-5717.1998.02.003

    YANG Zhenyu, Besse J, SUN Zhiming, et al. Tertiary squeeze-out of the Indo-China Block and lithospheric evolution of the Qinghai-Tibetan Plateau[J]. Acta Geologica Sinica, 1998, 72(2):112-125.] doi: 10.3321/j.issn:0001-5717.1998.02.003

    [76]

    Naylor M A, Mandl G, Supesteijn C H K. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8(7):737-752. doi: 10.1016/0191-8141(86)90022-2

    [77]

    McClay K R. Deformation mechanics in analogue models of extensional fault systems[J]. Geological Society, London, Special Publications, 1990, 54:445-453. doi: 10.1144/GSL.SP.1990.054.01.40

    [78]

    Marques F O, Nogueira C R. Normal fault inversion by orthogonal compression: Sandbox experiments with weak faults[J]. Journal of Structural Geology, 2008, 30(6):761-766. doi: 10.1016/j.jsg.2008.02.015

    [79]

    Dooley T P, Schreurs G. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results[J]. Tectonophysics, 2012, 574-575:1-71. doi: 10.1016/j.tecto.2012.05.030

    [80]

    Reber J E, Cooke M L, Dooley T P. What model material to use? A review on rock analogs for structural geology and tectonics[J]. Earth-Science Reviews, 2020, 202:103107. doi: 10.1016/j.earscirev.2020.103107

    [81]

    Findlay R H, Trinh P T. The Structural setting of the Song Ma Region, Vietnam and the Indochina-South China plate boundary problem[J]. Gondwana Research, 1997, 1(1):11-33. doi: 10.1016/S1342-937X(05)70003-4

    [82]

    Ngo T X, Santosh M, Tran H T, et al. Subduction initiation of Indochina and South China blocks: insight from the forearc ophiolitic peridotites of the Song Ma Suture Zone in Vietnam[J]. Geological Journal, 2016, 51(3):421-442. doi: 10.1002/gj.2640

    [83]

    Wang Y, Lin W, Faure M, et al. Correlation among the Ailaoshan–Song Ma–Song Chay orogenic belts and implications for the evolution of the eastern Paleo-Tethys Ocean[J]. Tectonophysics, 2022, 843:229618. doi: 10.1016/j.tecto.2022.229618

    [84]

    Wu W J, Su C M, Wen S, et al. Three-dimensional velocity structure beneath the Song Ma area, Vietnam[J]. Journal of Structural Geology, 2024, 179:105038. doi: 10.1016/j.jsg.2023.105038

    [85] 李思田, 林畅松, 张启明, 等. 南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J]. 科学通报, 1998, 43(8): 797-810

    LI Sitian, LIN Changsong, ZHANG Qiming, et al. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea[J]. Chinese Science Bulletin, 1999, 44(1): 10-23.]

    [86] 郭令智, 钟志洪, 王良书, 等. 莺歌海盆地周边区域构造演化[J]. 高校地质学报, 2001, 7(1):1-12 doi: 10.3969/j.issn.1006-7493.2001.01.001

    GUO Lingzhi, ZHONG Zhihong, WANG Liangshu, et al. Regional tectonic evolution around Yinggehai Basin of South China Sea[J]. Geological Journal of China Universities, 2001, 7(1):1-12.] doi: 10.3969/j.issn.1006-7493.2001.01.001

    [87] 孙向阳, 任建业. 莺歌海盆地形成与演化的动力学机制[J]. 海洋地质与第四纪地质, 2003, 23(4):45-50

    SUN Xiangyang, REN Jianye. Dynamical mechanism for generation and evolution of Yinggehai Basin, the South China Sea[J]. Marine Geology & Quaternary Geology, 2003, 23(4):45-50.]

    [88] 茹克. 南海北部边缘叠合式盆地的发育及其大地构造意义[J]. 石油与天然气地质, 1988, 9(1):22-31 doi: 10.11743/ogg19880103

    RU Ke. The development of superimposed Basin on the northern margin of the South China Sea and its tectonic significance[J]. Oil & Gas Geology, 1988, 9(1):22-31.] doi: 10.11743/ogg19880103

    [89] 孙家振, 李兰斌, 杨士恭, 等. 转换—伸展盆地—莺歌海的演化[J]. 地球科学, 1995, 4(3):243-249

    SUN Jiazhen, LI Lanbin, YANG Shigong, et al. Evolution of transform-extension Yinggehai Basin[J]. Earth Science-Journal of China University of Geosciences, 1995, 4(3):243-249.]

    [90] 丁中一, 杨小毛, 马莉, 等. 莺歌海盆地拉张性质的研究[J]. 地球物理学报, 1999, 42(1):53-61 doi: 10.3321/j.issn:0001-5733.1999.01.006

    DING Zhongyi, YANG Xiaomao, MA Li, et al. A study of the stretching behavior of the Yinggehai Basin[J]. Chinese Journal of Geophysics, 1999, 42(1):53-61.] doi: 10.3321/j.issn:0001-5733.1999.01.006

    [91]

    McKenzie D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1):25-32. doi: 10.1016/0012-821X(78)90071-7

    [92] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1):77-87

    XIE Xinong, REN Jianye, WANG Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 2015, 22(1):77-87.]

    [93]

    Savva D, Meresse F, Pubellier M, et al. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam[J]. Tectonophysics, 2013, 608:72-83. doi: 10.1016/j.tecto.2013.07.010

    [94]

    Fyhn M B W, Nielsen L H, Boldreel L O, et al. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam[J]. Marine and Petroleum Geology, 2009, 26(1):1-24. doi: 10.1016/j.marpetgeo.2007.07.014

    [95]

    Nguyen H H, Carter A, Hoang L V, et al. Evolution of the continental margin of south to central Vietnam and its relationship to opening of the South China Sea (East Vietnam Sea)[J]. Tectonics, 2022, 41(2):e2021TC006971. doi: 10.1029/2021TC006971

    [96]

    Vu A T, Wessel Fyhn M B, Xuan C T, et al. Cenozoic tectonic and stratigraphic development of the Central Vietnamese continental margin[J]. Marine and Petroleum Geology, 2017, 86:386-401. doi: 10.1016/j.marpetgeo.2017.06.001

    [97] 王海富. 南海海域新生代盆地构造演化的差异性及其成因分析[D]. 西安石油大学硕士学位论文, 2018

    WANG Haifu. Differences and causes of tectonic evolution of the Cenozoic basins in the South China Sea and its adjacent regions[D]. Master Dissertation of Xi’an Shiyou University, 2018.]

  • 期刊类型引用(10)

    1. 李江涛,胡高伟,王任一,项燚伟,纪云开,李润彤,张永年,冯大强. 海域天然气水合物开采对疏松砂岩气藏开发技术的借鉴与创新. 天然气工业. 2025(04): 193-202 . 百度学术
    2. 刘涛,包雪阳,朱翔宇,李安昱. 含天然气水合物储层衰减岩石物理研究进展. 地球与行星物理论评(中英文). 2024(03): 369-380 . 百度学术
    3. 黄佳佳,蒋明镜,王华宁. 中国南海神狐海域水合物储层井壁稳定可靠度分析. 岩土力学. 2024(05): 1505-1516 . 百度学术
    4. 胡高伟,卜庆涛,赵亚鹏,赵文高,王自豪,邱晓倩,刘童. 不同类型水合物成藏特征研究进展. 地质学报. 2024(09): 2557-2578 . 百度学术
    5. 张懿帆,徐顺义,陆祎晨,蒋海岩,袁士宝,任梓寒,王哲. 储层物性变化对天然气水合物分解的影响研究. 石油工业技术监督. 2024(12): 40-46 . 百度学术
    6. 蒋海岩,王浚九,王哲,袁士宝,吕涛. 天然气水合物储层出砂预测方法讨论. 石油工业技术监督. 2023(01): 1-5 . 百度学术
    7. 马宝金,车家琪,王剑,任京文,邓君宇,房东辉. 海域天然气水合物开采方案设计及气液分离特性分析. 石油工程建设. 2023(01): 1-7 . 百度学术
    8. 王磊. 井液侵入水合物储层井壁力学稳定性分析. 西南石油大学学报(自然科学版). 2023(02): 87-96 . 百度学术
    9. 王志刚,巩建雨,吴纪修,尹浩,施山山,闫家,李小洋. 海域天然气水合物钻完井关键技术研究进展. 科技导报. 2023(20): 71-78 . 百度学术
    10. 靳继凯,温欣,张艺博,赵春晖. 基于机器学习的深海能源土降压开采沉降预测. 工业技术与职业教育. 2023(06): 16-19 . 百度学术

    其他类型引用(11)

图(11)  /  表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  4
  • PDF下载量:  52
  • 被引次数: 21
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-03-10
  • 录用日期:  2024-03-10
  • 网络出版日期:  2024-04-25
  • 刊出日期:  2025-04-27

目录

/

返回文章
返回