长江流域风成黄土研究进展与展望

冯柳柳, 陈艇

冯柳柳,陈艇. 长江流域风成黄土研究进展与展望[J]. 海洋地质与第四纪地质,2024,44(2): 16-32. DOI: 10.16562/j.cnki.0256-1492.2024013101
引用本文: 冯柳柳,陈艇. 长江流域风成黄土研究进展与展望[J]. 海洋地质与第四纪地质,2024,44(2): 16-32. DOI: 10.16562/j.cnki.0256-1492.2024013101
FENG Liuliu,CHEN Ting. Progress and prospect in the study of Aeolian Loess in the Yangtze River Basin[J]. Marine Geology & Quaternary Geology,2024,44(2):16-32. DOI: 10.16562/j.cnki.0256-1492.2024013101
Citation: FENG Liuliu,CHEN Ting. Progress and prospect in the study of Aeolian Loess in the Yangtze River Basin[J]. Marine Geology & Quaternary Geology,2024,44(2):16-32. DOI: 10.16562/j.cnki.0256-1492.2024013101

长江流域风成黄土研究进展与展望

基金项目: 重庆市博士直通车科研项目“三峡库区巫山黄土高精度古地磁年代学研究”(CSTB2022BSXM-JCX0144);重庆市教育委员会科学技术研究项目(KJQN202100544)
详细信息
    作者简介:

    冯柳柳(1999—),女,硕士研究生,主要从事黄土、环境磁学研究,E-mail:741150388@qq.com

    通讯作者:

    陈艇(1988—),女,副教授,主要从事古地磁学、环境磁学研究,E-mail:chenting@cqnu.edu.cn

  • 中图分类号: P534.63

Progress and prospect in the study of Aeolian Loess in the Yangtze River Basin

  • 摘要:

    中国黄土是第四纪古气候–古环境研究的重要载体,除黄土高原外,中国其他地区还零星分布有风成黄土堆积。在长江流域,从上游到下游,分布有川西、金沙江、巫山和下蜀黄土,探讨这些湿润区风成黄土的风尘来源、动力传输过程以及沉积后土壤化过程等可为研究长江流域东亚季风环流特点提供证据,对探究过去湿润区风尘风化固碳过程和效益也具有重要意义。虽然对长江流域各地区黄土已有较多的研究,但是不同地区黄土物源、物质传输过程等方面的相互联系及其在风化固碳中的作用还不清楚。本文在综述了川西、金沙江、巫山、下蜀风尘黄土的形成年代、物源等最新研究进展的基础上,提出川西、巫山、下蜀三地黄土的发育与青藏高原在青藏运动B幕、昆仑-黄河运动和共和运动3个阶段的隆升有重要对应关系;并且发现在冰期和间冰期,长江流域风成黄土的风化程度均比黄土高原黄土强,且在古土壤发育期更强;认为长江流域黄土风化过程对陆地固碳的影响及其与古气候变化的相互关系是今后湿润区黄土研究的重点。

    Abstract:

    The loess deposition in China is an important archive of the Quaternary paleoclimate-paleoenvironmental signals. Other than the Loess Plateau, loess brough by wind deposited in the upper, middle, and lower Yangtze River basin during the Quaternary. Understanding the provenance, transportation dynamics, and post-depositional weathering processes of loess in these humid regions is important for the study of the past changes of the East Asian monsoon in the Yangtze River Basin, and is also of great significance for investigating the carbon sequestration effect during the chemical weathering process of the fine-grained loess in the humid regions. Although much studies have been conducted on loess deposition in various regions of the Yangtze River Basin, the material transport processes in different regions of the Yangtze River Basin, their interconnections, and their roles in carbon sequestration are still unclear. Here, we overviewed the latest understanding of the formation age, sources, and paleoclimatic records of the loesses in the western Sichuan, Jinsha River, Wushan, and Xiashu in the Yangtze River Basin. we found that the formation of loess in the west Sichuan, Wushan and Xiashu regions were tightly linked to the three uplift phases of the Tibetan Plateau, namely the Tibetan Movement B, the Kunlun and Yellow River Movement and the Gonghe Movement. In addition, the weathering degree of loess depositions in the Yangtze River Basin are stronger than that of loess on the Loess Plateau both during the glacial and interglacial periods. We proposed that the influence of the chemical weathering process of loess on terrestrial carbon sequestration and its correlation with paleoclimate changes are the focus of future research on loess in humid regions, e.g., the Yangtze River Basin.

  • 中生代-新生代之交,西太平洋地区发生了大的构造板块调整,比如印度板块向欧亚板块的楔入、太平洋板块向东后撤以及太平洋板块运动方向由北北西向转变为北西西向(50 Ma左右)等,这些综合效应导致了西太平洋区域形成了巨大的沟-弧-盆体系[1-5]。菲律宾海板块是西太平洋地区在此期间形成的最大的边缘海之一(图1),其形成和演化对其邻近区域的岩浆活动和构造演化产生了深远的影响。过去的几十年里,以大洋钻探计划为首的众多航次(包括DSDP (深海钻探计划)6、31、58、59、60, ODP (大洋钻探计划)195, IODP (综合大洋钻探计划)331, IODP (大洋发现计划) 350—352航次)对菲律宾海板块开展了详细的钻探取样工作,获得了大量的底质(沉积物和岩石)样品和地质地球物理资料,取得了一系列重要的研究成果[6-11]。但仍有一些关键的科学问题亟待解决,比如,(1)俯冲是如何启动的[12]?科学家提出了2种俯冲初始的模型,一种是由于相邻板块的密度差引起的自发过程,另一种观点认为俯冲初始是邻近板块的横向驱动力所导致的一个诱发过程[12]。(2)弧后盆地的成因机制?对于西菲律宾海盆的成因目前共有3种模型,包括弧后扩张成因、捕获的洋壳片段成因以及弧后扩张和地幔柱共同作用成因[10, 13-15]。(3)菲律宾海板内岩浆作用的动力学机制?目前存在两种认识,一种是过量残余岩浆成因,另一种是地幔柱成因[10, 14-16]。(4)俯冲过程中的物质循环[11]

    图  1  菲律宾海板块及主要构造单元
    Figure  1.  Philippine Sea plate and the main tectonic units

    菲律宾海板块由一系列的弧后盆地和残余弧脊及活动岛弧组成,自西向东分别为西菲律宾海盆、四国海盆、帕里西维拉海盆和马里亚纳海槽以及九州-帕劳脊、西马里亚纳脊和伊豆-小笠原-马里亚纳(IBM)弧。其中的帕里西维拉海盆与其北侧的四国海盆以及南海和日本海等均为西太平洋第二扩张幕形成的弧后盆地。DSDP 6和DSDP 59等航次对帕里西维拉海盆开展了详细的调查,取得了一系列重要的认识[11, 17]。研究表明,帕里西维拉海盆在地形上具有东西不对称的特征,其基底熔岩具有类似于弧后盆地玄武岩(BABB)的微量元素特点和印度洋型MORB的同位素特征[6, 18]。然而,帕里西维拉海盆还存在一系列的科学问题亟待解决,比如,帕里西维拉扩张动力学过程、深部地幔源区性质,扩张后海山及核杂岩成因机制,以及该海盆的沉积过程与古海洋古气候演化等,还不是很清晰。本文在总结前人对于该海盆研究成果的基础上,提出了目前尚存在的重要科学问题以及未来可能的钻探位置建议。

    菲律宾海是西太平洋最大的边缘海之一,面积约为540万km2,位于欧亚板块、印度-澳大利亚板块和太平洋板块的交互处(图1),构造背景非常复杂,地质现象丰富,是研究和观测现代海底俯冲带过程的天然实验室[6, 11]。菲律宾海板块的东部和南部依次为伊豆-小笠原-马里亚纳海沟、雅浦海沟、帕劳海沟和阿玉海槽,菲律宾海板块的北部边界为东侧的南开(Nankai)海槽和西侧的琉球海沟,该板块西侧为菲律宾海沟[19]。基于构造重建,Hall[20]阐述了菲律宾海板块自50 Ma以来的构造演化。菲律宾海板块最初位于赤道附近,自新生代早期以来逐渐向北运动,在运动的过程中形成了西菲律宾海盆并伴随原(proto)伊豆-小笠原-马里亚纳岛弧的裂解作用。30~15 Ma,原伊豆-小笠原-马里亚纳岛弧发生裂解形成了帕里西维拉海盆和四国海盆。11 Ma,伊豆-小笠原-马里亚纳岛弧的岩浆活动再次活跃。5 Ma左右,随着伊豆-小笠原-马里亚纳海沟向太平洋板块方向的继续后撤,导致了马里亚纳海槽的打开,并活动至今[20-21]

    帕里西维拉海盆是菲律宾海板块的重要组成部分,位于九州-帕劳脊的东部,以索夫干断裂与北侧的四国海盆分开,南部边界为马里亚纳弧和雅浦岛弧,东界为西马里亚纳脊(图2)。帕里西维拉海盆呈狭长型,南北长约1 900 km,东西宽700 km,平均水深为4500~5 500 m,盆地中部为已经停止活动的帕里西维拉裂谷,水深最深处超过7 500 m。前人研究指出帕里西维拉海盆与四国海盆、马里亚纳海槽类似,是原伊豆-小笠原-马里亚纳俯冲带向海一侧后撤诱发的弧后扩张所形成的[11, 13, 25]。帕里西维拉海盆的扩张历史可以分为两个阶段,分别为第一阶段的东西向裂谷作用和海底扩张作用(开始于26 Ma左右),全扩张速率约为8.8 cm/a;第二阶段发生了逆时针的旋转,扩张轴的延伸方向由南北向变为北西-南东向,全扩张速率约为7.0 cm/a[26-29]。靠近帕里西维拉裂谷破碎带区域分布有一系列雁列式较短的一级构造片段,扩张停止的时间约为12 Ma[28]

    图  2  帕里西维拉海盆地质及建议钻探位置图
    前人研究的站位数据源自文献[6, 10, 22]。窗棂构造位置数据源自[23-24]。
    Figure  2.  Geology and proposed drilling positions (red and orange dots) in the Parece Vela Basin
    Data for previous drilling sites are from references [6,10, 22]. Data for mullion structures are from references [23-24].

    基于地质与地球物理学特征,本文将帕里西维拉海盆分为4个区域,分别为东区、西区、南区和裂谷区(图2)。其中,西区为帕里西维拉海盆中央裂谷以西至九州-帕劳脊的区域,东区为帕里西维拉海盆中央裂谷以东至西马里亚纳脊,裂谷区为帕里西维拉海盆的遗迹扩张中心区域,南区范围为北雅浦陡崖(North Yap Escarpment)以南至雅浦弧(图2)[30]。下面分别阐述这4个区域的地质与地球物理特征。

    帕里西维拉海盆西区的沉积物厚度较薄,大约为110 m,沉积物类型主要为远洋黏土、放射虫软泥和超微化石软泥。西区的地形比较复杂,有大量南北向排列的海山和深谷相间分布,在靠近九州-帕劳脊附近呈现凹陷的裂谷地形(图2)。帕里西维拉海盆的扩张速率约为7.7~8 cm/a[30]。西区中可以观测到振幅极小的磁异常,通常小于150γ,磁异常条带为5D-10(17~30 Ma),其中7-10号磁异常比较明显(7-10磁异常条带的波长较长不容易被后来的侵入体或者磁化的地形所掩盖),5D或5E的磁异常条带存在不确定性,这可能与扩张末期靠近扩张轴的洋脊跳跃有关[31-32]。DSDP449站位位于该区(图2),钻取了151.1 m,共获得岩心93.4 m,其中上部110 m为沉积层(远洋黏土、放射虫软泥和超微化石软泥),下部41.1m为枕状玄武岩和玄武岩熔岩流[17]。该区域的海底熔岩为玄武岩,具有类似于弧后盆地玄武岩(BABB)的微量元素特征和类似于印度洋型MORB的同位素特征[6, 33-34]

    帕里西维拉海盆东区的沉积物较厚,厚度从西马里亚纳脊附近的3 500 m向西递减到100 m左右,沉积物主要为远洋黏土和晚渐新世—晚中新世的火山碎屑,这些火山碎屑物质可能为西马里亚纳脊的火山活动的产物[32]。东区的地形比较平滑,未能识别出明显的磁异常,可能与沉积层较厚有关,水深约为4 500~5 500 m[11, 32]。东区现有3个钻孔站位(DSDP 53、54、450)和一个拖网站位(DM-1398)获取到了底质样品(图2)。DSDP 53站位的底部(约193 m)为侵入的火山岩体,上覆有远洋黏土、放射虫软泥和火山灰;DSDP 54站位在海底之下292 m处发现了玄武岩熔岩流,上覆有火山灰层。DSDP 450站位成功钻到了海水-沉积物界面之下340 m,上部33 m为沉积层,包括远洋黏土、玻屑凝灰岩以及细粒的玻屑凝灰岩,最下部7 m为枕状玄武岩,中部为火山玻璃凝灰岩[17]。基于底部玄武岩和上覆沉积物的接触关系的情况,说明仅有DSDP 54站位最下方的玄武岩可以代表基底。DM-1398站位获得了大量的海底熔岩样品,它们均为亚碱性玄武岩和辉长岩[22]。东区的海底熔岩具有类似于弧后盆地玄武岩(BABB)的微量元素特征和类似于印度洋型MORB的同位素特征[6, 33-34]

    帕里西维拉海盆南区的构造特征比较复杂(图2),海山、裂谷、丘陵等海底地貌单元相间分布,根据构造形态前人将其分为5个次级单元(A、B、C、D、E)[35]。A单元靠近雅浦岛弧,广泛分布有北西-南东向的丘陵,可能是帕里西维拉海盆第二阶段海底扩张的产物;B单元位于A单元西侧,与帕里西维拉海盆主体相连,该单元存在大量南北向展布的深海丘陵,可能是第一阶段海底扩张的产物;C单元位于B单元东南侧,广泛发育北东东-南西西向展布的深海丘陵,可能是海底扩张与裂谷体系相互作用的产物;D单元位于帕里西维拉海盆最南端,广泛分布有线性和圆锥形的海山;E单元位于B单元西南侧、靠近九州帕劳脊的位置,该单元分布有两个半月形深水裂谷,深度分别为6100和5 500 m[35]。南区未能识别出磁异常条带,水深范围为5200~500 m,水深从北向南逐渐变浅[35]。KH05-1-D1拖网站位取到了风化的枕状熔岩,可能为玻安岩或者岛弧拉斑玄武岩[35-36]。2019年自然资源部第一海洋研究所执行的CJ09航次对帕里西维拉海盆进行了电视抓斗取样,获得了多个站位的玄武岩样品。结果表明,帕里西维拉海盆南部玄武岩具有类似于N-MORB和IAB之间的微量元素特征和印度洋型MORB的同位素特征,其地幔源区中具有较高的含水量和氧逸度[18]。帕里西维拉海盆南部的东半部已缺失,其缺失的原因仍存在争议,目前有两种观点,一个是通过转换断层迁移到现今西马里亚纳弧西侧[31, 35],另一个观点认为是由于东侧卡罗琳板块的碰撞,导致了盆地东侧部分仰冲到雅浦弧地壳之上[30, 37]

    帕里西维拉海盆裂谷区是指已经停止活动的扩张中心区域(图2),其沉积物较薄,小于100 m。裂谷区的水深相对较深,最深处超过了7 500 m。裂谷区地形比较复杂,分布了大量的拆离断层、裂谷片段和核杂岩。每一个裂谷段都可以识别出窗棂构造,被解释为岩浆供给不足环境下大洋拆离断层的下盘[28]。在北纬16°附近发现了一个巨大的窗棂构造,被称为哥斯拉(Godzilla)窗棂构造(图2),它是世界上已知的最大的窗棂构造,比中大西洋中脊窗棂构造大了十多倍[28]。前人通过拖网和ROV(Remote Operated Vehicle,遥控无人潜水器)等取样技术在帕里西维拉裂谷获得了大量的蛇纹石化橄榄岩和辉长岩样品。这些橄榄岩分为3种类型,分别为F型(方辉橄榄岩)、P型(含斜长石的方辉橄榄岩和纯橄岩型的方辉橄榄岩)和D型(纯橄岩)[28, 38]。帕里西维拉裂谷橄榄岩最突出的特征是小尺度的肥沃型橄榄岩和难熔型橄榄岩的混合,其中肥沃型的橄榄岩是地幔橄榄岩经历低程度部分熔融(4%)的残余,纯橄岩和含斜长石的橄榄岩是不同比例熔体-地幔相互作用的产物[28, 38]

    尽管前人对帕里西维拉海盆进行了相应的研究,但是相较于菲律宾海板块中研究程度较高的西菲律宾海盆和马里亚纳海槽,帕里西维拉海盆的研究程度较浅,样品数量较少[39]。因此,帕里西维拉海盆仍存在如下几个亟待解决的关键科学问题:

    (1)帕里西维拉海盆扩张动力学过程。帕里西维拉海盆扩张停止的时间也存在争议,一部分学者基于磁异常条带认为帕里西维拉海盆海底扩张停止的时间为17 Ma[31],一部分学者基于磁异常条带和扩张速率认为海底扩张停止的时间为12 Ma[28],另一部分学者基于帕里西维拉裂谷的核杂岩数据推断扩张停止的时间为7.9 Ma[23]。上述观点都是基于地球物理资料得到的,缺少相应的基底玄武岩的K-Ar/Ar-Ar等高精度年龄数据。因此,建议在帕里西维拉海盆布置D-1、D-2、D-4站位来获取相应的基底岩石样品(图2)。这3个站位都是在帕里西维拉海盆西半部分靠近扩张轴的位置,这些位置的样品代表了帕里西维拉海盆弧后扩张活动晚期的产物,同时这些位置远离西马里亚纳脊,其沉积层较薄(明显低于东半部分的沉积物厚度),比较容易钻取到基底岩石样品。同时分别在靠近九州-帕劳脊和西马里亚纳脊处布置D-5和D-6站位,通过获取的基底岩石样品来限定帕里西维拉海盆开始扩张的时间。

    (2)海盆之下的地幔源区性质探讨。由于基底岩石样品缺乏,帕里西维拉海盆的地幔源区性质不清楚,帕里西维拉海盆的地幔是否存在不均一性仍不清楚。我们建议布置D-1、D-2、D-4站位来研究帕里西维拉海盆活动晚期的地幔性质及其地幔性质在纬度上是否存在不均一性(图2)。D-2、D-5、D-6站位的设置,主要是为了研究帕里西维拉海盆海底扩张从早期到晚期演化过程中地幔源区性质的变化,以及受俯冲组分影响程度是否与距离扩张中心距离有关。其中D-5和D-6的位置远离扩张轴,钻取的样品代表弧后扩张早期的产物;D-2靠近扩张轴,钻取的样品代表弧后扩张晚期的产物。

    (3)帕里西维拉海盆轴部少量海山的成因机制。帕里西维拉海盆属于西太平洋第二扩张幕的弧后盆地,其扩张时代与四国海盆、南海、苏禄海、日本海和鄂霍次克海相一致。在同时代的弧后盆地中南海和四国海盆的扩张中心处也分布有一系列的海山,但是它们的成因和形成年龄有较大的差别[29, 40-42]。南海扩张轴附近的海山是在南海停止扩张之后5 Ma出现的,其成因机制与海南地幔柱有关;四国海盆轴部的Kinan海山链是在海底扩张停止之后马上就形成的,可能是受到了EM1组分的影响[29, 40-42]。帕里西维拉海盆轴部海山的成因是类似于四国海盆的Kinan海山链还是南海扩张期后的海山还需要进一步研究。因此,D-3站位选定在帕里西维拉海盆轴部最大的一个海山上(图2),该海山顶部相对平坦,水深较浅(约为2 060 m),有利于获得更多的海山样品来研究其成因机制。

    (4)帕里西维拉海盆内核杂岩的成因机制。大洋核杂岩是指在构造拉张应力的作用下,地壳深部和上地幔物质发生去顶、抬升而形成的穹隆状构造岩石组合[43-44]。与拆离断层和大洋核杂岩有关的洋脊不对称扩张模式丰富和完善了海底扩张的新模式。大洋核杂岩和拆离断层主要分布于岩浆供给不充足的慢速和超慢速扩张脊,例如大西洋中脊、中印度洋中脊、东南印度洋脊和西南印度洋脊。Akizawa等[24]在四国海盆发现了玛多(Mado)窗棂构造和核杂岩,并指出在该窗棂构造处的大洋核杂岩在岩性和成分上类似于慢速-超慢速扩张洋中脊[24,45-48]。前人通过高精度的测深学研究,在帕里西维拉裂谷中部发现了巨大的哥斯拉(Godzilla)窗棂构造和核杂岩,出露的岩石类型主要为蛇纹石化橄榄岩和辉长岩[21]。帕里西维拉裂谷处的哥斯拉窗棂构造是全球已发现最大的窗棂构造,同时帕里西维拉扩张中心是少数中等扩张速率的洋中脊,对完善海底扩张理论具有重要的研究意义[21, 28]。但是目前仅有少量的拖网和ROV站位对该区域进行了调查取样,缺少相应的海底钻探站位来研究大洋岩石圈的组成和演化过程。同时,由于拆离断层的存在,帕里西维拉海盆的洋壳直接暴露在海底,有利于取样。因此,我们建议在哥斯拉窗棂构造处布置2个钻探站位(D-7和D-8站位),来获取帕里西维拉海盆洋壳的岩心样品(图2),通过研究获取的样品来探讨该核杂岩的成因机制。

    (5)沉积过程及古海洋古气候演化。帕里西维拉海盆是一典型边缘海盆,以IBM弧与开放大洋分割开来,其沉积物记录了丰富的地质作用信息,具有独特的地质意义。对上述建议钻探位置获取的沉积物样品开展研究,有助于理解该海盆的沉积过程、物源信息以及周围地质单元的岩浆活动规律,并可恢复古海洋、古环境及古气候演化历史。

  • 图  1   中国黄土分布及研究区分布图

    参考自文献[23- 24]。底图来自自然资源部标准底图服务系统;世界底图审图号:GS(2016)665号;中国底图审图号:GS(2023)2765号。

    Figure  1.   The distribution of loess in China and the locations of the study areas (starred)

    References from [23- 24]. The base map is taken from the standard base map service system of the Ministry of Natural Resources. World regional Base map No. GS (2016) No. 665; China regional base map review No. GS(2023)2765.

    图  2   川西黄土剖面分布、成因、海拔/沉积厚度及其形成年代

    a:川西黄土典型剖面分布图,b:甘孜附近黄土分布。黄色数字代表该剖面黄土的沉积年龄,黑色数字代表海拔/沉积厚度。

    Figure  2.   Distribution of loess profiles, origination, elevation/depositional thicknesses, and ages of formation in the western Sichuan Province

    a: Information and distribution of typical loess profiles in the western Sichuan, b: distribution of loess near Ganzi. The yellow numbers represent the depositional age of loess in the profile, and the black numbers represent the elevation/depositional thickness.

    图  3   巫山黄土剖面分布、成因、海拔/沉积厚度及其形成年代

    a:三峡库区范围图,b:巫山黄土典型剖面分布图,c:秭归地区黄土分布黄色数字代表该剖面黄土的沉积年龄、黑色字体代表:海拔/沉积厚度。

    Figure  3.   Distribution, genesis, elevation/depositional thickness and age of the Wushan Loess

    a: The range of the Three Gorges Reservoir area, b: distribution of typical profile of Wushan Loess, c: distribution of loess at Zigui. The yellow number represents the depositional age of loess in the profile, and the black fonts represent the elevation/depositional thickness.

    图  4   下蜀黄土剖面分布、成因、海拔/沉积厚度及其形成年代

    a:长江下游下蜀黄土典型剖面信息以及分布图, b:黄土分布密集区。黄色数字代表该剖面黄土的沉积年龄,绿色数字代表海拔/沉积厚度。

    Figure  4.   Distribution, genesis, elevation/depositional thickness, and age of the Xiashu Loess

    a: Information and distribution of Xiashu Loess in the lower reaches of Yangtze River, b: Enlarged view of the dense distribution area of loess. The yellow numbers represent the depositional age of loess in the profile, and the green numberts represent the elevation/depositional thickness.

    图  5   川西黄土、巫山黄土、下蜀黄土形成过程模式图

    Figure  5.   The formation processes of the western Sichuan loess, Wushan Loess, and Xiashu Loess

    图  6   第四纪期间青藏高原隆升与长江流域风尘黄土堆积时间对比图

    青藏高原隆升阶段参考文献[118]。

    Figure  6.   Comparison of the timing of the uplift of the Tibetan Plateau and the accumulation of wind-dusted loess in the Yangtze River Basin during the Quaternary

    The data of Tibetan Plateau uplift stage are taken from reference [118].

    图  7   长江流域与黄土高原黄土-古土壤风化指标数据

    a:化学风化指数,b:频率磁化率百分数。

    Figure  7.   Data of loess-paleosols weathering indexes in the Yangtze River basin and the Loess Plateau

    a: Chemical weathering index,b: percentage of frequency magnetization.

    表  1   长江流域黄土成因及物源

    Table  1   Genesis and provenance of loess in the Yangtze River Basin

    剖面 海拔/沉积厚度/m 方法 成因 物源 参考文献
    川西地区 甘孜剖面 3480/86 粒度分析、REE 风成黄土 近源高原内部堆积 [71]
    甘孜满地剖面 / 粒度、孢粉、冰楔构造分析 风成黄土 近源高原内部堆积 [38]
    GZ-1-2 3431 微量元素和稀土元素分析 风成黄土 近源高原内部堆积 [72]
    甘孜五级阶地剖面 3455/14.5 环境磁学、地球化学元素 风成黄土 近源高原内部堆积 [73]
    Garze A /28.5 微量元素、REE和Sm-Nd同位素 风成黄土 近源高原内部堆积 [56]
    甘孜寺剖面 3538/15.3(见底) 石英颗粒表面形态分析 风成黄土 近源高原内部堆积 [74]
    九寨沟荷叶黄土剖面 / 矿物成分及石英砂表面结构分析 冰川黄土 近源堆积 [75]
    / 粒度、REE、微量元素分析等 风成黄土 有多源性特征
    [59]
    可尔因剖面 / 黄土粒度分析、石英表面形态观察 风成黄土 近源堆积 [76]
    叠溪剖面 2394 /(见底) 粒度分析、稀土和微量元素 风成黄土 远源堆积 [62]
    SC剖面A, X剖面, LBZ剖面 / 粒度、常量元素与稀土元素特征
    分析等
    风成黄土 近源堆积 [36]
    唐克索克藏寺剖面 3445/ 粒度组分、石英砂的表面结构、冰楔构造、孢粉 风成黄土 近源堆积 [77]
    佳山剖面 2060/ 粒度、矿物组成\常量元素与稀土元素特征 风成黄土 近源堆积 [7]
    巫山地区 巫山师范学校剖面/秭归楚王台剖面 / 粒度、重矿物、化学成分和石英电镜扫描分析 多成因 近源堆积 [78]
    双堰塘 /3.7 粒度分析、常量元素组分分析 多成因 混合堆积 [58]
    望天坪剖面 1350/3.1 粒度特征 风成沉积物 混合堆积 [79]
    粒度参数特征 风成成因 混合堆积 [80]
    粒度特征 风成成因 远源堆积 [35]
    巫山博物馆剖面 258/5 分析Sa、CIA、Na/K、铁游离度等风化指标 风积成因 来源复杂 [81]
    江东嘴剖面 /3.6 粒度特征 多成因 近源堆积 [35]
    势大岭剖面 /8.2 粒度特征 多成因 / [67]
    圣泉剖面/客运港剖面 248/15 REE分析 风积成因 混合成因 [82]
    常量元素分析 风积成因 / [83]
    元素地球化学特征 风积成因 远源堆积 [84]
    分析Sr和Nd同位素组成 风积成因 远源堆积 [67]
    稀土元素特征值 风积成因 远源堆积 [24]
    分析Sr和Nd同位素组成 风积成因 近源堆积为主 [85]
    粒度特征 风成沉积 近源河谷风成沉积 [35]
    下蜀地区 大港剖面 26.5/59.5 粒度分析 风成堆积 混合堆积 [41, 86-87]
    周家山剖面 65/51 粒度组成分析 风成堆积 混合堆积 [11,85,88-89]
    老虎山剖面 50/30 粒度、矿物化学成分 混合成因 远源堆积 [90]
    仙林剖面 / 环境磁学、地球化学特征 风成堆积 混合堆积 [91]
    燕子矶剖面 26/23 / / 远源堆积 [92]
    地球化学元素 风成堆积 远源堆积 [66]
    青山剖面 36/20 粒度分析 风成堆积 / [26]
    下蜀地区 Mufushan剖面 / 锆石U-Pb年龄和同位素地球
    化学示踪
    多成因说 混合堆积 [93]
    下蜀黄土
    (9个采样点)
    / 粒度成分、主元素和微量元素组成的分析结果 风成堆积 近源堆积 [53]
    宣城剖面 / 元素地球化学 风成堆积 近源来源 [94]
    / 风成堆积 近源堆积 [95]
      注:“/”表示在对应的文章内未提及。
    下载: 导出CSV

    表  2   长江流域黄土沉积年龄

    Table  2   Sedimentary age of loess in the Yangtze River Basin

    地区 剖面 海拔/沉积厚度/m 测年方法 年龄/ka 可靠性证据 参考文献
    川西
    地区
    甘孜寺剖面 3538/15.3(见底) OSL&古地磁 1160
    1150
    热退磁(−620°C)、有退磁结果的剩磁矢量正交投影图;存在B/M倒转以及贾拉米洛正极性亚时的2个界限点年龄、2个OSL样品(样品A:12 ka;样品B:
    79 ka)(一共存在5个绝对年龄值)
    [45, 102]
    新市区剖面, 满地剖面 3390/23.7
    3470/26
    (两剖面综合得到的深度为30.2 m)
    古地磁&TL 120 热退磁、热释光两剖面各存在2个(新市:4.2 m、11 m;满地:3.2 m、13.1 m) [103]
    甘孜六级阶地剖面 3480/32(见底) 1130
    1150
    交变退磁为主与不稳定样的热退磁
    (0~690°C)为辅、L1底部热释光年龄为
    (74±5) ka
    [104-105]
    叠溪剖面 2394 /(见底) 14C&OSL 62 14C一个、OSL两个(3个控制点都集中于380~450 cm) [62]
    九寨沟荷叶黄土剖面 / 14C&ESR 321 14C两个控制点、ESR存在4个控制点 [75]
    甘孜A剖面 3483/32.5(见底) 古地磁 1160 热退磁(100~675°C)、存在B/M倒转、有退磁结果的剩磁矢量正交投影图 [56,106]
    金川角木牛剖面 3538/46.2 2840 热退磁(存在B/M和M/G两个倒转界限) [107-108]
    甘孜剖面 3480/86(见底) 800
    766
    热退磁、存在B/M界限 [30, 71]
    金川马厂剖面 2480/19.4 200 热退磁、未出现B/M界限 [109]
    茂县三级阶地黄土 ERS 62 3个阶地的样品、1个黄土样品 [110]
    可尔因剖面 / 206~145 6个控制点 [76]
    唐克索克藏寺剖面 3445/ 128 2个样品控制点 [77]
    布瓦剖面 1990/ OSL 23.1±1.8 2个样品控制点 [7]
    佳山剖面 2060/ 43.3±1.9 2个样品控制点
    喇嘛寺剖面 1995/ 9.3±0.9 2个样品控制点
    汪布顶剖面 /8 128 / [29]
    巫山
    地区
    漳腊剖面 3030/9.5 磁化率年龄模型 157.6±1.18 / [110]
    圣泉剖面/客运港剖面 /15(见底) 14C 12.1 / [111]
    OSL 100 / [82]
    /10 44.4 4个样品控制点 [10]
    下蜀
    地区
    大港剖面
    青山剖面
    26.5/59.5
    36.3/17.3
    (见底)
    OSL&古地磁 900 3个OSL测年样品(青山2个,大港1个);热退磁(−620°C)、有退磁结果的剩磁矢量正交投影图、大港存在B/M倒转 [26, 41]
    周家山剖面 /50.7(见底) 880 1.4 m的OSL年龄(>50 ka)和B/M边界年龄(0.78 Ma),基于该堆积速率推得底部年龄约为880 ka [11, 85]
    青山剖面 36/20(见底) 900 6个OSL测年样品(25.4~270.9 ka); 热退磁(680°C)存在B/M倒转 [40]
    大港剖面 26.6/59.5 古地磁测年 700~800 2个OSL测年样品(根据剖面磁化率旋回 ,与北方黄土地层以及深海氧同位素阶段 ( M IS)对比 ,推算大港剖面的下限年代约为700~ 800 ka) [40]
    燕子矶剖面 /23 220 交变退磁;从 0到22.5 m T逐步退磁 [112]
    新生抒剖面 /33(见底) 红外释光 500 6个红外释光样品 [113]
    仙林剖面 45/7.1 OSL 139.7±14.8 2处OSL年龄 [91]
    周家山剖面 /6.1 ESR测年 350 / [88]
    燕子矶剖面 /26.5 563.6 / [92]
    宣城剖面 /11 700
    850
    / [27, 114]
    下载: 导出CSV
  • [1] 刘东生, 安芷生, 文启忠, 等. 中国黄土的地质环境[J]. 科学通报, 1978, 23(1):1-9,26 doi: 10.1360/csb1978-23-1-1

    LIU Dongsheng, AN Zhisheng, WEN Qizhong, et al. The geological environment of Chinese loess[J]. Chinese Science Bulletin, 1978, 23(1):1-9,26.] doi: 10.1360/csb1978-23-1-1

    [2]

    Sun Y B, An Z S, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2010, 297(3-4):525-535. doi: 10.1016/j.jpgl.2010.07.004

    [3] 李秉成, 雷祥义, 李正泽, 等. 西安白鹿塬全新世黄土剖面磁化率的古气候特征[J]. 海洋地质与第四纪地质, 2008, 28(1):115-121

    LI Bingcheng, LEI Xiangyi, LI Zhengze, et al. Palaeoclimate character of susceptibility of Holocene loess section in Xi'an Bai Luyuan[J]. Marine Geology & Quaternary Geology, 2008, 28(1):115-121.]

    [4] 王攀, 张培新, 杨振京, 等. 靖边黄土剖面记录的末次冰期以来的气候变化[J]. 海洋地质与第四纪地质, 2019, 39(3):162-170

    WANG Pan, ZHANG Peixin, YANG Zhenjing, et al. Climate change since the last glacial stage recorded in Jingbian loess section[J]. Marine Geology & Quaternary Geology, 2019, 39(3):162-170.]

    [5] 周家兴, 于娟, 杨丽君, 等. 铜川地区早中全新世黄土沉积特征及其古气候意义[J]. 海洋地质与第四纪地质, 2020, 40(1):160-166

    ZHOU Jiaxing, YU Juan, YANG Lijun, et al. Sedimentary characteristics of the Early and Middle Holocene loess in Tongchuan area and their implications for paleoclimate[J]. Marine Geology & Quaternary Geology, 2020, 40(1):160-166.]

    [6] 陈明扬. 中国风尘堆积与全球干旱化[J]. 第四纪研究, 1991, 11(4):361-372 doi: 10.3321/j.issn:1001-7410.1991.04.008

    CHEN Mingyang. The evolution of Chinese aeolian deposits and global aridification[J]. Quaternary Sciences, 1991, 11(4):361-372.] doi: 10.3321/j.issn:1001-7410.1991.04.008

    [7] 臧楠. 川西杂谷脑河流域黄土特征及成因分析[D]. 成都理工大学硕士学位论文, 2021

    ZANG Nan. Characteristics and genetic analysis of loess in Zagnao river basin, western Sichuan[D]. Master Dissertation of Chengdu University of Technology, 2021.]

    [8] 管东升. 金沙江河谷黄土状沉积物的成因及其古气候意义[D]. 兰州大学硕士学位论文, 2012

    GUAN Dongsheng. The origin and palaeoclimatic implications of the Loess-like sediment in the valley of Jinshajiang River[D]. Master Dissertation of Lanzhou University, 2012.]

    [9] 陶莉. 长江三峡地区第四纪沉积物质来源及其沉积环境意义的探讨[D]. 西南师范大学硕士学位论文, 2005

    TAO Li. The origin of quaternary deposit and its environmental significance in Three Gorges of the Yangtze River[D]. Master Dissertation of Southwest Normal University, 2005.]

    [10] 吴可, 彭红霞, 时冉. 长江三峡地区黄土粒度特征及其成因分析[J]. 华中师范大学学报:自然科学版, 2014, 48(2):284-289

    WU Ke, PENG Hongxia, SHI Ran. Analysis on the characteristics and their origin of the grain-size of Wushan loess in the Three Gorges area, China[J]. Journal of Huazhong Normal University:Natural Sciences, 2014, 48(2):284-289.]

    [11]

    Wang X Y, Lu H Y, Zhang H Z, et al. Distribution, provenance, and onset of the Xiashu Loess in Southeast China with paleoclimatic implications[J]. Journal of Asian Earth Sciences, 2018, 155:180-187. doi: 10.1016/j.jseaes.2017.11.022

    [12]

    Yi S W, Li X S, Han Z Y, et al. High resolution luminescence chronology for Xiashu Loess deposits of Southeastern China[J]. Journal of Asian Earth Sciences, 2018, 155:188-197. doi: 10.1016/j.jseaes.2017.11.027

    [13]

    Fan Q B, Liao J, Yan L, et al. Quartz grain surface microtextural evidence for provenance of the Quaternary aggradation red earth deposit, southern China[J]. Journal of Mountain Science, 2021, 18(8):2048-2060. doi: 10.1007/s11629-020-6523-3

    [14]

    Guan H C, Dai S Q, Ma C M, et al. Paleoclimatic changes during the penultimate interglacial period archived by multiple proxies of Xiashu Loess in the Chaohu Lake Basin, East China[J]. Quaternary International, 2022, 607:58-64. doi: 10.1016/j.quaint.2021.08.003

    [15]

    Bufe A, Hovius N, Emberson R, et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion[J]. Nature Geoscience, 2021, 14(4):211-216. doi: 10.1038/s41561-021-00714-3

    [16]

    Zan J B, Maher B A, Yamazaki T, et al. Mid-Pleistocene links between Asian dust, Tibetan glaciers, and Pacific iron fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(24):e2304773120.

    [17] 张小曳. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究, 2001, 21(1):29-40 doi: 10.3321/j.issn:1001-7410.2001.01.004

    ZHANG Xiaoye. Source distributions, emission, transport, deposition of Asian dust and loess accumulation[J]. Quaternary Sciences, 2001, 21(1):29-40.] doi: 10.3321/j.issn:1001-7410.2001.01.004

    [18]

    Caves Rugenstein J K, Ibarra D E, von Blanckenburg F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes[J]. Nature, 2019, 571(7763):99-102. doi: 10.1038/s41586-019-1332-y

    [19]

    Kang S G, Wang X L, Roberts H M, et al. Late Holocene anti-phase change in the East Asian summer and winter monsoons[J]. Quaternary Science Reviews, 2018, 188:28-36. doi: 10.1016/j.quascirev.2018.03.028

    [20]

    Zhang Z, Jia Y L. Different provenance of separate loess sites in Yangtze River Basin and its paleoenvironmental implications[J]. Journal of Mountain Science, 2019, 16(7):1616-1628. doi: 10.1007/s11629-018-5278-6

    [21] 欧先交, 曾兰华, 周尚哲, 等. 四川西部黄土沉积与环境演变研究综述[J]. 地球环境学报, 2012, 3(1):692-704

    OU Xianjiao, ZENG Lanhua, ZHOU Shangzhe, et al. A review on research of loess and environmental change in west Sichuan Plateau of the eastern Qinghai-Tibetan Plateau[J]. Journal of Earth Environment, 2012, 3(1):692-704.]

    [22] 孟宝航, 郑坤, 银雪琴. 我国南方下蜀黄土的一些研究进展[J]. 地质论评, 2015, 61(S1):33-35

    MENG Baohang, ZHENG Kun, YIN Xueqin. Some research progress of the loess of Lower Shu in southern China[J]. Geological Review, 2015, 61(S1):33-35.]

    [23]

    Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15):3904-3914. doi: 10.1016/j.gca.2007.04.033

    [24] 郭正堂. 黄土高原见证季风和荒漠的由来[J]. 中国科学:地球科学, 2017, 47(4):421-437

    GUO Zhengtang. Loess Plateau attests to the onsets of monsoon and deserts[J]. Scientia SinicaTerrae, 2017, 47(4):421-437.]

    [25] 王治祥. 中新世以来轨道尺度的古气候变化在青藏高原东北缘湖盆记录中的沉积响应[D]. 中国地质大学博士学位论文, 2019

    WANG Zhixiang. Sedimentary response of orbital-scale paleoclimate changes in the lake basin record on the northeastern margin of the Tibetan Plateau since the Miocene[D]. Doctor Dissertation of China University of Geosciences, 2019.]

    [26] 张玉芬, 李长安, 熊德强, 等. 长江三峡巫山黄土稀土元素特征及古环境[J]. 中国地质, 2022, 49(3):901-911

    ZHANG Yufen, LI Chang'an, XIONG Deqiang, et al. Features of rare earth elements and paleoenvironment of Wushan Loess in the Three Gorges, Yangtze River[J]. Geology in China, 2022, 49(3):901-911.]

    [27] 杨达源. 中国东部的第四纪风尘堆积与季风变迁[J]. 第四纪研究, 1991, 11(4):354-360 doi: 10.3321/j.issn:1001-7410.1991.04.007

    YANG Dayuan. The quaternary dust-fall accumulation and the monsoon variability in eastern China[J]. Quaternary Sciences, 1991, 11(4):354-360.] doi: 10.3321/j.issn:1001-7410.1991.04.007

    [28] 李徐生, 韩志勇, 鹿化煜, 等. 下蜀黄土底界的年代及其对区域气候变干的指示[J]. 中国科学: 地球科学, 2018, 48(2): 210-223

    LI Xusheng, HAN Zhiyong, LU Huayu, et al. Onset of Xiashu loess deposition in southern China by 0.9 Ma and its implications for regional aridification[J]. Science China Earth Sciences, 2018, 48(2): 210-223.]

    [29] 王建民, 潘保田. 青藏高原东部黄土沉积的基本特征及其环境[J]. 中国沙漠, 1997, 17(4):395-402

    WANG Jianmin, PAN Baotian. Loess deposit in eastern part of Qinghai Xizang plateau: its characteristics and environment[J]. Journal of Desert Research, 1997, 17(4):395-402.]

    [30] 陈富斌, 高生淮, 陈继良, 等. 甘孜黄土剖面磁性地层初步研究[J]. 科学通报, 1990, 35(20):1600 doi: 10.1360/csb1990-35-20-1600

    CHEN Fubin, GAO Shenghuai, CHEN Jiliang, et al. Preliminary study on the magnetic strata of the Loess profile of Ganzi[J]. Chinese Science Bulletin, 1990, 35(20):1600.] doi: 10.1360/csb1990-35-20-1600

    [31] 刘芬良, 高红山, 潘保田, 等. 金沙江干热河谷华弹段黄土状土的成因、年龄及其古气候指示意义[J]. 中国沙漠, 2022, 42(4):60-70

    LIU Fenliang, GAO Hongshan, PAN Baotian, et al. The genesis, age and its paleoclimatic significance of loess-like sediments in the Huatan section of the dry-hot valley of the Jinsha River[J]. Journal of Desert Research, 2022, 42(4):60-70.]

    [32] 许程, 戴国亮. 镇江地区下蜀黄土物理力学性质指标的相关性研究[J]. 城市勘测, 2020(2):200-203,208 doi: 10.3969/j.issn.1672-8262.2020.02.050

    XU Cheng, DAI Guoliang. Correlations of physical and mechanical properties of Xiashu Loess in Zhenjiang[J]. Urban Geotechnical Investigation & Surveying, 2020(2):200-203,208.] doi: 10.3969/j.issn.1672-8262.2020.02.050

    [33]

    Li X S, Zhou Y W, Han Z Y, et al. Loess deposits in the low latitudes of East Asia reveal the ~20-kyr precipitation cycle[J]. Nature Communications, 2024, 15(1):1023. doi: 10.1038/s41467-024-45379-9

    [34] 郑力. 中国东部主要黄土分布区的Sr-Nd同位素物源示踪研究[J]. 高校地质学报, 2018, 24(2):246-250

    ZHENG Li. Provenances of the major loess deposits in eastern China based on Sr and Nd isotopic characteristics[J]. Geological Journal of China Universities, 2018, 24(2):246-250.]

    [35] 朱晓雨, 刘连文, 孟先强. 巫山地区三类黄土沉积物的粒度特征及物源启示[J]. 地球环境学报, 2019, 10(6):579-589

    ZHU Xiaoyu, LIU Lianwen, MENG Xianqiang. Grain size characteristics and source enlightenment of the Wushan loess in the Yangtze Three Gorges area[J]. Journal of Earth Environment, 2019, 10(6):579-589.]

    [36] 杨文博. 汶川-茂县地区黄土沉积物特征及物源研究[D]. 成都理工大学硕士学位论文, 2020

    YANG Wenbo. Research on the characteristics of loess sediments and the provenance in Mao County-Wenchuan County[D]. Master Dissertation of Chengdu University of Technology, 2020.]

    [37]

    Hao Q Z, Oldfield F, Bloemendal J, et al. The record of changing hematite and goethite accumulation over the past 22 Myr on the Chinese Loess Plateau from magnetic measurements and diffuse reflectance spectroscopy[J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B12):B12101.

    [38] 王运生, 李永昭, 向芳. 川西高原甘孜黄土的成因[J]. 地质力学学报, 2003, 9(1): 91-96

    WANG Yunsheng, LI Yongzhao, XIANG Fang. The Ganzi loess origin in the West Sichuan Plateau[J]. Journal of Geomechanics, 2003, 9(1): 91-96.]

    [39] 陈梓炫. 青藏高原东部黄土的铁磁性矿物特征及其古环境意义[D]. 兰州大学博士学位论文, 2023

    CHEN Zixuan. Characteristics of iron mineralogy in the loess of the eastern Tibetan Plateau and their paleoenvironmental significance[D]. Doctor Dissertation of Lanzhou University, 2023.]

    [40] 李洋. 江苏仪征青山剖面下蜀黄土年代地层学研究[D]. 南京大学硕士学位论文, 2016

    LI Yang. The chronostratigraphy study of Xiashu Loess in Qingshan town of Yizheng City, Jiangsu Province[D]. Master Dissertation of Nanjing University, 2016.]

    [41]

    Li X S, Han Z Y, Lu H Y, et al. Onset of Xiashu loess deposition in southern China by 0.9 Ma and its implications for regional aridification[J]. Science China Earth Sciences, 2018, 61(3):256-269. doi: 10.1007/s11430-017-9134-2

    [42] 乔彦松, 赵志中, 王燕, 等. 川西甘孜黄土-古土壤序列的地球化学演化特征及其古气候意义[J]. 科学通报, 2010, 55(3): 255-260

    QIAO Yansong, ZHAO Zhizhong, WANG Yan, et al. Variations of geochemical compositions and the paleoclimatic significance of a loess-soil sequence from Garzê County of western Sichuan Province, China[J]. Chinese Science Bulletin, 2009, 54(24): 4697-4703.]

    [43] 陈梓炫. 川西高原黄土环境磁学研究[D]. 福建师范大学硕士学位论文, 2019

    CHEN Zixuan. Environmental Magnetism of Loess on the Western Sichuan Plateau[D]. Master Dissertation of Fujian Normal University, 2019.]

    [44] 陈慧. 末次冰期以来甘孜黄土环境磁学特征及其环境意义[D]. 兰州大学硕士学位论文, 2019

    CHEN Hui. Environmental magnetic characteristics of Ganzi loess and its environmental significance since the last glacial[D]. Master Dissertation of Lanzhou University, 2019.]

    [45] 乔彦松, 赵志中, 王燕, 等. 川西甘孜黄土磁性地层学研究及其古气候意义[J]. 第四纪研究, 2006, 26(2):250-256

    QIAO Yansong, ZHAO Zhizhong, WANG Yan, et al. Magnetostratigraphy and its paleoclimatic significance of a loess-soil sequence from Ganzi area, west Sichuan plateau[J]. Quaternary Research, 2006, 26(2):250-256.]

    [46] 张玉芬, 李长安, 熊德强, 等. “巫山黄土”氧化物地球化学特征与古气候记录[J]. 中国地质, 2013, 40(1):352-360

    ZHANG Yufen, LI Chang'an, XIONG Deqiang, et al. Oxide geochemical characteristics and paleoclimate records of "Wushan loess"[J]. Geology in China, 2013, 40(1):352-360.]

    [47] 侯跃伟. 三峡库区巫山望天坪沉积物环境磁学特征研究[D]. 西南大学硕士学位论文, 2010

    HOU Yuewei. Primary research on magnetic characteristics of Wangtianping sediment in Wushan County of the Three Gorges Reservoir Area[D]. Master Dissertation of Southwest University, 2010.]

    [48] 吴超. 长江和黄河下游风尘黄土沉积源汇过程与第四纪晚期东亚干旱化[D]. 华东师范大学博士学位论文, 2021

    WU Chao. Source-sink processes of wind-dusted loess deposition in the lower reaches of the Yangtze and Yellow Rivers and late Quaternary aridification in East Asia[D]. Doctor Dissertation of East China Normal University, 2021.]

    [49] 韩艳. 大别山北麓黄土磁性变化机理研究[D]. 福建师范大学, 2022

    HAN Yan. Study on the mechanism of magnetic variations of loess in the northern piedmont of the Dabie Mountains[D]. Fujian Normal University, 2022.]

    [50] 宋祎晴. 扬州地区下蜀黄土中的炭屑特征及古环境意义[D]. 华东师范大学, 2023

    SONG Yiqing. Characterization and paleoenvironmental significance of charcoal debris in the Lower Shu loess of YangZhou area[D]. East China Normal University, 2023.]

    [51] 陈骏, 安芷生, 刘连文, 等. 最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学(D辑), 2001, 31(2): 136-145

    CHEN Jun, AN Zhisheng, LIU Lianwen, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland[J]. Science in China Series D: Earth Sciences, 2001, 44(2): 403-413.]

    [52] 吴翼, 朱照宇, 饶志国, 等. 蓝田玉山第四纪中后期黄土-古土壤序列环境磁学研究[J]. 科学通报, 2010, 55(22):2214-2225 doi: 10.1360/csb2010-55-22-2214

    WU Yi, ZHU Zhaoyu, RAO Zhiguo, et al. Mid-Late Quaternary loess-paleosol sequence in Lantian’s Yushan, China: An environmental magnetism approach and its paleoclimatic significance[J]. Chinese Science Bulletin, 2010, 55(22):2214-2225.] doi: 10.1360/csb2010-55-22-2214

    [53]

    Han L, Hao Q Z, Qiao Y S, et al. Geochemical evidence for provenance diversity of loess in southern China and its implications for glacial aridification of the northern subtropical region[J]. Quaternary Science Reviews, 2019, 212:149-163. doi: 10.1016/j.quascirev.2019.04.002

    [54]

    Bird A, Millar I, Rodenburg T, et al. A constant Chinese Loess Plateau dust source since the late Miocene[J]. Quaternary Science Reviews, 2020, 227:106042. doi: 10.1016/j.quascirev.2019.106042

    [55]

    Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78:355-368. doi: 10.1016/j.quascirev.2012.11.032

    [56]

    Qi L, Qiao Y S. Geochemical characteristics of Eolian deposits on the eastern margin of the Tibetan Plateau and implications for provenance[J]. Acta Geologica Sinica - English Edition, 2014, 88(3):963-973. doi: 10.1111/1755-6724.12249

    [57] 文星跃, 黄成敏, 王成善. 重要环境与气候变化事件: 深时古土壤的记录与响应[J]. 土壤通报, 2015, 46(5):1272-1280

    WEN Xingyue, HUANG Chengmin, WANG Chengshan. Critical events in paleoenvironmental and paleoclimatic change revealed by deep-time paleosols[J]. Chinese Journal of Soil Science, 2015, 46(5):1272-1280.]

    [58] 张芸, 朱诚, 张强, 等. 长江三峡大宁河流域3000年来的沉积环境和风尘堆积[J]. 海洋地质与第四纪地质, 2001, 21(4):83-88

    ZHANG Yun, ZHU Cheng, ZHANG Qiang, et al. Sedimentary environment and eolian deposits in past 3000 a in Daning valley of the three gorges of the Yangtze river[J]. Marine Geology & Quaternary Geology, 2001, 21(4):83-88.]

    [59] 文星跃, 唐亚, 黄成敏, 等. 青藏高原东缘风成黄土的多源性: 以九寨沟黄土为例[J]. 山地学报, 2014, 32(5):603-614

    WEN Xingyue, TANG Ya, HUANG Chengmin, et al. Multi-material source of loess deposits from the Jiuzhaigou national nature reserve on the eastern margin of the Tibetan Plateau[J]. Mountain Research, 2014, 32(5):603-614.]

    [60] 陈骏, 李高军. 亚洲风尘系统地球化学示踪研究[J]. 中国科学: 地球科学, 2011, 41(9): 1211-1232

    CHEN Jun, LI Gaojun. Geochemical studies on the source region of Asian dust[J]. Science China Earth Sciences, 2011, 41(9): 1211-1232]

    [61] 曹向明, 钟威, 张智, 等. 赣北风沙-粉尘堆积体系元素地球化学变化特征及其对黄土物源示踪意义[J]. 第四纪研究, 2020, 40(1):203-213

    CAO Xiangming, ZHONG Wei, ZHANG Zhi, et al. The systematic variation of geochemistry in Furong-Zhouxi aeolian sand-dust deposital cell in middle and lower reaches of Yangtze river and its implications for provenance of loess[J]. Quaternary Research, 2020, 40(1):203-213.]

    [62] 文星跃, 吴勇, 黄成敏, 等. 岷江上游晚更新世黄土粒度与元素组成特征及其物源指示意义[J]. 山地学报, 2019, 37(4):488-498

    WEN Xingyue, WU Yong, HUANG Chengmin, et al. Grain size & elements composition characteristics and their implications for provenance of the late pleistocene loess in the upper reaches of the Minjiang River, China[J]. Mountain Research, 2019, 37(4):488-498.]

    [63] 杨达源. 晚更新世冰期最盛时长江中下游地区的古环境[J]. 地理学报, 1986(4):302-310

    YANG Dayuan. The paleoenvironment of the mid-lower regions of Changjiang in the full-glacial period of late Pleistocene[J]. Acta Geographica Sinica, 1986(4):302-310.]

    [64] 钱鹏, 郑祥民, 周立旻. 沙尘暴期间上海市大气颗粒物元素地球化学特征及其物源示踪意义[J]. 环境科学, 2013, 34(5):2010-2017

    QIAN Peng, ZHENG Xiangmin, ZHOU Limin. Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event[J]. Environmental Science, 2013, 34(5):2010-2017.]

    [65] 黎兴国, 何娟华, 李立文. 南京燕子矶下蜀黄土中铁含量与古气候变化[J]. 铁道师院学报:自然科学版, 1993, 10(1):48-56

    LI Xingguo, HE Juanhua, LI Liwen. Ferrum in loess strata and palaeoclimatic changes of the Xiashu Loess in Yanziji of Nanjing[J]. Journal of Suzhou Railway Teachers College, 1993, 10(1):48-56.]

    [66] 王爱萍, 杨守业, 李从先. 南京地区下蜀土元素地球化学特征及物源判别[J]. 同济大学学报, 2001, 29(6):657-661

    WANG Aiping, YANG Shouye, LI Congxian. Elemental geochemistry of the Nanjing Xiashu loess and the provenance study[J]. Journal of Tongji University, 2001, 29(6):657-661.]

    [67] 张玉芬, 李长安, 李启文, 等. 三峡巫山黄土Sr-Nd同位素组成与物源示踪[J]. 地球科学, 2020, 45(3):960-967

    ZHANG Yufen, LI Chang'an, LI Qiwen, et al. Sr-Nd isotopic composition and provenance tracing of Wushan Loess, Three Gorges, Yangtze River[J]. Earth Science, 2020, 45(3):960-967.]

    [68] 何永峰, 王建力, 王勇. 长江三峡巫山地区第四纪沉积物元素地球化学特征[J]. 太原师范学院学报:自然科学版, 2009, 8(4):94-100,110

    HE Yongfeng, WANG Jianli, WANG Yong. Geochemistry characteristics of quaternary sediments from Wushan District in Three Gorges[J]. Journal of Taiyuan Normal University:Natural Science Edition, 2009, 8(4):94-100,110.]

    [69] 刘冬雁, 李巍然, 彭莎莎, 等. 粒度分析在中国第四纪黄土古气候研究中的应用现状[J]. 中国海洋大学学报, 2010, 40(2):79-84

    LIU Dongyan, LI Weiran, PENG Shasha, et al. Current application of grain size analysis in Chinese loess paleoclimatic study[J]. Periodical of Ocean University of China, 2010, 40(2):79-84.]

    [70] 赵小明, 李长安, 王孔伟, 等. 三峡库区宜昌-重庆段基础地质与地质灾害[M]. 武汉: 中国地质大学出版社有限责任公司, 2012

    ZHAO Xiaoming, LI Chang'an, WANG Kongwei, et al. Basic Geological and Geological Disasters in the Yichang-Chongqing Section of the Three Gorges Reservoir Area[M]. Wuhan: China University of Geosciences Press, 2012.]

    [71] 方小敏, 陈富斌, 施雅风, 等. 甘孜黄土与青藏高原冰冻圈演化[J]. 科学通报, 1996, 41(20):1865-1867 doi: 10.1360/csb1996-41-20-1865

    FANG Xiaomin, CHEN Fubin, SHI Yafeng, et al. Evolution of Ganzi Loess and the ice circle of the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 1996, 41(20):1865-1867.] doi: 10.1360/csb1996-41-20-1865

    [72]

    Feng J L, Hu Z G, Ju J T, et al. Variations in trace element (including rare earth element) concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits[J]. Quaternary International, 2011, 236(1-2):116-126. doi: 10.1016/j.quaint.2010.04.024

    [73]

    Hu P X, Liu Q S, Heslop D, et al. Soil moisture balance and magnetic enhancement in loess–paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2015, 409:120-132. doi: 10.1016/j.jpgl.2014.10.035

    [74] 乔彦松, 刘冬雁, 李朝柱, 等. 川西甘孜地区黄土的磁性地层学研究[J]. 地质力学学报, 2007, 13(4):289-296

    QIAO Yansong, LIU Dongyan, LI Chaozhu, et al. Magnetostratigraphy of a loess-soil sequence in the Garze area, western Sichuan[J]. Journal of Geomechanics, 2007, 13(4):289-296.]

    [75] 彭东, 曹俊, 杨俊义, 等. 四川九寨沟地区黄土的初步研究[J]. 中国区域地质, 2001, 20(4):359-365

    PENG Dong, CAO Jun, YANG Junyi et al. Study of loess in the Jiuzhaigou area, Sichuan[J]. Regional Geology of China, 2001, 20(4):359-365.]

    [76] 刘维亮, 李国新, 谷曼. 川西高原可尔因地区黄土成因研究[J]. 地质与资源, 2007, 16(4):300-302

    LIU Weiliang, LI Guoxin, GU Man. Study on the origin of the loess in Keryin area, West Sichuan Plateau[J]. Geology and Resources, 2007, 16(4):300-302.]

    [77] 盛海洋. 青藏高原东北缘若尔盖盆地黄土的成因[J]. 地球科学:中国地质大学学报, 2010, 35(1):62-74 doi: 10.3799/dqkx.2010.007

    SHENG Haiyang. Zoigê basin loess origin in the northeast Tibet Plateau[J]. Earth Science (Journal of China University of Geosciences), 2010, 35(1):62-74.] doi: 10.3799/dqkx.2010.007

    [78] 谢明. 长江三峡地区的黄土状堆积物[J]. 地球化学, 1991(3):292-300

    XIE Ming. Loessal deposits in the Three-Gorge area of the Changjiang (Yangtze) River[J]. Geochimica, 1991(3):292-300.]

    [79] 王建明, 王勇, 王建力. 巫山第四纪沉积物粒度特征研究[J]. 人民长江, 2009, 40(13):13-15

    WANG Jianming, WANG Yong, WANG Jianli. Research on granular characteristics of Quaternary deposit in Wushan County[J]. Yangtze River, 2009, 40(13):13-15.]

    [80] 黄臻, 王建力, 王勇. 长江三峡巫山第四纪沉积物粒度分布特征[J]. 热带地理, 2010, 30(1):30-33,39

    HUANG Zhen, WANG Jianli, WANG Yong. Grain-size features of quaternary sediments in Changjiang Three Gorge Reservoir of the Wushan area[J]. Tropical Geography, 2010, 30(1):30-33,39.]

    [81] 刘俊延, 陈林, 慈恩, 等. 巫山黄土成因及其发育土壤特征研究[J]. 土壤通报, 2022, 53(2):262-269

    LIU Junyan, CHEN Lin, CI En, et al. The origin of Wushan loess and the characteristics of soil derived from it[J]. Chinese Journal of Soil Science, 2022, 53(2):262-269.]

    [82] 张玉芬, 李长安, 邵磊, 等. “巫山黄土”的稀土元素特征与成因[J]. 地球科学:中国地质大学学报, 2013, 38(1):181-187

    ZHANG Yufen, LI Chang'an, SHAO Lei, et al. REE compositions of the “Wushan Loess” and its origin[J]. Earth Science (Journal of China University of Geosciences), 2013, 38(1):181-187.]

    [83] 李长安, 张玉芬, 熊德强, 等. “巫山黄土”常量元素地球化学特征[J]. 地球科学(中国地质大学学报), 2013, 38(5):916-922

    LI Chang'an, ZHANG Yufen, XIONG Deqiang, et al. Major element compositions of the “Wushan Loess”[J]. Journal of Earth Science (Journal of China University of Geosciences), 2013, 38(5):916-922.]

    [84] 张玉芬, 邵磊, 熊德强. “巫山黄土”元素地球化学特征及成因和物源意义[J]. 沉积学报, 2014, 32(1):78-84

    ZHANG Yufen, SHAO Lei, XIONG Deqiang. Elemental compositions of the "Wushan Loess": Implications for origin and sediment source[J]. Acta Sedimentologica Sinica, 2014, 32(1):78-84.]

    [85]

    Zhu X Y, Liu L W, Wang X Y, et al. The Sr-Nd isotope geochemical tracing of Xiashu Loess and its implications for the material transport mechanism of the Yangtze River[J]. Catena, 2021, 203:105335. doi: 10.1016/j.catena.2021.105335

    [86] 李徐生, 杨达源, 鹿化煜. 镇江下蜀黄土粒度特征及其成因初探[J]. 海洋地质与第四纪地质, 2001, 21(1):25-32

    LI Xusheng, YANG Dayuan, LU Huayu. Grain-size features and genesis of the Xiashu loess in Zhenjiang[J]. Marine Geology & Quaternary Geology, 2001, 21(1):25-32.]

    [87] 刘梦慧, 李徐生, 韩志勇, 等. 下蜀黄土参数化粒度端元分析及其物源示踪[J]. 地球环境学报, 2021, 12(5):510-525

    LIU Menghui, LI Xusheng, HAN Zhiyong, et al. Parametric end-member analysis of the grain size distribution of the Xiashu loess and its provenance tracing[J]. Journal of Earth Environment, 2021, 12(5):510-525.]

    [88] 刘峰, 王昊, 秦艺帆, 等. 南京周家山下蜀黄土色度特征及其意义[J]. 海洋地质与第四纪地质, 2015, 35(5):143-151

    LIU Feng, WANG Hao, QIN Yifan, et al. Chroma characteristics of the Zhoujiashan Xiashu loess profile in Nanjing and its significance[J]. Marine Geology & Quaternary Geology, 2015, 35(5):143-151.]

    [89] 陈璞皎, 郑祥民, 周立旻, 等. 宁镇地区下蜀黄土粒度特征及其古环境意义[J]. 地质科技情报, 2017, 36(5):7-13

    CHEN Pujiao, ZHENG Xiangmin, ZHOU Limin, et al. Grain size distribution and its significance of the Xiashu Loess in Nanjing-Zhenjiang area[J]. Geological Science and Technology Information, 2017, 36(5):7-13.]

    [90] 邵家骥. 长江下游第四纪下蜀黄土的成因探讨[J]. 中国区域地质, 1988(4):312-319

    SHAO Jiaji. The origin of the Xiashu loess in the lower reaches of the Yangzi River[J]. Regional Geology of China, 1988(4):312-319.]

    [91] 陈玉美, 舒强, 张茂恒, 等. 南京下蜀黄土记录的250~100ka期间的环境演化信息[J]. 地质科技情报, 2014, 33(6):55-59,77

    CHEN Yumei, SHU Qiang, ZHANG Maoheng, et al. Environmental evolution information recorded in the Xiashu Loess (250-100 ka) in Nanjing, China[J]. Geological Science and Technology Information, 2014, 33(6):55-59,77.]

    [92] 黎兴国, 何娟华, 李德生, 等. ESR在下蜀黄土测年中的尝试[J]. 南京师大学报:自然科学版, 1993, 16(3):86-91

    LI Xingguo, HE Juanhua, LI Desheng, et al. The attempt of ESR in the measurement of the loess of Xiashu[J]. Journal of Nanjing Normal University:Natural Science, 1993, 16(3):86-91.]

    [93]

    Liu F, Li G J, Chen J. U-Pb ages of zircon grains reveal a proximal dust source of the Xiashu loess, Lower Yangtze River region, China[J]. Chinese Science Bulletin, 2014, 59(20):2391-2395. doi: 10.1007/s11434-014-0318-2

    [94]

    Qiao Y S, Hao Q Z, Peng S S, et al. Geochemical characteristics of the eolian deposits in southern China, and their implications for provenance and weathering intensity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3-4):513-523. doi: 10.1016/j.palaeo.2011.06.003

    [95]

    Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29(23-24):3317-3326. doi: 10.1016/j.quascirev.2010.08.004

    [96] 王泽丽. 金沙江河谷黄土状物质的成因及其环境指示意义研究[D]. 云南师范大学硕士学位论文, 2016

    WANG Zeli. Study on the genesis of loess-like materials in the Jinshajiang River Valley and their environmental indications[D]. Master Dissertation of Yunnan Normal University, 2016.]

    [97] 叶玉林, 苏怀, 董铭, 等. 元素和矿物组成揭示的金沙江干热河谷黄土状物质的物源[J]. 地球环境学报, 2018, 9(3):238-244

    YE Yulin, SU Huai, DONG Ming, et al. Elements and mineral composition indicating the provenance of loess-like sediments in Dry-Hot Valleys of Jinsha River[J]. Journal of Earth Environment, 2018, 9(3):238-244.]

    [98]

    Jiang Q D, Hao Q Z, Peng S Z, et al. Grain-size evidence for the transport pathway of the Xiashu loess in northern subtropical China and its linkage with fluvial systems[J]. Aeolian Research, 2020, 46:100613. doi: 10.1016/j.aeolia.2020.100613

    [99]

    Shang Y, Prins M A, Beets C J, et al. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra[J]. Quaternary Science Reviews, 2018, 182:131-143. doi: 10.1016/j.quascirev.2018.01.001

    [100]

    Xiang F, Huang H X, Ogg J G, et al. Quaternary sediment characteristics and paleoclimate implications of deposits in the Three Gorges and Yichang areas of the Yangtze River[J]. Geomorphology, 2020, 351:106981. doi: 10.1016/j.geomorph.2019.106981

    [101] 王博, 王牛牛, 王志远, 等. MIS13时期黄土高原东西部地区夏季风不对称演化[J]. 海洋地质与第四纪地质, 2020, 40(3):185-192

    WANG Bo, WANG Niuniu, WANG Zhiyuan, et al. Unparallel MIS13 climate evolution between western and eastern Chinese Loess Plateau[J]. Marine Geology & Quaternary Geology, 2020, 40(3):185-192.]

    [102] 李名则. 川西甘孜黄土地层与古气候变化[D]. 中国地质科学院硕士学位论文, 2008

    Li Mingze. Garze loess strata and its implication to paleoclimatic change in the western Sichuan[D]. Master Dissertation of Chinese Academy of Geological Sciences, 2008.]

    [103] 蒋复初, 吴锡浩, 肖华国, 等. 川西高原甘孜黄土地层学[J]. 地球学报, 1997, 18(4):413-420

    JIANG Fuchu, WU Xihao, XIAO Huaguo, et al. The Ganzi Loess stratigraphy in the West Sichuan Plateau[J]. Acta Geoscientia Sinica, 1997, 18(4):413-420.]

    [104] 颜茂都, 方小敏, 陈诗越, 等. 青藏高原更新世黄土磁化率和磁性地层与高原重大气候变化事件[J]. 中国科学(D辑), 2001, 31(S1):182-186

    YAN Maodu, FANG Xiaomin, CHEN Shiyue, et al. Pleistocene magnetic susceptibility and paleomagnetism of the Tibetan loess and its implications on large climatic change events[J]. Science China (Series D:Earth Sciences), 2001, 31(S1):182-186.]

    [105] 陈诗越, 方小敏, 王苏民. 川西高原甘孜黄土与印度季风演化关系[J]. 海洋地质与第四纪地质, 2002, 22(3):41-46

    CHEN Shiyue, FANG Xiaomin, WANG Sumin. Relation between the loess stratigraphy on the eastern Tibetan Plateau and Indian monsoon[J]. Marine Geology & Quaternary Geology, 2002, 22(3):41-46.]

    [106] 刘冬雁, 彭莎莎, 乔彦松, 等. 青藏高原东南缘甘孜黄土磁化率揭示的西南季风演化[J]. 海洋地质与第四纪地质, 2009, 29(5):115-121

    LIU Dongyan, PENG Shasha, QIAO Yansong, et al. Evolution of the southwest monsoon on orbital time-scale revealed by a loess-paleosol sequence on the southeastern margin of the Qinghai-Tibetan Plateau for the last 1.16 Ma[J]. Marine Geology & Quaternary Geology, 2009, 29(5):115-121.]

    [107]

    Qiao Y S, Wang Y, Yao H T, et al. Magnetostratigraphy of a loess-paleosol sequence from higher terrace of the Daduhe River in the eastern margin of the Tibetan Plateau and its geological significance[J]. Acta Geologica Sinica (English Edition), 2015, 89(1):316-317. doi: 10.1111/1755-6724.12421

    [108] 白文彬. 川西金川黄土地层时代与15万年以来环境演化[D]. 中国地质大学(北京)硕士学位论文, 2020

    BAI Wenbin. The stratigraphic age of the loess and the environmental evolution since 150, 000 years in Jinchuan County, Western Sichuan Plateau[D]. Master Dissertation of China University of Geosciences (Beijing), 2020.]

    [109] 王书兵. 川西中部晚更新世地层与环境[D]. 中国地质科学院博士学位论文, 2005

    WANG Shubing. Late Pleistocene stratigraphy and environment in central western Sichuan[D]. Doctor Dissertation of Chinese Academy of Geological Sciences, 2005.]

    [110] 杨文光, 朱利东, 罗虹, 等. 川西漳腊黄土地层与气候变化[J]. 华南地质与矿产, 2011, 27(3):231-237

    YANG Wenguang, ZHU Lidong, LUO Hong, et al. Stratigraphy of Zhangla loess in western Sichuan plateau and its paleoclimatic change record[J]. Geology and Mineral Resources of South China, 2011, 27(3):231-237.]

    [111] 柯于义, 尹华刚, 郭峰, 等. 三峡库区“巫山黄土”成因研究[J]. 人民长江, 2007, 38(9):72-73,76

    KE Yuyi, YIN Huagang, GUO Feng, et al. Research on the causes of "Wushan Loess" in the Three Gorges Reservoir Area[J]. Yangtze River, 2007, 38(9):72-73,76.]

    [112] 武春林, 朱诚, 鹿化煜, 等. 南京地区下蜀黄土磁性地层年代与古环境变化[J]. 地层学杂志, 2006, 30(2):116-123

    WU Chunlin, ZHU Cheng, LU Huayu, et al. Magnetostratigraphical dating of the Xiashu Lower Shu loess in Nanjing area and its paleoenvironmental interpretation[J]. Journal of Stratigraphy, 2006, 30(2):116-123.]

    [113] 赖忠平, 周杰, 夏应菲, 等. 南京下蜀黄土红外释光地层年代学[J]. 中国沙漠, 2001, 21(2):116-121

    LAI Zhongping, ZHOU Jie, XIA Yingfei, et al. Luminescence geochronology of Xiashu Loess near Nanjing[J]. Journal of Desert Research, 2001, 21(2):116-121.]

    [114]

    Qiao Y S, Guo Z T, Hao Q Z, et al. Loess-soil sequences in southern Anhui Province: Magnetostratigraphy and paleoclimatic significance[J]. Chinese Science Bulletin, 2003, 48(19):2088-2093. doi: 10.1360/03wd0183

    [115] 成婷. 川西高原黄土石英光释光测年研究[D]. 兰州大学硕士学位论文, 2018

    CHENG Ting. Quartz OSL dating of loess sequences from the Western Sichuan Plateau[D]. Master Dissertation of Lanzhou University, 2018.]

    [116]

    Lai Z P, Zhang W G, Chen X, et al. OSL chronology of loess deposits in East China and its implications for East Asian monsoon history[J]. Quaternary Geochronology, 2010, 5(2-3):154-158. doi: 10.1016/j.quageo.2009.02.006

    [117]

    Fang X M, Li J J, Van der Voo R. Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800, 000 years B. P. related to Tibetan uplift[J]. Earth and Planetary Science Letters, 1999, 165(1):129-144. doi: 10.1016/S0012-821X(98)00259-3

    [118] 李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1):1-12

    LI Jijun. Studies on the geomorphological evolution of the Qinghai Xizang (Tibetan) plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999, 19(1):1-12.]

    [119]

    Peng S Z, Hao Q Z, Wang L, et al. Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, northern China[J]. Quaternary Research, 2016, 85(2):290-298. doi: 10.1016/j.yqres.2016.01.005

    [120]

    Gong H J, Zhang R, Yue L P, et al. Magnetic fabric from red clay sediments in the Chinese Loess Plateau[J]. Scientific Reports, 2015, 5(1):9706. doi: 10.1038/srep09706

    [121] 刘维明, 杨胜利, 方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报:地球科学版, 2013, 43(3):974-982

    LIU Weiming, YANG Shengli, FANG Xiaomin. Loess recorded climatic change during the last glaciation on the eastern Tibetan Plateau, Western Sichuan[J]. Journal of Jilin University:Earth Science Edition, 2013, 43(3):974-982.]

    [122] 石天宇, 张样洋, 翟秋敏, 等. 临汾盆地晚冰期至中全新世黄土-古土壤序列的风化特征及指示的气候意义[J]. 海洋地质与第四纪地质, 2023, 43(2):181-191

    SHI Tianyu, ZHANG Yangyang, ZHAI Qiumin, et al. Characteristics of weathering of the loess-paleosol sequences in the Late Glacial Period to Middle Holocene in Linfen Basin and implication for climatic significance[J]. Marine Geology & Quaternary Geology, 2023, 43(2):181-191.]

    [123] 徐小涛, 邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报, 2018, 20(3):515-522

    XU Xiaotao, SHAO Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 2018, 20(3):515-522.]

    [124]

    Wang S M, Xue B. Environmental evolution of Zoigê Basin since 900 kaB. P. and comparison study with Loess Plateau[J]. Science in China Series D:Earth Sciences, 1997, 40(3):329-336. doi: 10.1007/BF02877543

    [125] 强小科, 安芷生, 常宏. 佳县红粘土堆积序列频率磁化率的古气候意义[J]. 海洋地质与第四纪地质, 2003, 23(3):91-96

    QIANG Xiaoke, AN Zhisheng, CHANG Hong. Implication of frequency-dependent magnetic susceptibility of red clay sequences in the Jiaxian profile of northern China[J]. Marine Geology & Quaternary Geology, 2003, 23(3):91-96.]

    [126] 沈小晓. 川西地区风成沉积物上土壤发生学特征及环境意义[D]. 西华师范大学硕士学位论文, 2019

    SHEN Xiaoxiao. Soil pedogenesis and environmental significance based on Aeolian parent materials in western Sichuan[D]. Master Dissertation of China West Normal University, 2019.]

    [127]

    Rao W B, Han G L, Tan H B, et al. Chemical and Sr isotopic characteristics of rainwater on the Alxa Desert Plateau, North China: Implication for air quality and ion sources[J]. Atmospheric Research, 2017, 193:163-172. doi: 10.1016/j.atmosres.2017.04.007

    [128]

    Yang Y, Galy A, Zhang J, et al. Dust transport enhanced land surface weatherability in a cooling world[J]. Geochemical Perspectives Letters, 2023, 26:36-39. doi: 10.7185/geochemlet.2322

    [129]

    Hilley G E, Porder S. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44):16855-16859.

图(7)  /  表(2)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  31
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-01
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-04-23

目录

/

返回文章
返回