黄河从未经由永定河入海

林欣如, 肖国桥, 杨吉龙, 潘卿, 赵卿宇, 梁美艳

林欣如,肖国桥,杨吉龙,等. 黄河从未经由永定河入海[J]. 海洋地质与第四纪地质,2024,44(2): 46-54. DOI: 10.16562/j.cnki.0256-1492.2024013103
引用本文: 林欣如,肖国桥,杨吉龙,等. 黄河从未经由永定河入海[J]. 海洋地质与第四纪地质,2024,44(2): 46-54. DOI: 10.16562/j.cnki.0256-1492.2024013103
LIN Xinru,XIAO Guoqiao,YANG Jilong,et al. The Yellow River never flows into the sea through the Yongding River[J]. Marine Geology & Quaternary Geology,2024,44(2):46-54. DOI: 10.16562/j.cnki.0256-1492.2024013103
Citation: LIN Xinru,XIAO Guoqiao,YANG Jilong,et al. The Yellow River never flows into the sea through the Yongding River[J]. Marine Geology & Quaternary Geology,2024,44(2):46-54. DOI: 10.16562/j.cnki.0256-1492.2024013103

黄河从未经由永定河入海

基金项目: 国家自然科学基金项目“大陆演化与季风系统演变”(42488201),“青藏高原东北部黄土物源及其古大气环流意义”(41672338),“华北平原钻孔物源记录的黄河贯通时间”(41972196)
详细信息
    作者简介:

    林欣如 (1995—),女,硕士研究生,地理学专业,E-mail:lxr_0610@163.com

    通讯作者:

    梁美艳(1980— ),女,副教授,主要从事地貌学及第四纪地质学研究,E-mail:liangfan99@126.com

  • 中图分类号: P941.77,P736

The Yellow River never flows into the sea through the Yongding River

  • 摘要:

    黄河是中国第二长河,其形成和演化对中国地貌格局的演化和古气候变化具有重要的指示意义。19世纪以来,陆续有学者提出黄河在沿三门峡入海之前曾由河套盆地向东经由永定河入海的猜想,这一假想的河流可称为“北黄河”。这一猜想在地理学领域有较广泛的影响,然而,一直以来却鲜有证据明确证实或证伪这一猜想。本文综合新近发表的华北平原钻孔物源证据、汾渭盆地沉积和三门峡地区的地貌证据对这一猜想进行了探讨。这些证据表明,在约1.6 MaBP之前,位于永定河冲积扇及渤海湾沿岸的所有钻孔均未接收到来自黄河上游和中游的物质,表明此阶段三门峡和北黄河都未开通;而在约1.6 MaBP后,黄河上游和中游的物质开始进入渤海湾,但永定河冲积扇仍缺乏来自黄河上游和中游的物质。结合汾渭盆地三门组在约1.6 Ma快速结束并转变为黄土沉积的证据判断:黄河在约1.6 Ma以前尚未贯通,在约1.6 Ma以后经由三门峡进入华北平原东流入海,即黄河从未经由永定河入海。

    Abstract:

    As the second longest river in China, the formation and evolution of the Yellow River is of great significance to the evolution of geomorphic pattern and paleoclimate change in China. Since the 19th century, scholars have put forward a hypothesis that the Yellow River once entered the sea from Hetao Basin to the east through the Yongding River before entering the sea along the Sanmen Gorge. This imaginary river can be called "North proto-Yellow River" and has wide influence in the field of geography. However, there has been little evidence to definitively confirm or disprove it. In this paper, this hypothesis was discussed based on recently published data of the boreholes in the North China Plain, the sedimentary evidence in the Fenwei Basin, and the geomorphic evidence in the Sanmen Gorge. These lines of evidence show that no materials from the Upper and Middle reaches of the Yellow River had been transported to these boreholes located in the alluvial fan of the Yongding River and along the coast of Bohai Bay before 1.6 Ma, indicating that the Sanmen Gorge and the North proto-Yellow River were not opening at this time. The materials from the Upper and Middle reaches of the Yellow River began to enter the Bohai Bay after 1.6 Ma, and the alluvial fan of the Yongding River still lacked materials from the Upper and Middle reaches of the Yellow River. Combined with the sedimentary evidence from the Sanmen Formation in the Fenwei Basin where the lacustrine depositions rapidly ended and changed to loess depositions at about 1.6 Ma, it could be concluded that the Yellow River was not yet fully connected before 1.6 Ma, and it entered the North China Plain through Sanmen Gorge, and thus the Yellow River never flowed into the sea through the Yongding River.

  • 黄河是中国第二长河,发源于青藏高原东北部,依次流经黄土高原和华北平原,流域横跨中国的三级地貌阶梯(图1)。黄河主河道蜿蜒曲折,形成过程和历史复杂,其形成和演化被认为与东亚宏观地貌格局的形成、青藏高原和黄土高原的构造活动及上新世以来的气候变化等因素相关[1-17]。近年来,学者们对黄河的形成和演化开展了大量研究,取得了丰硕的成果[3-17],但仍存在较多争议。这些争议可概况为三方面问题:(1)黄河是如何演化为现今流域路径的[1, 3, 7, 13]?(2)黄河是何时贯通为统一大河并东流入海的[1, 2, 4-17]?(3)黄河的形成和演化主要受构造控制还是气候变化影响[1-4, 7-10, 13-16]?限于篇幅,本文仅就第一方面的问题展开讨论。

    图  1  黄河及永定河流域分布图
    Figure  1.  Location of the Yellow River and Yongding River basin

    对于黄河流域路径的演化,19世纪以来,前人陆续提出了多种不同见解。1862—1865年间,美国地质学家Pumpelly曾在中国考察,他在岱海、洋河一带观察到大量黄土。由于当时他认为黄土是水成沉积物,而如此大范围的细颗粒黄土不可能来自近源物质,因此他推测这些黄土来自黄河的搬运,并认为黄河曾沿托克托附近的黑河(今大黑河)东流入岱海,并沿洋河和永定河入海[18]。这一假想的河道可称为“北黄河”。1922年,Clapp[19]指出,渭河河谷远比晋陕峡谷宽阔,且渭河源头靠近黄河上游支流洮河,因而提出渭河和洮河曾为黄河的干流和源头的猜想。这一假想的河道可称为“南黄河”。近年来,也有学者依据渭河盆地古近纪冲积物的分布,支持始新世至晚中新世期间黄河沿“南黄河”直流入海的观点[3]。另外,德国学者Kohler[20]认为泾河曾是古黄河的上游。国内亦有不少学者较早对黄河流域路径的形成和演化问题进行了研究并做出了重要贡献。例如,王竹泉[21]认为黄河曲折而复杂的流域路径主要受各地构造所制约;杨钟健等[22-23]认为现代黄河是由多个地方性水系相互连接贯通而成。值得注意的是,近年来,黄河是由多个内流水系贯通及黄河河道受构造线控制的观点得到了许多证据的支持[1, 8, 13, 24]

    对于Pumpelly基于黄土为水成成因提出的“北黄河”猜想,李希霍芬随即提出了黄土的风成学说[25],而Pumpelly后来也转而支持李希霍芬的风成学说[26],因此,“北黄河”的猜想已失去根基。尽管如此,“北黄河”猜想仍然形成了十分深远的影响。例如,李四光在北京平原西部观察到巨大的冲积扇,认为这是搬运能力巨大的河流所形成,因此支持“北黄河”猜想[27]。丁骕主张在中新世至上新世时期河套盆地曾是永定河的上游,后由于岱海以北地区隆起,大黑河倒流向西,才形成今日黄河急转进入晋陕峡谷之形势[28]。另外,李荣全[29]根据永定河上游和三门峡地区的河谷地貌证据认为,永定河上游和三门峡盆地都经历了上新世之前外流、上新世至早更新世内流、中更新世再外流的过程。至今,有学者设想早更新世永定河上游的泥河湾盆地可能与河套盆地相连,结合永定河的深切河谷,仍赞成“北黄河”的观点[30]。针对是否存在“北黄河”的问题,本文依据河流侵蚀和堆积之间的源汇关系,搜集了永定河下游冲积扇以及渤海湾地区沉积钻孔中的碎屑锆石U-Pb年龄数据,与永定河上游及黄河中上游物源区的物质进行对比,并结合汾渭盆地的沉积环境演化、晋陕峡谷和三门峡地区的地貌演化,探讨了黄河河道演化的路径和年代。

    依据河流侵蚀-堆积原理,来自河流上游及中游的侵蚀物会在其下游发生堆积,二者为相关沉积物,具有明确的物源关系。发源于青藏高原的长江、黄河等大河,不断将中上游的碎屑物质搬运到下游沉积,将沉积区的物质与物源区进行对比,并结合磁性地层定年,是探究河流贯通时代的基本思路[13, 31-32]。具有较高抗风化能力的碎屑锆石广泛存在于河流沉积物中,是开展河流物源示踪研究的理想矿物[13, 32]。华北平原位于黄河下游,在黄河贯通以前,华北平原的物源主要来自燕山、太行山以及鲁中山区的近缘河流冲积物[13, 17]。一旦黄河贯通,来自青藏高原东北缘、黄土高原以及鄂尔多斯地块的物质必将出现在华北平原。倘若存在“北黄河”,位于华北平原西北部的永定河冲积扇及更下游的渤海湾地区的钻孔中必将保存有来自黄河中游和上游的碎屑物。下文将基于近年来发表的永定河冲积扇以及渤海湾沿岸钻孔的碎屑锆石年龄数据,探讨黄河中上游物质是通过永定河还是三门峡进入华北平原,以及进入华北平原的时间。

    目前,华北平原北部已有5个具备可靠磁性地层年代标尺的钻孔(G2、G3、G4、CK3及PGZ01)开展了碎屑锆石物源的研究(图1),这些钻孔的底界年代均穿透了第四纪,部分钻孔甚至超过8 Ma[13, 16]。其中,PGZ01钻孔位于太行山北部山前的永定河冲积扇,记录了上新世以来永定河的沉积历史;钻孔G2、G3、G4、CK3位于渤海湾西岸,其既处于永定河下游又处于现代黄河的入海口附近,由此能够同时接受来自永定河上游及经由三门峡搬运而来的黄河中游物质。很显然,这些钻孔的潜在物源区包括其北部的燕山和西部的太行山、南部的鲁中山地、黄河中游鄂尔多斯地块和上游松潘-甘孜地块。图2显示了这5个钻孔的碎屑锆石U-Pb年龄谱,皆存在120~200 Ma、200~350 Ma、1600~2200 Ma和2200~2700 Ma 4个显著的峰值。对比5个钻孔1.6 Ma以前与1.6 Ma以后的碎屑锆石U-Pb年龄谱发现:1.6 Ma以前350~550 Ma年龄组锆石在G2、G3中明显缺失,在G4、CK3中含量很少(2.9%~4.1%),而1.6 Ma以后此年龄组锆石含量在4个渤海湾沉积钻孔中都有显著增加(5.9%~15.5%)。由此可见,渤海湾沉积钻孔的物源在1.6 Ma前后存在明显变化。然而,PGZ01钻孔中350~550 Ma的锆石没有发生显著增加,而120~200 Ma的锆石明显增加。为了揭示上述物源变化的原因,我们将5个钻孔的碎屑锆石年龄谱与黄河下游的燕山、太行山地区和鲁中山区、黄河中游的鄂尔多斯地块、上游的松潘-甘孜地块等潜在物源区及现代黄河下游冲积物(图3)进行对比,结果显示:1.6 Ma以前这些钻孔的碎屑锆石U-Pb年龄谱与燕山、太行山地区和鲁中山区等华北克拉通东部基底及燕山期岩浆活动的年龄[33]相似,表明1.6 Ma以前5个钻孔都仅接收到来自华北平原周边的近源碎屑物。1.6 Ma以后,渤海湾沿岸的4个钻孔中350~550 Ma年龄组锆石同步大幅增加,这一年龄组分在黄河下游的燕山、太行山和鲁中山区含量极少,而在中上游的鄂尔多斯、松潘-甘孜地区地块以及现代黄河下游沉积中大量存在,这意味着黄河中、上游的物质在约1.6 Ma以后开始进入渤海湾,但其未到达PGZ01钻孔附近。

    图  2  永定河冲积扇和渤海湾沉积钻孔碎屑锆石U-Pb年龄分布
    G2、G3、CK3钻孔数据引自[13],G4、PGZ01钻孔数据引自[16]。
    Figure  2.  The detrital-zircon U-Pb age distribution from the borehole of Yongding River alluvial fan and Bohai Bay
    Data of G2, G3 and CK3 boreholes are from [13], and those of G4 and PGZ01 boreholes from [16].
    图  3  潜在源区以及现代黄河下游的碎屑锆石U-Pb年龄分布
    (a)燕山、太行山数据引自[33-35],(b)鲁中山地数据引自[24, 35-36],(c)鄂尔多斯地块数据引自[37-38],(d)松潘-甘孜地块数据引自[39-40],(e)现代黄河下游数据引自[33, 41]。
    Figure  3.  Detrital-zircon U-Pb age distribution in potential source areas and the lower reaches of modern Yellow River
    (a) Data of Yanshan and Taihang Mountains [33-35],(b) data of Shandong central mountains [24, 35-36],(c) data of Ordos block [37-38], (d) data of Songpan-Ganzi block [39-40], (e) data of modern lower Yellow River [33, 41].

    综合上述5个钻孔的物源证据来看,位于永定河冲积扇的PGZ01钻孔自上新世以来一直缺乏来自黄河上游和中游的物质,表明黄河上新世以来未经由永定河入海;渤海湾沿岸钻孔在8.5~1.6 Ma期间也没有来自黄河上游和中游的物质,表明无论是“北黄河”还是三门峡在8.5~1.6 Ma期间都没有开启。另外,最近对渤海湾盆地中新世地层物源的研究表明,黄河中游的物质在中新世期间也不曾进入渤海湾盆地[24],表明在1.6 Ma之前,不存在任何可将鄂尔多斯地区物质输送到华北平原的河道。而渤海湾沿岸的4个钻孔从约1.6 Ma开始出现黄河中游的物质,必然是三门峡开启的结果。下文将进一步依据沉积和地貌证据,论证黄河中、上游物质是通过三门峡而非“北黄河”进入华北平原的。

    汾渭盆地是位于鄂尔多斯地块和秦岭山脉之间的一个大型半地堑沉积盆地,盆地内堆积了巨厚的新生代河湖相沉积[9, 14]。汾渭盆地的东部为太行山南部的王屋山及崤山,在三门峡开启之前,由于这些山脉阻挡,盆地的水及黄河中游的泥沙不能进入华北平原。大量证据表明,汾渭盆地在早更新世以前曾是区域汇水中心,形成一个巨型湖泊——三门古湖[1, 14, 42]。在汾渭盆地的上新统游河组和下更新统三门组河湖相地层中,学者们发现了多种咸水-半咸水环境的介形类和有孔虫化石组合[43-45],表明三门古湖曾是一个封闭的内流湖,古盐度恢复的结果也支持这一观点[42]。由于湖盆相对封闭且缺乏泄水通道,三门古湖一直持续发育至早更新世。

    如上文所述,由于不存在“北黄河”,三门峡是黄河中上游物质进入华北平原的唯一通道,汾渭盆地紧邻三门峡且地处中国地貌的二级阶梯边缘,一旦三门峡基岩山地被切穿,汾渭盆地封闭的地貌格局将会被打破,三门古湖湖水将快速外泄而消亡,三门组的湖相沉积也会随即结束。同时,由于汾渭盆地位于黄土高原南缘,第四纪以来持续接受来自西北干旱区的粉尘沉积,当盆地中河湖相沉积消亡后会出现典型的黄土堆积。因此,汾渭盆地中河湖相沉积大面积消失并转变为黄土沉积即指示着三门峡的开启。最近对汾渭盆地张村剖面[14]沉积环境演化的研究证实了这一点。该剖面位于汾渭盆地最东端的次级盆地三门峡盆地,地层跨越2.7~0.4 Ma,记录了三门峡开启导致的盆地沉积环境的转变。详细的年代学研究揭示这一转变发生在约1.6 Ma。该剖面1.6 Ma以前的地层为三门组河湖相沉积,而在约1.6 Ma三门组沉积突然结束,随后开始堆积黄土-古土壤序列,指示该地区经历了从水下沉积环境到气下沉积环境的快速转换。这一转变标志着黄河在约1.6 Ma贯通三门峡并袭夺了三门古湖,导致三门古湖快速消亡。

    三门峡的开启导致了汾渭盆地内的湖相沉积大范围消失并转变为黄土沉积,仅剩运城盐湖[46]、卤阳湖[47]等几个局地凹陷内的湖相沉积仍残留至今。我们总结了汾渭盆地内渭河盆地、运城盆地、三门峡盆地等次级盆地的多个剖面的沉积序列(图4),这些剖面都记录了从湖相沉积到黄土沉积的转变,其三门组沉积结束的时间集中于1.9~1.2 Ma期间[14, 45, 48-54]。有的剖面湖相沉积消亡的时间晚于1.6 Ma,是由于这些地点处于湖泊中心且距离三门峡出口较远,反之,处于湖滨的剖面则消亡较早。此外,三门古湖消亡之前始终保持碎屑沉积,缺乏石膏、钾盐等蒸发岩,这也表明三门古湖并非因干旱而逐渐干涸。值得注意的是,汾渭盆地被袭夺的时间与黄河下游渤海湾地区钻孔物源转变的时间一致[55-56],表明三门峡贯通是导致华北平原物源在约1.6 Ma发生转变的原因,从而进一步排除了黄河从河套盆地东部经由永定河入海的可能。最近的一些研究[13-14]认为,约1.6 Ma黄河的贯通显著晚于青藏高原在中新世和上新世时期的抬升,但早于约1.1 Ma开始的“昆仑-黄河运动”[57],因此排除了构造因素对黄河贯通的影响;而全球气候在晚上新世以来波动幅度不断加剧[58],气候波动加剧可导致全球海平面变化幅度加大而增强河流的溯源侵蚀能力[59],这可能导致了华北平原上的河流通过溯源侵蚀切开三门峡并袭夺三门古湖,并最终形成贯通的黄河[13-14]

    图  4  汾渭盆地内新近系-第四系沉积剖面及其由湖相沉积向黄土沉积的转变时代
    Figure  4.  The Neogene-Quaternary sedimentary profile in the Fen-Wei Basin and the transitional period from lacustrine to loess deposition

    夷平面是在长期稳定的构造和气候条件下,由剥蚀和夷平作用形成的平缓地形。戴维斯的侵蚀旋回理论认为,夷平面的出现代表着地貌演化进入老年期,当进入下一个侵蚀旋回后,早期的夷平面会遭到快速下切,形成深切河谷,夷平面随之逐渐解体[60]。因此,夷平面被深切常伴随着水系的演化和重组。黄河作为我国北方横跨多个地貌单元的大型河流,其贯通的时代必然晚于夷平面的年代,同时,其贯通后形成的一系列河流阶地的海拔也必然低于夷平面。在黄河中游的晋陕峡谷和三门峡地区,广泛分布着一个夷平面,被称为唐县期夷平面[61- 62]。对三门峡地区唐县期夷平面之上的三趾马红土和第四纪黄土序列的磁性地层研究表明,该区唐县期夷平面形成于晚上新世,年代为3~3.7 Ma[12, 63]。因此,黄河贯通的年代必然晚于3 Ma。

    在唐县期夷平面之下,黄河贯通之后发育了一系列河流阶地,其最高河流阶地记录了河流初次快速下切的阶段,虽然其年代略晚于河流开始下切的时间,但据此可估算黄河形成的最晚年代。对三门峡地区的夷平面及河流阶地的研究表明,该区的唐县期夷平面之下发育了3—5级黄河阶地(表1[4-5, 9, 12]。依据前人的研究和我们的野外调查,三门峡地区的唐县期夷平面海拔在550~570 m之间,而该区的最高河流阶地海拔均低于这一高度。研究显示,三门峡附近的会兴镇、陕县王家崖、马坡等地的黄河最高阶地的年代为1.24~1.5 Ma[4, 9, 12]。三门峡东段的扣马地区的最高阶地形成于1.165 Ma前[5]。由此可见,汾渭盆地内部以及三门峡段黄河阶地的发育年代充分说明黄河贯通三门峡的时间不晚于1.24~1.5 Ma。结合三门峡地区的夷平面的年代,可以推测黄河贯通三门峡的时间应在3~1.5 Ma之间。值得注意的是,华北平原的物源转变及汾渭盆地三门古湖消亡的时间为约1.6 Ma,落在了这一时间范围内。

    表  1  三门峡地区唐县期夷平面及黄河阶地剖面的海拔与年代
    Table  1.  Altitude and age of the Tangxian planation and Yellow River terrace section in Sanmenxia area
    剖面位置阶地数最高阶地年代/Ma最高阶地海拔/m夷平面年代/Ma夷平面海拔/m
    三门峡[12]51.24394.13.63550~570
    马坡[9]51.3(T4)389(T4)550~570
    会兴镇[4]40.865180550~570
    扣马[5]31.165220
    夏县、窑头[63]3.1~3.03840~1010
    下载: 导出CSV 
    | 显示表格

    位于华北平原东北部的永定河冲积扇及渤海湾的多个晚中新世以来的钻孔物源证据表明,华北平原在约1.6 Ma以前缺乏黄河中游及上游的物源贡献,表明黄河不可能沿永定河或三门峡进入华北平原;而1.6 Ma之后,永定河冲积扇仍然缺乏黄河中游及上游的物源贡献,但渤海湾的钻孔中却出现了来自黄河中游的物质,表明黄河在约1.6 Ma是通过三门峡而非永定河进入华北平原。同时,汾渭盆地的沉积学证据以及三门峡地区的地貌证据共同指示了三门峡是地质历史时期黄河东流入海的唯一通道,黄河从未经由永定河入海。

  • 图  1   黄河及永定河流域分布图

    Figure  1.   Location of the Yellow River and Yongding River basin

    图  2   永定河冲积扇和渤海湾沉积钻孔碎屑锆石U-Pb年龄分布

    G2、G3、CK3钻孔数据引自[13],G4、PGZ01钻孔数据引自[16]。

    Figure  2.   The detrital-zircon U-Pb age distribution from the borehole of Yongding River alluvial fan and Bohai Bay

    Data of G2, G3 and CK3 boreholes are from [13], and those of G4 and PGZ01 boreholes from [16].

    图  3   潜在源区以及现代黄河下游的碎屑锆石U-Pb年龄分布

    (a)燕山、太行山数据引自[33-35],(b)鲁中山地数据引自[24, 35-36],(c)鄂尔多斯地块数据引自[37-38],(d)松潘-甘孜地块数据引自[39-40],(e)现代黄河下游数据引自[33, 41]。

    Figure  3.   Detrital-zircon U-Pb age distribution in potential source areas and the lower reaches of modern Yellow River

    (a) Data of Yanshan and Taihang Mountains [33-35],(b) data of Shandong central mountains [24, 35-36],(c) data of Ordos block [37-38], (d) data of Songpan-Ganzi block [39-40], (e) data of modern lower Yellow River [33, 41].

    图  4   汾渭盆地内新近系-第四系沉积剖面及其由湖相沉积向黄土沉积的转变时代

    Figure  4.   The Neogene-Quaternary sedimentary profile in the Fen-Wei Basin and the transitional period from lacustrine to loess deposition

    表  1   三门峡地区唐县期夷平面及黄河阶地剖面的海拔与年代

    Table  1   Altitude and age of the Tangxian planation and Yellow River terrace section in Sanmenxia area

    剖面位置阶地数最高阶地年代/Ma最高阶地海拔/m夷平面年代/Ma夷平面海拔/m
    三门峡[12]51.24394.13.63550~570
    马坡[9]51.3(T4)389(T4)550~570
    会兴镇[4]40.865180550~570
    扣马[5]31.165220
    夏县、窑头[63]3.1~3.03840~1010
    下载: 导出CSV
  • [1] 朱照宇. 黄河中游河流阶地的形成与水系演化[J]. 地理学报, 1989, 44(4):429-440 doi: 10.3321/j.issn:0375-5444.1989.04.007

    ZHU Zhaoyu. The formation of river terraces and evolution of drainage system in the middle Yellow River[J]. Acta Geographica Sinica, 1989, 44(4):429-440.] doi: 10.3321/j.issn:0375-5444.1989.04.007

    [2]

    Li J J, Fang X M, Ma H Z, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic[J]. Science in China (Series D), 1996, 39(4):380-390.

    [3]

    Lin A M, Yang Z Y, Sun Z M, et al. How and when did the Yellow River develop its square bend?[J]. Geology, 2001, 29(10):951-954. doi: 10.1130/0091-7613(2001)029<0951:HAWDTY>2.0.CO;2

    [4] 潘保田, 王均平, 高红山, 等. 从三门峡黄河阶地的年代看黄河何时东流入海[J]. 自然科学进展, 2005, 15(6): 700-705

    PAN Baotian, WANG Junping, GAO Hongshan, et al. Terrace dating as an archive of the run-through of the Sanmen Gorges[J]. Progress in Natural Science, 2005, 15(12): 1096-1103.]

    [5]

    Pan B T, Wang J P, Gao H S, et al. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges[J]. Chinese Science Bulletin, 2005, 50(7):657-664. doi: 10.1360/03wd0290

    [6]

    Jiang F C, Fu J L, Wang S B, et al. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 2007, 175(1):62-70. doi: 10.1016/j.quaint.2007.03.022

    [7]

    Craddock W H, Kirby E, Harkins N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration[J]. Nature Geoscience, 2010, 3(3):209-213. doi: 10.1038/ngeo777

    [8] 袁宝印, 汤国安, 周力平, 等. 新生代构造运动对黄土高原地貌分异与黄河形成的控制作用[J]. 第四纪研究, 2012, 32(5):829-838 doi: 10.3969/j.issn.1001-7410.2012.05.01

    YUAN Baoying, TANG Guoan, ZHOU Liping, et al. Control action on the geomorphic differentiation in loess plateau and the formation of Yellow River by Cenozoic tectogenesis[J]. Quaternary Sciences, 2012, 32(5):829-838.] doi: 10.3969/j.issn.1001-7410.2012.05.01

    [9]

    Kong P, Jia J, Zheng Y. Time constraints for the Yellow River traversing the Sanmen Gorge[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(2):395-407. doi: 10.1002/2013GC004912

    [10]

    Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago[J]. Scientific Reports, 2017, 7(1):2827. doi: 10.1038/s41598-017-03140-x

    [11]

    Li B F, Sun D H, Xu W H, et al. Paleomagnetic chronology and paleoenvironmental records from drill cores from the Hetao Basin and their implications for the formation of the Hobq Desert and the Yellow River[J]. Quaternary Science Reviews, 2017, 156:69-89. doi: 10.1016/j.quascirev.2016.11.023

    [12]

    Hu Z B, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment[J]. Quaternary Science Reviews, 2017, 166:324-338. doi: 10.1016/j.quascirev.2017.02.026

    [13]

    Xiao G Q, Sun Y Q, Yang J L, et al. Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546:109691. doi: 10.1016/j.palaeo.2020.109691

    [14]

    Xiao G Q, Pan Q, Zhao Q Y, et al. Early Pleistocene integration of the Yellow River II: Evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577:110550. doi: 10.1016/j.palaeo.2021.110550

    [15]

    Wang X, Hu G, Saito Y, et al. Did the modern Yellow River form at the Mid-Pleistocene transition?[J]. Science Bulletin, 2022, 67(15):1603-1610. doi: 10.1016/j.scib.2022.06.003

    [16]

    Yang J L, Yuan H F, Hu Y Z, et al. Significance of sedimentary provenance reconstruction based on borehole records of the North China Plain for the evolution of the Yellow River[J]. Geomorphology, 2022, 401:108077. doi: 10.1016/j.geomorph.2021.108077

    [17]

    Shen Y F, Liang M Y, Wu J X, et al. Detrital-zircon evidence for the origin of the late Quaternary loess in Qingzhou, Shandong Province and its implications for the evolution of the Yellow River[J]. Journal of Earth Science, 2022, 33(1):205-214. doi: 10.1007/s12583-021-1489-9

    [18]

    Pumpelly R. Geological Researches in China, Mongolia, and Japan: During the Years 1862-1865[M]. Washington: Smithsonian Institution Press, 1866.

    [19]

    Clapp F G. The Hwang Ho, Yellow River[J]. Geographical Review, 1922, 12(1):1-18. doi: 10.2307/208653

    [20]

    Kohler G. Der Hwang Ho, eine physiographie[J]. The Geographical Journal, 1930, 75(5):466-467.

    [21] 王竹泉. 黄河河道成因考[J]. 科学, 1925, 10(2):165-173

    WANG Zhuquan. Research on the formation reasons of the Yellow River channel[J]. Science, 1925, 10(2):165-173.]

    [22]

    Teilhard de Chardin P, Young C C. Preliminary observations on the Pre-Loessic and Post-Pontian formations in Western Shansi and Northern Shensi[J]. Memoirs of the Geological Survey of China:Series A, 1930, 8:1-37.

    [23]

    Young C C, Bien M N. Cenozoic geology of the Kaolan-Yungteng area of central Kansu[J]. Bulletin of the Geological Society of China, 1937, 16:221-260.

    [24] 林旭, 刘海金, 刘静, 等. 黄河中新世未进入渤海湾盆地: 来自碎屑锆石U-Pb年龄的约束[J]. 地质学报, 2022, 96(7):2506-2518 doi: 10.3969/j.issn.0001-5717.2022.07.017

    LIN Xu, LIU Haijin, LIU Jing, et al. The Yellow River did not enter the Bohai Bay Basin during the Miocene: Constraints from detrital zircon U-Pb ages[J]. Acta Geologica Sinica, 2022, 96(7):2506-2518.] doi: 10.3969/j.issn.0001-5717.2022.07.017

    [25]

    Richthofen B F. II. —On the mode of origin of the loess[J]. Geological Magazine, 1882, 9(7):293-305. doi: 10.1017/S001675680017164X

    [26]

    Pumpelly R. The relation of secular rock-disintegration to loess, glacial drift and rock basins[J]. American Journal of Science and Arts, 1879, 17(3):133-144.

    [27]

    Lee J S. An outline of Chinese geology[J]. Geological Magazine, 1921, 58(7):324-329. doi: 10.1017/S001675680008910X

    [28] 丁骕. 黄河研究资料汇编第三种[G]. 南京: 南京水利实验处, 1949

    DING Su. The Yellow River Research Data Compilation(3)[G]. Nanjing: Nanjing Institute of Hydraulic Research, 1949.]

    [29] 李容全. 黄河、永定河发育历史与流域新生代古湖演变间的相互关系[J]. 北京师范大学学报:自然科学版, 1988(4):84-93

    LI Rongquan. The relationship between developments of the Yellow River and the Yongding River, and the evolution of fossil lake of drainage basin in the Cenozoic era[J]. Journal of Beijing Normal University:Natural Science, 1988(4):84-93.]

    [30] 葛肖虹, 王敏沛. 西去泥河湾——解读古人类与燕山隆升的历史[J]. 自然杂志, 2010, 32(5):294-298

    GE Xiaohong, WANG Minpei. Go west to Nihewan——unscrambling the history of ancient human and the uplift of Yanshan Mountain[J]. Chinese Journal of Nature, 2010, 32(5):294-298.]

    [31]

    Yang S Y, Li C X, Yokoyama K. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 2006, 245(3-4):762-776. doi: 10.1016/j.jpgl.2006.03.042

    [32]

    Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19):7556-7561.

    [33]

    Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(9):2660-2673. doi: 10.1016/j.gca.2009.02.007

    [34] 许欢. 华北北部侏罗—白垩过渡期陆相红层及其古地理、古生态和构造演化[D]. 中国地质科学院博士学位论文, 2016

    XU Huan. Jurassic-Cretaceous transition terrestrial red beds in northern North China and their regional paleogeography, paleoecology, and tectonic evolution[D]. Doctor Dissertation of Chinese Academy of Geological Sciences, 2016.]

    [35] 耿显雷, 高山, 陈晨. 华北克拉通东部及苏鲁造山带的地壳生长: 来自现代河流碎屑锆石的U-Pb定年和Hf同位素证据[J]. 地球科学, 2011, 36(3):483-499

    GENG Xianlei, GAO Shan, CHEN Chen. Crustal growth of the eastern North China Craton and Sulu Orogen as revealed by U-Pb dating and Hf isotopes of detrital zircons from modern rivers[J]. Earth Science, 2011, 36(3):483-499.]

    [36]

    Li H Y, Xu Y G, Liu Y M, et al. Detrital zircons reveal no Jurassic plateau in the eastern North China Craton[J]. Gondwana Research, 2013, 24(2):622-634. doi: 10.1016/j.gr.2012.12.007

    [37]

    Diwu C, Sun Y, Zhang H, et al. Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: constraints from detrital zircon U–Pb ages[J]. Journal of Asian Earth Sciences, 2012, 47:107-122. doi: 10.1016/j.jseaes.2011.07.012

    [38]

    Li Z Q, Li F J, Chen Z A, et al. Provenance of late Mesozoic strata and tectonic implications for the southwestern Ordos Basin, North China: evidence from detrital zircon U−Pb geochronology and Hf isotopes[J]. Journal of Earth Science, 2022, 33(2):373-394. doi: 10.1007/s12583-021-1450-y

    [39] 王伟, 李方林, 鲍征宇. 松潘-甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约[J]. 地质科技情报, 2007, 26(5):35-44

    WANG Wei, LI Fanglin, BAO Zhengyu. U-Pb constraints on provenance and evolution of middle to late Triassic sediment in Songpan-Garze Basin[J]. Geological Science and Technology Information, 2007, 26(5):35-44.]

    [40] 崔加伟, 郑有业, 田立明, 等. 松潘—甘孜造山带北部岗龙地区巴颜喀拉山群地球化学特征和锆石U-Pb年代学特征: 对物源及构造环境的启示[J]. 矿物岩石地球化学通报, 2016, 35(4):719-742 doi: 10.3969/j.issn.1007-2802.2016.04.013

    CUI Jiawei, ZHANG Youye, TIAN Liming, et al. Geochemical characteristics and zircon U-Pb ages of the Bayankalashan Group in the Ganglong area of the northern Songpan-Ganzi Orogenic Belt: Implication for its provenance and tectonic environment[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4):719-742.] doi: 10.3969/j.issn.1007-2802.2016.04.013

    [41]

    Nie J S, Stevens T, Rittner M, et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6:8511. doi: 10.1038/ncomms9511

    [42] 刘护军, 薛祥煦, 李永项. 渭河盆地渭南段古三门湖的盐度估算[J]. 西北大学学报:自然科学版, 2006, 36(1):112-114

    LIU Hujun, XUE Xiangxu, LI Yongxiang. Calculation on the paleosalinity of the ancient Sanmen Lake in the Weinan area of Weihe River Basin[J]. Journal of Northwest University:Natural Science Edition, 2006, 36(1):112-114.]

    [43] 汪品先, 王乃文, 鲍金松. 汾渭盆地新生代有孔虫的发现及其意义[J]. 地质论评, 1982, 28(2):93-100 doi: 10.3321/j.issn:0371-5736.1982.02.001

    WANG Pinxian, WANG Naiwen, BAO Jinsong. Discovery of the Cenozoic foraminifera in the Fen-Wei Basin and its significance[J]. Geological Review, 1982, 28(2):93-100.] doi: 10.3321/j.issn:0371-5736.1982.02.001

    [44] 王强, 王景哲. 在山西发现中华美花介Sinocytheridea[J]. 地层学杂志, 1982, 6(3):234-236

    WANG Qiang, WANG Jingzhe. Discovery of the Sinocytheridea in Shanxi Province[J]. Journal of Stratigraphy, 1982, 6(3):234-236.]

    [45]

    Wang Q, Li C G, Tian G Q, et al. Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma[J]. Science in China Series D:Earth Sciences, 2002, 45(2):110-122. doi: 10.1007/BF02879788

    [46]

    Yan J Y, Hu J M, Gong W B, et al. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications[J]. Geological Journal, 2020, 55(11):7415-7428. doi: 10.1002/gj.3744

    [47]

    Rits D S, Prins M A, Troelstra S R, et al. Facies analysis of the Middle and Late Quaternary sediment infill of the northern Weihe Basin, Central China[J]. Journal of Quaternary Science, 2016, 31(2):152-165. doi: 10.1002/jqs.2853

    [48]

    Zhu R X, An Z S, Potts R, et al. Magnetostratigraphic dating of early humans in China[J]. Earth-Science Reviews, 2003, 61(3-4):341-359. doi: 10.1016/S0012-8252(02)00132-0

    [49] 李有利, 史兴民, 傅建利, 等. 山西南部1.2 MaBP 的地貌转型事件[J]. 地理科学, 2004, 24(3):292-297 doi: 10.3969/j.issn.1000-0690.2004.03.007

    LI Youli, SHI Xingmin, FU Jianli, et al. Geomorphic transformational event around 1.2 MaBP in the southern Shanxi Province[J]. Scientia Geographica Sinica, 2004, 24(3):292-297.] doi: 10.3969/j.issn.1000-0690.2004.03.007

    [50] 孙建中, 赵景波, 魏明建, 等. 武家堡剖面古地磁新资料[J]. 水文地质工程地质, 1988(5):44-48,36

    SUN Jianzhong, ZHAO Jingbo, WEI Mingjian, et al. New paleomagnetic data from Wujiabao section[J]. Hydrogeology and Engineering Geology, 1988(5):44-48,36.]

    [51] 宁强强. 渭南钻孔磁化率和粒度记录的晚新生代气候环境变化历史[D]. 东华理工大学硕士学位论文, 2018

    NING Qiangqiang. Late Cenozoic climate change in Weinan area inferred from magnetic susceptibility and grain size of drill cores sediments[D]. Master Dissertation of East China University of Technology, 2018.]

    [52] 葛同明, 樊利民, 徐行, 等. 渭南阎村W7孔岩心样品的古地磁学研究[J]. 海洋地质与第四纪地质, 1991, 11(4):59-71

    GE Tongming, FAN Limin, XU Xing, et al. Magnetostratigraphic study for borehole W7 from Yancun, Weinan[J]. Marine Geology & Quaternary Geology, 1991, 11(4):59-71.]

    [53] 胡巍, 岳乐平, 田新红. 渭南沋河宋家北沟剖面磁性地层学研究[J]. 陕西地质, 1993, 11(2):26-32

    HU Wei, YUE Leping, TIAN Xinhong. On the magnetostratigraphy of the Songjia-Beigou section, Youhe, Weinan[J]. Geology of Shaanxi, 1993, 11(2):26-32.]

    [54]

    Han J, Fyfe W S, Longstaffe F J, et al. Pliocene-pleistocene climatic change recorded in fluviolacustrine sediments in central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135(1-4):27-39. doi: 10.1016/S0031-0182(97)00019-9

    [55]

    Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~1.9 Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451:84-96. doi: 10.1016/j.palaeo.2016.03.012

    [56]

    Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144:1-15. doi: 10.1016/j.quascirev.2016.05.025

    [57] 崔之久, 伍永秋, 刘耕年, 等. 关于“昆仑-黄河运动”[J]. 中国科学(D辑: 地球科学), 1998, 28(1): 53-59

    CUI Zhijiu, WU Yongqiu, LIU Gengnian, et al. On Kunlun-Yellow River tectonic movement[J]. Science in China Series D: Earth Sciences, 1998, 41(6): 592-600.]

    [58]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    [59]

    Zhang P Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831):891-897. doi: 10.1038/35073504

    [60]

    Davis W M. Baselevel, grade and peneplain[J]. The Journal of Geology, 1902, 10(1):77-111. doi: 10.1086/620982

    [61]

    Willis B. Physiography of northwestern China[G]. Washington: Carnegie Institution of Washington, 1907.

    [62]

    Barbour G B. Pleistocene history of the Huangho[J]. Geological Society of America Bulletin, 1933, 44(6):1143-1160. doi: 10.1130/GSAB-44-1143

    [63]

    Xiong J G, Li Y L, Zhong Y Z, et al. Paleomagnetic age of the Tangxian planation surface, northwestern Zhongtiao Shan of the Shanxi Graben System, North China[J]. Geomorphology, 2017, 283:17-31. doi: 10.1016/j.geomorph.2017.01.020

图(4)  /  表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  1
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-01
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-04-23

目录

/

返回文章
返回