红河断裂带对南海西部盆地成盆过程影响机制实验研究

张家轩, 郭玲莉, 张京京, 陶圩, 赵淑娟, 王光增, 李三忠

张家轩,郭玲莉,张京京,等. 红河断裂带对南海西部盆地成盆过程影响机制实验研究[J]. 海洋地质与第四纪地质,2025,45(2): 79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101
引用本文: 张家轩,郭玲莉,张京京,等. 红河断裂带对南海西部盆地成盆过程影响机制实验研究[J]. 海洋地质与第四纪地质,2025,45(2): 79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101
ZHANG Jiaxuan,GUO Lingli,ZHANG Jingjing,et al. Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study[J]. Marine Geology & Quaternary Geology,2025,45(2):79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101
Citation: ZHANG Jiaxuan,GUO Lingli,ZHANG Jingjing,et al. Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study[J]. Marine Geology & Quaternary Geology,2025,45(2):79-97. DOI: 10.16562/j.cnki.0256-1492.2024020101

红河断裂带对南海西部盆地成盆过程影响机制实验研究

基金项目: 崂山实验室科技创新项目“基于数字孪生的全球深时地貌重塑与资源环境预测”(LSKJ202204400);国家自然科学基金创新研究群体项目“海底古地貌重建”(42121005);国家自然科学基金重大计划重点支持项目(92058211);李三忠教授泰山学者攀登计划项目(tspd20210305);邢会林教授泰山学者特聘专家计划项目(tstp20221112)
详细信息
    作者简介:

    张家轩(1998—),男,硕士研究生,主要从事海洋地质学研究,E-mail:zhangjiaxuan@stu.ouc.edu.cn

    通讯作者:

    郭玲莉(1985—),女,副教授,硕士生导师,从事构造地质学及海洋地质学研究,E-mail:guolingli@ouc.edu.cn

  • 中图分类号: P736.1

Red River Fault Zone affected the formation of basins in the western South China Sea: An experimental study

  • 摘要:

    红河断裂带的走滑运动对南海西部盆地格架的形成具有一定的影响作用,本研究通过解构青藏高原隆升间歇期红河断裂带的走滑运动过程,探讨红河断裂带与南海西部盆地之间成因的关联性问题。通过砂箱物理模拟实验,模拟研究了印欧板块碰撞背景下红河断裂带的走滑作用对南海西部盆地的形成机制,特别是对莺歌海盆地和中建南盆地的成盆影响。实验结果表明莺歌海盆地和中建南盆地雏形受控于红河断裂带走滑运动所产生的NW向剪切作用,南海打开过程的近SN向伸展作用使盆地规模增大。南海西部莺歌海盆地和中建南盆地早期形成过程中红河断裂带的走滑位移被盆地的边界断层以及内部断层吸收进而控制了盆地35~23 Ma的发育演化。

    Abstract:

    The strike-slip movement of the Red River Fault Zone (RRFZ) affected the formation of the basin in the western part of the South China Sea (SCS) to a certain degree. To characterize the tectonic features of the RRFZ during the uplift interval of the Tibetan Plateau and analyze the relationship between the strike-slip in RRFZ and the basins, especially Yinggehai Basin and Zhongjiannan Basin in the western SCS, sandbox analogue modelling experiments were performed in the context of the India-Eurasia collision. Results indicate that the prototypes of the two basins are controlled by the NW-oriented shear stresses generated by the strike-slip movement of the RRFZ, and the SN-oriented tensional stresses with the SCS opening up and the basin sizes expanding. During the early formation stage of the two basins, the displacement due to the strike-slipping was absorbed by the boundary faults and internal faults of the basins, thus controlling the evolution of the basins during the stage from 35 to 23 Ma.

  • 图  1   新生代南海地区大地构造背景[52, 56]

    Figure  1.   Tectonic setting of the Cenozoic SCS region[52, 56]

    图  2   南海西部构造运动[39, 64]

    Figure  2.   Tectonic movements in the western SCS[39, 64]

    图  3   实验设计

    a:模型基底设计图(顶视图;数字1和2为印支地块,3为南海北缘,4为南海南缘;FR为红河断裂带,FW1和FW2为南海西缘断裂,Fs为马江-黑水河断裂);b:模型立体图(图3a顺时针旋转180°的立体效果;黑色实线框平行短边方向为实验莺歌海盆地的剖面切割方向,橙色实线框平行短边方向为实验中建南盆地的剖面切割方向;块体位置与电机位置对应于a图);c:模型剖面图(位置见图3b中AA')。红色虚线框为数字散斑计算区域,蓝色虚线框为3D扫描区域。

    Figure  3.   The experimental design diagram

    a: Model substrate design diagram (top view. Numbers 1 and 2 show the Indochina Block, 3 shows the northern edge of the SCS, and 4 shows the southern edge of the SCS. FR: the RRFZ; FW1 and FW2: the western margin fault of the South China Sea; Fs: the Song Ma Fault); b: the cut-out view of the experimental apparatus (The stereoscopic effect by 180° clockwise rotation of Fig. 3a. The direction of the short parallel edges of the black solid line box is the direction of the section cut in the experimental Yinggehai Basin, and the direction of the short parallel edges of the green solid line box is the direction of the section cut in the experimental Zhongjiannan Basin. The block position and the motor position corresponds to Fig. 3a); c: model section (see Fig. 3b for AA' location). The red dashed boxes are the digital speckle calculation area, and the blue ones are the 3D scanning area.

    图  4   模型一平面演化

    数字散斑区域见图3b红色虚线框。黄色箭头推动块体实现断裂带的走滑作用,蓝色剪头拉张块体实现海盆打开。第1列:实验图像; 第2列:模型演化解释图;第3列:体应变(ƐV), 红色和蓝色分别代表拉张和挤压,颜色越深代表强度越高;第4列:最大剪应变(Ʈn),颜色从蓝色变为红色代表最大剪应变逐渐变大。D1为电机1的位移量,D2为电机2的位移量。

    Figure  4.   Model 1 Vertical view (red dashed box in Fig. 3b for the DSCM (digital speckle correlation method) area)

    Yellow arrows represent the push direction towards the block to generate the strike-slip, and blue arrows represent the tension of the block to mimicking the opening of the sea basin. The first column: experimental diagram; the second column: model evolution interpretation diagram; the third column: volume strain (ƐV), red and blue represent tension and compression respectively, the darker the color, the higher the strength; the fourth column: maximum shear strain (Ʈn), change in color from blue to red represents a gradual increase in maximum shear strain. D1 is the displacement of motor 1 and D2 is the displacement of motor 2.

    图  5   印支地块弱挤出作用模型3D扫描结果

    扫描区域见图3b蓝色虚线框。a: 断层F2出现时基底断裂位置关系,b: F3出现时基底断裂位置关系,c: 实验加载结束时盆地与基底断裂位置关系。

    Figure  5.   3D scanning results of the weak extrusion model of the Indochina Block

    The blue dashed box in Fig. 3b. a: The basement fault location relationship at the time of the appearance of fault F2, b: the basement fault location relationship at the time of the appearance of F3, c: the location relationship between basin and basement fault at the end of experimental loading.

    图  6   模型一的盆地剖面构造特征

    盆地1代表莺歌海盆地,盆地2代表中建南盆地。剖面中“F”断层与模型表面断层对应,“f”断层为次级断层或伸展断层,剖面图例同图3c

    Figure  6.   Diagram of the internal vertical section of Model 1

    Basin 1 represents the Yinggehai Basin and Basin 2 represents the Zhongjiannan Basin. F indicates major faults in the section correspond to those at the model surface, and f signifies secondary or extension faults. For the sectional illustration please see the legend to Fig. 3c.

    图  7   模型二平面演化

    数字散斑区域见图3b红色虚线框。黄色箭头推动块体实现断裂带的走滑作用,蓝色剪头拉张块体实现海盆打开。第1列:实验图像; 第2列:模型演化解释图;第3列:体应变(ƐV), 红色和蓝色分别代表拉张和挤压,颜色越深代表强度越高;第4列:最大剪应变(Ʈn),颜色从蓝色变为红色代表最大剪应变逐渐变大。D1为电机1的位移量,D2为电机2的位移量。

    Figure  7.   Vertical view of Model 2 (the red dashed box in Fig. 3b is the DSCM (digital speckle correlation method) area)

    Yellow arrows represent the push to the block to generate the strike-slip of the fault zone, and blue arrows represent the tension of the block to realize the opening of the sea basin. The first column: experimental diagram; the second column: model evolution interpretation diagram; the third column: volume strain (ƐV), red and blue represent tension and compression respectively, the darker the color, the higher the strength; the fourth column: maximum shear strain (Ʈn), change in color from blue to red represents a gradual increase in maximum shear strain. D1 is the displacement of motor 1 and D2 is the displacement of motor 2.

    图  9   模型二盆地剖面特征

    盆地1代表莺歌海盆地,盆地2代表中建南盆地。剖面中“F”断层与模型表面断层对应,“f ”断层为次级断层或伸展断层,剖面图例同图3c

    Figure  9.   Diagram of the internal vertical section of Model 2

    Basin 1: the Yinggehai Basin,Basin 2: the Zhongjiannan Basin. F marks the major faults in the section correspond to those on the model surface, and f denotes the secondary or extension faults. For the sectional illustration please see the legend to Fig. 3c.

    图  8   印支地块强挤出作用模型3D扫描结果

    3D扫描区域见图3b蓝色虚线框。a: 断层F1出现时基底断裂位置关系,b: F3出现时基底断裂位置关系,c: 实验加载结束时盆地与基底断裂位置关系。

    Figure  8.   3D scanning results of the strong extrusion model of the Indochina Block

    Blue dashed box in Fig. 3b for the 3D scan area. a: The basement fault location at the time of the appearance of fault F1, b: the basement fault location at the time of the appearance of F3, c: the location relationship between basin and basement fault at the end of experimental loading.

    图  10   南海西部地震剖面与模型剖面对比图

    模型一剖面28对应AA',模型一剖面15与模型二剖面27对应BB',模型一剖面11与模型二剖面14对应CC',模型二剖面12对应DD'。

    Figure  10.   Comparison between seismic sections and model sections of the western SCS

    Model 1 section 28 corresponds to AA', model 1 section 15 and model 2 section 27 corresponds to BB', model 1 section 11 and model 2 section 14 corresponds to CC', and model 2 section 12 corresponds to DD'.

    图  11   南海西部区域构造演化示意图[39, 69, 97]

    Figure  11.   Tectonic evolution of the western part of the SCS[39, 69, 97]

    表  1   实验材料及参数

    Table  1   Experimental materials and parameters

    材料和物理设置 实验参数 性质 相似比
    PVC泡沫板 抗压强度:0.6~25.0 MPa 刚性
    硅胶垫 拉张强度:4.0~12.5 MPa 张性
    石英砂 粒径:120~180 μm 摩尔-库仑准则
    玻璃微珠 粒径:80~100 μm 摩尔-库仑准则
    走滑位移量 5 cm 10−7
    地层厚度 6 cm 10−5
    下载: 导出CSV

    表  2   实验参数设计

    Table  2   Experimental parameters design

    模型 FR、FW
    位移量/cm
    模型尺寸/cm FR、FW加载速率
    /(cm/s)
    Fs加载速率
    /(cm/s)
    南海北缘
    加载速率
    /(cm/s)
    南海南缘
    加载速率
    /(cm/s)
    印支地块弱挤出模型 5 60×40×7 4×10−3 2×10−3 6×10−3 6×10−3
    印支地块强挤出模型 5 60×40×7 4×10−3 2×10−3 6×10−3 6×10−3
    下载: 导出CSV
  • [1] 张连生, 钟大赉. 从红河剪切带走滑运动看东亚大陆新生代构造[J]. 地质科学, 1996, 31(4):327-341

    ZHANG Liansheng, ZHONG Dalai. The Red River strike-slip shear zone and Cenozoic tectonics of East Asia Continent[J]. Chinese Journal of Geology, 1996, 31(4):327-341.]

    [2]

    Molnar P, Fitch T J, Wu F T. Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia[J]. Earth and Planetary Science Letters, 1973, 19(2):101-112. doi: 10.1016/0012-821X(73)90104-0

    [3]

    Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 1984, 307(5946):17-22. doi: 10.1038/307017a0

    [4]

    Chang C F, Chen N S, Coward M P, et al. Preliminary conclusions of the Royal Society and Academia Sinica 1985 Geotraverse of Tibet[J]. Nature, 1986, 323(6088):501-507. doi: 10.1038/323501a0

    [5]

    Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: an experimental approach[J]. Journal of Geophysical Research:Solid Earth, 1988, 93(B12):15085-15117. doi: 10.1029/JB093iB12p15085

    [6]

    Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264(5584):319-324. doi: 10.1038/264319a0

    [7]

    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12):611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    [8]

    Armijo R, Tapponnier P, Han T L. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B3):2787-2838. doi: 10.1029/JB094iB03p02787

    [9]

    Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20):2905-2930. doi: 10.1029/JB082i020p02905

    [10]

    Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B7):3425-3459. doi: 10.1029/JB084iB07p03425

    [11]

    Huchon P, Le Pichon X, Rangin C. Indochina Peninsula and the collision of India and Eurasia[J]. Geology, 1994, 22(1):27-30. doi: 10.1130/0091-7613(1994)022<0027:IPATCO>2.3.CO;2

    [12]

    Li L, Lu S P, Gao R, et al. Seismic reflection imaging of a deep-penetrating red river fault in the Yinggehai Basin, northwest of the South China Sea[J]. Geophysical Research Letters, 2023, 50(19):e2023GL104598. doi: 10.1029/2023GL104598

    [13]

    Zhou D, Ru K, Chen H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1-4):161-177. doi: 10.1016/0040-1951(95)00018-6

    [14]

    Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of southeast Asia[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B4):6299-6328. doi: 10.1029/92JB02280

    [15]

    Gilley L D, Harrison T M, Leloup P H, et al. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B2):2127.

    [16]

    Zhong D L, Tapponnier P, Wu H W, et al. Large-scale strike slip fault: The major structure of intracontinental deformation after collision[J]. Chinese Science Bulletin, 1990, 35(4):304-309.

    [17]

    Wang P L, Lo C H, Lee T Y, et al. Thermochronological evidence for the movement of the Ailao Shan–Red River shear zone: A perspective from Vietnam[J]. Geology, 1998, 26(10):887-890. doi: 10.1130/0091-7613(1998)026<0887:TEFTMO>2.3.CO;2

    [18]

    Zhang L S, Schärer U. Age and origin of magmatism along the Cenozoic Red River shear belt, China[J]. Contributions to Mineralogy and Petrology, 1999, 134(1):67-85. doi: 10.1007/s004100050469

    [19]

    Schärer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: the Red River belt, China[J]. Earth and Planetary Science Letters, 1994, 126(4):379-397. doi: 10.1016/0012-821X(94)90119-8

    [20] 曹淑云, 刘俊来, Leiss B, 等. 哀牢山-红河剪切带左行走滑作用起始时间约束: 点苍山高温糜棱岩的显微构造与热年代学证据[J]. 地质学报, 2009, 83(10):1388-1400 doi: 10.3321/j.issn:0001-5717.2009.10.003

    CAO Shuyun, LIU Junlai, Leiss B, et al. Timing of initiation of left-lateral slip along the Ailao Shan-Red River shear zone: microstructural, texture and Thermochronological evidence from high temperature Mylonites in Diancang Shan, SW China[J]. Acta Geologica Sinica, 2009, 83(10):1388-1400.] doi: 10.3321/j.issn:0001-5717.2009.10.003

    [21] 孙桂华, 彭学超, 黄永健. 红河断裂带莺歌海段地质构造特征[J]. 地质学报, 2013, 87(2):154-166 doi: 10.3969/j.issn.0001-5717.2013.02.002

    SUN Guihua, PENG Xuechao, HUANG Yongjian. Geological structure characteristics of Red River Fault Zone in the Yinggehai Basin[J]. Acta Geologica Sinica, 2013, 87(2):154-166.] doi: 10.3969/j.issn.0001-5717.2013.02.002

    [22]

    Allen C R, Gillespie A R, Han Y, et al. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. GSA Bulletin, 1984, 95(6):686-700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2

    [23]

    Rangin C, Klein M, Roques D, et al. The Red River fault system in the Tonkin Gulf, Vietnam[J]. Tectonophysics, 1995, 243(3-4):209-222. doi: 10.1016/0040-1951(94)00207-P

    [24]

    Replumaz A, Lacassin R, Tapponnier P, et al. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China)[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B1):819-836. doi: 10.1029/2000JB900135

    [25]

    Sun Z, Zhou D, Zhong Z H, et al. Experimental evidence for the dynamics of the formation of the Yinggehai Basin, NW South China Sea[J]. Tectonophysics, 2003, 372(1-2):41-58. doi: 10.1016/S0040-1951(03)00230-0

    [26]

    Schoenbohm L M, Burchfiel B C, Chen L Z, et al. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow[J]. GSA Bulletin, 2006, 118(5-6):672-688. doi: 10.1130/B25816.1

    [27]

    Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    [28]

    Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan—Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1-4):3-10,13-84. doi: 10.1016/0040-1951(95)00070-4

    [29] 任纪舜, 金小赤. 红河断裂的新观察[J]. 地质论评, 1996, 42(5):439-442 doi: 10.3321/j.issn:0371-5736.1996.05.010

    REN Jishun, JIN Xiaochi. New observations of the Red River Fault[J]. Geological Review, 1996, 42(5):439-442.] doi: 10.3321/j.issn:0371-5736.1996.05.010

    [30]

    Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan—Red River shear zone, SE Asia[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B4):6683-6732. doi: 10.1029/2000JB900322

    [31]

    Leloup P H, Tapponnier P, Lacassin R, et al. Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia Journal, Vol. 163, 2006, 1025–1036[J]. Journal of the Geological Society, 2007, 164(6):1253-1260. doi: 10.1144/0016-76492007-065

    [32]

    Mazur S, Green C, Stewart M G, et al. Displacement along the Red River Fault constrained by extension estimates and plate reconstructions[J]. Tectonics, 2012, 31(5):TC5008.

    [33] 姚伯初, 曾维军, 陈艺中, 等. 南海西沙海槽, 一条古缝合线[J]. 海洋地质与第四纪地质, 1994, 14(1):1-10

    YAO Bochu, ZENG Weijun, CHEN Yizhong, et al. Xisha trough of South China Sea—an ancient suture[J]. Marine Geology & Quaternary Geology, 1994, 14(1):1-10.]

    [34] 刘海龄, 姚永坚, 沈宝云, 等. 南海西缘结合带的贯通性[J]. 地球科学——中国地质大学学报, 2015, 40(4):615-632 doi: 10.3799/dqkx.2015.049

    LIU Hailing, YAO Yongjian, SHEN Baoyun, et al. On linkage of western boundary faults of the South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4):615-632.] doi: 10.3799/dqkx.2015.049

    [35] 万玲, 姚伯初, 吴能友. 红河断裂带人海后的延伸及其构造意义[J]. 南海地质研究, 2000(12):22-32

    WAN Ling, YAO Bochu, WU Nengyou. The extending of Honghe Faults in the South China Sea and its tectonic significance[J]. Geological Research of South China Sea, 2000(12):22-32.]

    [36]

    Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao Shan/Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343(6257):431-437. doi: 10.1038/343431a0

    [37] 姚伯初, 万玲, 吴能友. 大南海地区新生代板块构造活动[J]. 中国地质, 2004, 31(2):113-122 doi: 10.3969/j.issn.1000-3657.2004.02.001

    YAO Bochu, WAN Ling, WU Nengyou. Cenozoic plate tectonic activities in the Great South China Sea area[J]. Geology in China, 2004, 31(2):113-122.] doi: 10.3969/j.issn.1000-3657.2004.02.001

    [38] 刘宝明, 夏斌, 李绪宣, 等. 红河断裂带东南的延伸及其构造演化意义[J]. 中国科学 D辑 :地球科学, 2006, 36(10): 914-924

    LIU Baoming, XIA Bing, LI Xuxuan, et al. Southeastern extension of the Red River fault zone (RRFZ) and its tectonic evolution significance in western South China Sea[J]. Science in China Series D: Earth Sciences, 2006, 49(8): 839-850.]

    [39] 安慧婷, 李三忠, 索艳慧, 等. 南海西部新生代控盆断裂及盆地群成因[J]. 海洋地质与第四纪地质, 2012, 32(6):95-111

    AN Huiting, LI Sanzhong, SUO Yanhui, et al. Basin-controlling faults and Formation mechanism of the Cenozoic Basin groups in the western South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6):95-111.]

    [40] 雷超. 南海北部莺歌海—琼东南盆地新生代构造变形格局及其演化过程分析[D]. 中国地质大学博士学位论文, 2012

    LEI Chao. Structure and evolution of Yinggehai and Qiongdongnan Basins, South China Sea: implications for Cenozoic Tectonics in Southeast Asia. Doctor Dissertation of China University of Geosciences, 2012.

    [41] 钟志洪, 王良书, 夏斌, 等. 莺歌海盆地成因及其大地构造意义[J]. 地质学报, 2004, 78(3):302-309 doi: 10.3321/j.issn:0001-5717.2004.03.003

    ZHONG Zhihong, WANG Liangshu, XIA Bin, et al. The dynamics of Yinggehai Basin Formation and its tectonic significance[J]. Acta Geologica Sinica, 2004, 78(3):302-309.] doi: 10.3321/j.issn:0001-5717.2004.03.003

    [42] 王伟平, 姚永坚, 蔡周荣, 等. 中建南盆地后扩张期T5和T3不整合面的发育特征及对南海科学钻探的意义[J]. 地质学报, 2022, 96(8):2822-2832

    WANG Weiping, YAO Yongjian, CAI Zhourong, et al. Characteristics of unconformity T5 and T3 in the Zhongjiannan Basin and their significance for scientific drilling in the South China Sea during the post-spreading Period[J]. Acta Geologica Sinica, 2022, 96(8):2822-2832.]

    [43] 高红芳, 陈玲. 南海西部中建南盆地构造格架及形成机制分析[J]. 石油与天然气地质, 2006, 27(4):512-516 doi: 10.3321/j.issn:0253-9985.2006.04.011

    GAO Hongfang, CHEN Ling. An analysis of structural framework and Formation mechanism of Zhongjiannan Basin in the west of South China Sea[J]. Oil & Gas Geology, 2006, 27(4):512-516.] doi: 10.3321/j.issn:0253-9985.2006.04.011

    [44] 陈玲. 中建南盆地局部构造特征[J]. 海洋地质与第四纪地质, 2008, 28(5):69-75

    CHEN Ling. Analysis of local tectonic characters of Zhongjiannan Basin in South China Sea[J]. Marine Geology & Quaternary Geology, 2008, 28(5):69-75.]

    [45] 高红芳, 王衍棠, 郭丽华. 南海西部中建南盆地油气地质条件和勘探前景分析[J]. 中国地质, 2007, 34(4):592-598 doi: 10.3969/j.issn.1000-3657.2007.04.006

    GAO Hongfang, WANG Yantang, GUO Lihua. Petroleum geological conditions and prospects in the Zhongjiannan Basin in the western South China Sea[J]. Geology in China, 2007, 34(4):592-598.] doi: 10.3969/j.issn.1000-3657.2007.04.006

    [46]

    Liu H, Luan X W, Guo L L, et al. Fault distribution and Formation mechanism of a magnetic quiet zone in the northern South China Sea[J]. Geological Journal, 2016, 51(S1):331-345. doi: 10.1002/gj.2844

    [47]

    Dooley T, McClay K. Analog modeling of pull-apart basins[J]. AAPG Bulletin, 1997, 81(11):1804-1826.

    [48]

    Sims D, Ferrill D A, Stamatakos J A. Role of a ductile décollement in the development of pull-apart basins: Experimental results and natural examples[J]. Journal of Structural Geology, 1999, 21(5):533-554. doi: 10.1016/S0191-8141(99)00010-3

    [49]

    Sun Z, Zhou D, Zhong Z H, et al. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling[J]. Science in China Series D:Earth Sciences, 2006, 49(10):1053-1069. doi: 10.1007/s11430-006-1053-6

    [50]

    Wu J E, McClay K, Whitehouse P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8):1608-1623. doi: 10.1016/j.marpetgeo.2008.06.007

    [51]

    Ding W W, Li J B. Propagated rifting in the Southwest Sub-Basin, South China Sea: insights from analogue modelling[J]. Journal of Geodynamics, 2016, 100:71-86. doi: 10.1016/j.jog.2016.02.004

    [52] 李三忠, 索艳慧, 刘鑫, 等. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 2012, 32(6):55-78

    LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basin dynamics and Basin groups of the South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(6):55-78.]

    [53]

    Taylor B, Hayes D E. The tectonic evolution of the South China Basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington: American Geophysical Union, 1980: 89-104.

    [54]

    Li S Z, Suo Y H, Li X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 2019, 192:91-137. doi: 10.1016/j.earscirev.2019.03.003

    [55]

    Hui G G, Li S Z, Guo L L, et al. A review of geohazards on the northern continental margin of the South China Sea[J]. Earth-Science Reviews, 2021, 220:103733. doi: 10.1016/j.earscirev.2021.103733

    [56]

    Wang P C, Li S Z, Suo Y H, et al. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: a synthesis[J]. Earth-Science Reviews, 2021, 216:103522. doi: 10.1016/j.earscirev.2021.103522

    [57]

    Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1-4):85-138. doi: 10.1016/0040-1951(95)00023-2

    [58] 徐旭辉, 高长林, 黄泽光, 等. 中国盆地形成的三大活动构造历史阶段[J]. 石油与天然气地质, 2005, 26(2):155-162 doi: 10.3321/j.issn:0253-9985.2005.02.006

    XU Xuhui, GAO Changlin, HUANG Zeguang, et al. Three stages of tectonic movements in Formation of petroliferous basins in China[J]. Oil & Gas Geology, 2005, 26(2):155-162.] doi: 10.3321/j.issn:0253-9985.2005.02.006

    [59]

    Pigott J D, Ru K. Basin superposition on the northern margin of the South China Sea[J]. Tectonophysics, 1994, 235(1-2):27-50. doi: 10.1016/0040-1951(94)90015-9

    [60]

    Morley C K. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics, 2002, 347(4):189-215. doi: 10.1016/S0040-1951(02)00061-6

    [61]

    Lei C, Ren J Y. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: implications for extreme crustal thinning ahead of a propagating ocean[J]. Marine and Petroleum Geology, 2016, 77:846-864. doi: 10.1016/j.marpetgeo.2016.07.022

    [62] 姚永坚, 姜玉坤, 曾祥辉. 南沙海域新生代构造运动特征[J]. 中国海上油气(地质), 2002, 16(2):113-117

    YAO Yongjian, JIANG Yukun, ZENG Xianghui. Cenozoic tectonic movements in Nansha area, South China Sea[J]. China Offshore Oil and Gas (Geology), 2002, 16(2):113-117.]

    [63] 张光学, 白志琳. 南海西南部万安盆地构造样式特征、成因及找油意义[J]. 石油实验地质, 1998, 20(3):210-216 doi: 10.11781/sysydz199803210

    ZHANG Guangxue, BAI Zhilin. The characteristics of structural styles and their influences on oil and gas accumulation of the Wan'an Basin in the Southwestern South China Sea[J]. Petroleum Geology & Experiment, 1998, 20(3):210-216.] doi: 10.11781/sysydz199803210

    [64] 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12):3280-3291 doi: 10.3969/j.issn.0001-5733.2011.12.026

    XIE Xinong, ZHANG Cheng, REN Jianye, et al. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12):3280-3291.] doi: 10.3969/j.issn.0001-5733.2011.12.026

    [65]

    Suo Y H, Li S Z, Jin C, et al. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 2019, 196:102884. doi: 10.1016/j.earscirev.2019.102884

    [66]

    Serra S, Nelson R A. Clay modeling of rift asymmetry and associated structures[J]. Tectonophysics, 1988, 153(1-4):307-312. doi: 10.1016/0040-1951(88)90023-6

    [67]

    McClay K, Bonora M. Analog models of restraining Stepovers in strike-slip fault systems[J]. AAPG Bulletin, 2001, 85(2):233-260.

    [68]

    McClay K R, Dooley T, Whitehouse P, et al. 4-D evolution of rift systems: insights from scaled physical models[J]. AAPG Bulletin, 2002, 86(6):935-959.

    [69]

    Sun Z, Zhong Z H, Keep M, et al. 3D analogue modeling of the South China Sea: a discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 2009, 34(4):544-556. doi: 10.1016/j.jseaes.2008.09.002

    [70]

    He W G, Shen C B, Wu L, et al. Deformational in curved fold-and-thrust belts: as a function of backstop shape and basal friction: insights from analogue modeling and application to the Pamir salient, Hindu Kush region[J]. Journal of Structural Geology, 2022, 162:104680. doi: 10.1016/j.jsg.2022.104680

    [71] 孙珍, 钟志洪, 周蒂, 等. 红河断裂带的新生代变形机制及莺歌海盆地的实验证据[J]. 热带海洋学报, 2003, 22(2):1-9 doi: 10.3969/j.issn.1009-5470.2003.02.001

    SUN Zhen, ZHONG Zhihong, ZHOU Di, et al. Deformation mechanism of Red River fault zone during Cenozoic and experimental evidences related to Yinggehai Basin Formation[J]. Journal of Tropical Oceanography, 2003, 22(2):1-9.] doi: 10.3969/j.issn.1009-5470.2003.02.001

    [72] 杨刚. 莺歌海盆地红河断裂带左旋走滑构造物理模拟研究[D]. 成都理工大学硕士学位论文, 2018

    YANG Gang. The research on the structural physical simulation of left-lateral strike-slip in Red River Fault Zonem, Yinggehai Basin[D]. Master Dissertation of Chengdu University of Technology, 2018.]

    [73] 何文刚, 沈传波, 吴磊, 等. 底辟构造启动及其沉积建造形成机制探讨: 来自物理模拟的启示[J]. 大地构造与成矿学, 2023, 47(5):1069-1084

    HE Wen’gang, SHEN Chuanbo, WU Lei, et al. Diapiric initiation and Formation mechanism: insights from analogue modelling[J]. Geotectonica et Metallogenia, 2023, 47(5):1069-1084.]

    [74]

    Venâncio M B, Da Silva F C A. Structures evolution along strike-slip fault zones: the role of rheology revealed by PIV analysis of analog modeling[J]. Tectonophysics, 2023, 851:229764. doi: 10.1016/j.tecto.2023.229764

    [75] 杨振宇, Besse J, 孙知明, 等. 印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化[J]. 地质学报, 1998, 72(2):112-125 doi: 10.3321/j.issn:0001-5717.1998.02.003

    YANG Zhenyu, Besse J, SUN Zhiming, et al. Tertiary squeeze-out of the Indo-China Block and lithospheric evolution of the Qinghai-Tibetan Plateau[J]. Acta Geologica Sinica, 1998, 72(2):112-125.] doi: 10.3321/j.issn:0001-5717.1998.02.003

    [76]

    Naylor M A, Mandl G, Supesteijn C H K. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 1986, 8(7):737-752. doi: 10.1016/0191-8141(86)90022-2

    [77]

    McClay K R. Deformation mechanics in analogue models of extensional fault systems[J]. Geological Society, London, Special Publications, 1990, 54:445-453. doi: 10.1144/GSL.SP.1990.054.01.40

    [78]

    Marques F O, Nogueira C R. Normal fault inversion by orthogonal compression: Sandbox experiments with weak faults[J]. Journal of Structural Geology, 2008, 30(6):761-766. doi: 10.1016/j.jsg.2008.02.015

    [79]

    Dooley T P, Schreurs G. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results[J]. Tectonophysics, 2012, 574-575:1-71. doi: 10.1016/j.tecto.2012.05.030

    [80]

    Reber J E, Cooke M L, Dooley T P. What model material to use? A review on rock analogs for structural geology and tectonics[J]. Earth-Science Reviews, 2020, 202:103107. doi: 10.1016/j.earscirev.2020.103107

    [81]

    Findlay R H, Trinh P T. The Structural setting of the Song Ma Region, Vietnam and the Indochina-South China plate boundary problem[J]. Gondwana Research, 1997, 1(1):11-33. doi: 10.1016/S1342-937X(05)70003-4

    [82]

    Ngo T X, Santosh M, Tran H T, et al. Subduction initiation of Indochina and South China blocks: insight from the forearc ophiolitic peridotites of the Song Ma Suture Zone in Vietnam[J]. Geological Journal, 2016, 51(3):421-442. doi: 10.1002/gj.2640

    [83]

    Wang Y, Lin W, Faure M, et al. Correlation among the Ailaoshan–Song Ma–Song Chay orogenic belts and implications for the evolution of the eastern Paleo-Tethys Ocean[J]. Tectonophysics, 2022, 843:229618. doi: 10.1016/j.tecto.2022.229618

    [84]

    Wu W J, Su C M, Wen S, et al. Three-dimensional velocity structure beneath the Song Ma area, Vietnam[J]. Journal of Structural Geology, 2024, 179:105038. doi: 10.1016/j.jsg.2023.105038

    [85] 李思田, 林畅松, 张启明, 等. 南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J]. 科学通报, 1998, 43(8): 797-810

    LI Sitian, LIN Changsong, ZHANG Qiming, et al. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea[J]. Chinese Science Bulletin, 1999, 44(1): 10-23.]

    [86] 郭令智, 钟志洪, 王良书, 等. 莺歌海盆地周边区域构造演化[J]. 高校地质学报, 2001, 7(1):1-12 doi: 10.3969/j.issn.1006-7493.2001.01.001

    GUO Lingzhi, ZHONG Zhihong, WANG Liangshu, et al. Regional tectonic evolution around Yinggehai Basin of South China Sea[J]. Geological Journal of China Universities, 2001, 7(1):1-12.] doi: 10.3969/j.issn.1006-7493.2001.01.001

    [87] 孙向阳, 任建业. 莺歌海盆地形成与演化的动力学机制[J]. 海洋地质与第四纪地质, 2003, 23(4):45-50

    SUN Xiangyang, REN Jianye. Dynamical mechanism for generation and evolution of Yinggehai Basin, the South China Sea[J]. Marine Geology & Quaternary Geology, 2003, 23(4):45-50.]

    [88] 茹克. 南海北部边缘叠合式盆地的发育及其大地构造意义[J]. 石油与天然气地质, 1988, 9(1):22-31 doi: 10.11743/ogg19880103

    RU Ke. The development of superimposed Basin on the northern margin of the South China Sea and its tectonic significance[J]. Oil & Gas Geology, 1988, 9(1):22-31.] doi: 10.11743/ogg19880103

    [89] 孙家振, 李兰斌, 杨士恭, 等. 转换—伸展盆地—莺歌海的演化[J]. 地球科学, 1995, 4(3):243-249

    SUN Jiazhen, LI Lanbin, YANG Shigong, et al. Evolution of transform-extension Yinggehai Basin[J]. Earth Science-Journal of China University of Geosciences, 1995, 4(3):243-249.]

    [90] 丁中一, 杨小毛, 马莉, 等. 莺歌海盆地拉张性质的研究[J]. 地球物理学报, 1999, 42(1):53-61 doi: 10.3321/j.issn:0001-5733.1999.01.006

    DING Zhongyi, YANG Xiaomao, MA Li, et al. A study of the stretching behavior of the Yinggehai Basin[J]. Chinese Journal of Geophysics, 1999, 42(1):53-61.] doi: 10.3321/j.issn:0001-5733.1999.01.006

    [91]

    McKenzie D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1):25-32. doi: 10.1016/0012-821X(78)90071-7

    [92] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1):77-87

    XIE Xinong, REN Jianye, WANG Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 2015, 22(1):77-87.]

    [93]

    Savva D, Meresse F, Pubellier M, et al. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam[J]. Tectonophysics, 2013, 608:72-83. doi: 10.1016/j.tecto.2013.07.010

    [94]

    Fyhn M B W, Nielsen L H, Boldreel L O, et al. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam[J]. Marine and Petroleum Geology, 2009, 26(1):1-24. doi: 10.1016/j.marpetgeo.2007.07.014

    [95]

    Nguyen H H, Carter A, Hoang L V, et al. Evolution of the continental margin of south to central Vietnam and its relationship to opening of the South China Sea (East Vietnam Sea)[J]. Tectonics, 2022, 41(2):e2021TC006971. doi: 10.1029/2021TC006971

    [96]

    Vu A T, Wessel Fyhn M B, Xuan C T, et al. Cenozoic tectonic and stratigraphic development of the Central Vietnamese continental margin[J]. Marine and Petroleum Geology, 2017, 86:386-401. doi: 10.1016/j.marpetgeo.2017.06.001

    [97] 王海富. 南海海域新生代盆地构造演化的差异性及其成因分析[D]. 西安石油大学硕士学位论文, 2018

    WANG Haifu. Differences and causes of tectonic evolution of the Cenozoic basins in the South China Sea and its adjacent regions[D]. Master Dissertation of Xi’an Shiyou University, 2018.]

图(11)  /  表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  0
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-03-10
  • 录用日期:  2024-03-10
  • 网络出版日期:  2024-04-25
  • 刊出日期:  2025-04-27

目录

    /

    返回文章
    返回