Progress and outlooks on magnetostratigraphy of Chinese loess
-
摘要:
中国黄土是最重要的第四纪陆相气候记录之一,磁极性地层是建立第四纪黄土年代框架的主要方法之一。本文总结了中国黄土所记录的布容/松山(Brunhes/Matuyama)、加拉米诺(Jaramillo)、奥尔都维(Olduvai)和松山/高斯(Matuyama/Gauss)等几个作为主要定年依据的极性倒转界限的研究结果,并将黄土记录的这些界限位置与深海记录进行了对比。结果发现,不同黄土剖面所记录的各地磁极性倒转界限的位置并不一致,其差异可超过一个黄土-古土壤旋回,且不能用lock-in效应、气候和沉积速率差异、黄土地层划分差异来解释。这些地磁极性界限位置的差异指示极性界限附近的黄土可能经历了不同程度的重磁化。同时,这些差异也导致了不同研究者基于磁极性地层所建立的轨道尺度的黄土年代标尺与深海氧同位素记录的对比存在较大分歧。未来对黄土所记录的地磁场相对古强度(RPI)的研究可望为识别极性倒转界限的真实位置提供依据,并最终解决中国黄土与深海记录轨道尺度对比方案的分歧。
Abstract:The Chinese loess is one of the most important terrestrial records of the Quaternary climate changes. Magnetostratigraphy is one of the primary methods for establishing the chronological framework of the Quaternary loess. The measured positions of the Brunhes/Matuyama, Jaramillo, Olduvai, and Matuyama/Gauss polarity reversal boundaries in Chinese loess were summarized and compared against corresponding marine records. It was found that the positions of each polarity reversal boundary are inconsistent among different loess sections, and the difference spanned more than one loess-paleosol cycle. This discrepancy cannot be attributed to the lock-in effect, regional climate, sedimentation rate or different loess stratigraphic divisions. This may indicate that the polarity reversal boundaries recorded by loess deposits had probably experienced significant remagnetization, leading to a large discrepancy between loess geochronometer in magnetostratigraphy at orbital scale and marine oxygen isotope records by different researchers. In the future, studies shall focus more on the relative paleointensity (RPI) of loess to confirm the true position of each polarity reversal boundary and ultimately resolve the discrepancy in the comparison scheme between Chinese loess data and deep-sea sediment record.
-
Keywords:
- Chinese loess /
- Quaternary /
- magnetostratigraphy /
- remagnetization /
- relative paleointensity
-
南黄海是一个典型的半封闭陆表海,地势平坦,位于稳定的平坦大陆架上。南黄海在晚第四纪冰期-间冰期经历了剧烈的海平面升降,接纳了大量周缘河流携带而来的陆源物质,为研究河海相互作用提供了一个天然实验室[1-2]。
黄河和长江作为中国最长的河流,被认为是晚第四纪期间南黄海的主要沉积物来源[3];朝鲜半岛河流紧靠南黄海,也影响了南黄海的物质来源[4]。这些不同河流来源沉积物在南黄海的搬运机制、沉积范围引起了众多研究者的广泛研究[5-6],并初步得出在不同区域内,黄河、长江和朝鲜半岛河流物源影响不尽相同的结论[7-8]。多数研究认为,南黄海西部主要接收了黄河带来的物质[9-10]。南黄海东部靠近朝鲜半岛附近区域的沉积物来源尚有争议,部分研究者认为来源于中国大陆河流,也有研究者认为由韩国河流提供[11]。南黄海中部泥质区物质来源具有多源性,被称为“多源现代泥”[12]。过去的这些物源研究大多集中于全新世沉积物[13-15],而随着南黄海附近海域长取芯钻孔的增多,关于全新世之前层段中松散沉积物的物质来源也开始引起了部分学者的关注[2,16-17]。大陆架科学钻探计划实施的CSDP-01孔从矿物学和Sr-Nd同位素角度揭示了3.5 Ma以来较长尺度的物源演变,认为南黄海西部在0.8 Ma时发生了由长江源转为黄河源的重大变化[18]。而更多末次冰期以来的物源研究表明,长江源物质依然严重影响着南黄海的沉积物分布[19]。稀土元素研究结果证实晚更新世早期(MIS5)长江源物质主导着南黄海中部泥质区物质组成[20]。沉积学和地震剖面研究显示,在MIS3时期,南黄海西部和东海陆架北部发育了大范围的埋藏型三角洲体,估计沉积时间约为40~60 ka,随后受到河道切割的影响,这些埋藏型三角洲体被认为是长江和黄河共同控制的三角洲复合体[1-2,21]。然而,关于MIS3期间南黄海西部发育的长江和黄河三角洲沉积是否曾经进入南黄海中东部的研究非常有限[22-23]。另一个值得注意的物源问题是,MIS5和MIS1时期的海平面高度相似[24],南黄海陆架区在MIS5高海平面时期的沉积物来源、输运与MIS1时是否具有相似性和可比性也需要进一步研究。
稀土元素(REE)在环境中具有稳定的化学性质,在由母岩的风化、剥蚀、搬运进入河流并沉积到海底的过程中不易迁移,使得海底沉积物REE记录着源区的沉积环境信息[25],因此REE在物源示踪中运用很广[26]。近年来,许多学者对西太平洋边缘海和周缘主要河流沉积物开展了REE地球化学特征、控制因素等多种研究[27-31],并通过REE含量配分模式和一些重要REE参数的对比等,在钻孔沉积物物源识别方面取得了很好的效果[30]。
本文对南黄海中部SYSC-1孔岩芯沉积物开展REE分析,并结合粒度特征分析和测年结果,探讨了时间序列体系内的物源演化与海平面波动及海洋环流变化的关系,为南黄海晚更新世以来的沉积环境变化、物质来源和搬运机制等研究提供了新的地质证据,丰富了南黄海海域的研究成果。
1. 区域地质背景
南黄海位于中国大陆和朝鲜半岛之间,在西北侧和南侧与渤海、东海连接,大部分海区水深小于80 m。南黄海现代海洋流系主要受黄海暖流、沿岸流、黄海冷水团和长江冲淡水的影响[32]。黄海暖流是由对马暖流水和东海陆架混合水交汇所形成的锋区中衍生出来的,由济州岛西侧进入南黄海,存在明显的季节变异,冬季黄海暖流对南黄海营养盐的分布和运输有明显影响,对深层影响尤其明显[33]。沿岸流分布在黄海沿岸区,东西两侧分别为流向南的山东半岛沿岸流和朝鲜半岛沿岸流。黄海冷水团和长江冲淡水则主要发育在夏半年,分别位于南黄海中部和南部海域。
南黄海的大地构造位置位于扬子克拉通的下扬子地块,主要的构造单元为南黄海盆地。南黄海新生代盆地基底之上主要形成了一套新近系—第四系海陆交互相地层[34]。浙闽隆起带是分隔南黄海盆地和东海陆架盆地的火山岩构造带,新近纪以来浙闽隆起经历分裂、沉降,至约1.66 Ma海水从东海越过浙闽隆起进入黄海;随着浙闽隆起的进一步沉降至约0.83 Ma,南黄海在之后的间冰期高海平面时期其海洋环境与现今基本类似,浙闽隆起对海水入侵南黄海的阻隔作用基本消失[35]。
2. 材料与方法
SYSC-1孔岩芯为青岛海洋地质研究所利用“勘407”调查船于2018年5月在南黄海中部完成的全取芯钻孔(图1),钻孔坐标35°47′43.6"N、123°44′5.5"E,水深约75 m,总进尺150.1 m,其中砂质沉积物取芯率均值大于65%,泥质沉积物取芯率均值大于85%。
钻孔岩芯在实验室中被对半分成两部分,随后对其进行沉积特征描述和拍照。对工作的一半进行取样和分析,获得沉积学、地球化学等参数,表征不同岩相的沉积环境。在本研究中,我们主要关注整个岩芯的上部30 m,其中沉积物年龄由加速器质谱仪碳测年(AMS14C)和光释光测年(OSL)结果有效建立。
在钻孔中微体古生物富集和发育完整生物贝壳的层段挑选AMS14C测年物质,共计挑选了2个底栖有孔虫样品和1个完整生物贝壳送至美国Beta实验室进行AMS14C测试,数据用Calib7.0.1软件校正至日历年龄。光释光测试样品通过暗盒在避光条件下从岩芯中取出并用锡箔纸包裹密封保存,共计取样11个,在中国科学院青海盐湖研究所光释光实验室完成,在暗室中进行样品前处理,将未曝光的样品去除碳酸盐和有机质后湿筛提取38~63 μm组分,再去除长石和氟化物沉淀后,采用单片再生法和标准生长曲线法相结合的方法在Risø TL/OSL-DA-20全自动释光仪上进行测定。通过中值年代模型得出最终的等效剂量,通过样品U、Th、K含量计算获得样品每年接受的辐射剂量。等效剂量与年剂量的比值即是样品自最后一次曝光至今的沉积年龄。常规石英颗粒的光释光测年上限可以达到100 ka[38]。
粒度分析和稀土元素所用样品以30~40 cm的间隔采集,各从SYSC-1岩芯采集并分析了89个样品,均由青岛海洋地质研究所实验测试中心完成测试。粒度分析按海洋地质调查技术规范要求进行处理,取适量样品置于烧杯中,先后各加入过量的30%的H2O2和0.25 mol/L的HCl溶液消除有机质和生物贝壳及钙质胶结物的影响,用去离子水加烧杯静置24 h,除去上清液,离心清洗两次去除剩余的H2O2和HCl,加少许蒸馏水,经超声波充分分散后进行测试。测试所用仪器为英国Malvern公司产的Mastersizer 2000型激光粒度仪。分析结果间隔1/4 Φ,重复测量的相对误差小于2%。
稀土元素样品测试流程如下:试样初步高温干燥、冷却,置于聚四氟乙烯密闭溶样罐中,再经硝酸、氢氟酸处理使稀土元素形成氢氧化物沉淀,加三乙醇胺掩蔽铁、铝,加EDTA络合钙、钡,过滤。稀土元素氢氧化物沉淀溶于2 mol/L盐酸,经硝酸阳离子交换树脂分离富集后,再用5 mol/L盐酸洗提,蒸发定容后采用电感耦合等离子体质谱仪(ICP-MS)测定La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu等14种稀土元素含量。测试时采用国家一级标准物质比对、密码样品的双份分析和试样全分析百分数加和的手段进行质量监控,分析过程中进行了重复样和标样分析,稀土元素分析的相对偏差小于5%。
3. 结果分析
3.1 测年结果和地层年代序列
钻孔上部30 m主要发育了一套细颗粒沉积物,平均粒径均值6.75 Φ,沉积物粒度变化比较稳定(图2),平均粒径为5.07~7.86 Φ。3个AMS14C测年结果(表1)显示,自上而下年龄序列正常,0.4 m和3.2 m处的有孔虫测年结果分别为1347 aBP和10901 aBP,7 m处的贝壳测年结果大于43500 aBP,接近AMS14C测年上限,在此仅用作参考。11个OSL测年结果(表1)反映沉积年龄序列整体上基本正常,上半段(3.7~14.7 m)的7个测年结果介于58.4±5.2~77.6±7.2 kaBP,其中上面的6个OSL年龄接近,部分年龄出现了新老倒置现象,可能是陆架区低海平面时期的冲刷侵蚀再沉积作用导致年龄出现偏差,7 m处的OSL年龄为58.4±5.2 kaBP,与AMS14C年龄较好的相互佐证。钻孔3.7 m处OSL年龄突然增加到63.4±5.2 ka,结合岩性变化,推测在3.4 m左右存在沉积间断,这一地层缺失现象在MIS2期间普遍存在于南黄海及邻近海域钻孔岩心中[25]。下半段(15.7~29.5 m)的4个测年结果为111.7±10.6~129±13 kaBP,均大于100 kaBP,超出了常规石英颗粒年龄的上限。在周边海域(图1)多个钻孔的相似层位中均发现了一套细颗粒的泥质沉积,普遍认定为MIS5.5期时的浅海相冷水团沉积[39],这与16.98~24.24 m段的细颗粒沉积(平均粒径均值7.35 Φ)非常相似。
表 1 SYSC-1孔AMS14C和光释光(OSL)测年结果Table 1. AMS14C and OSL ages in core SYSC-1测年方法 深度/m 材料 δ13C/‰ 惯用年龄/aBP 日历年龄/cal.aBP Beta-No. 中值 范围 AMS14C 0.40 有孔虫 0 1800±30 1347 1205~1488 5520578 3.20 有孔虫 −2.8 9960±30 10901 10705~11097 5520579 7.00 贝壳 −9.1 >43500 − − 528761 OSL 深度/m U/10−6 TH/10−6 K/% 含水率/% 剂量率/ (Gy/ka) 等效剂量 /Gy OSL/ka 3.70 1.71±0.3 9.37±0.6 1.97±0.04 22±5 0.92±0.08 58.2±0.8 63.4±5.2 6.00 2.81±0.3 10.02±0.6 1.91±0.04 20±5 3.02±0.23 186.5±5.8 61.8±5.0 7.00 2.08±0.3 10.02±0.6 1.85±0.04 18±5 2.85±0.22 166.6±7.6 58.4±5.2 9.30 1.65±0.3 9.57±0.7 1.92±0.03 20±5 2.70±0.21 180.2±6.5 66.8±5.7 11.50 1.7±0.3 10.52±0.6 1.77±0.03 21±5 2.63±0.20 172.5±2.4 65.6±5.0 12.60 1.96±0.3 10.68±0.6 1.87±0.03 19±5 2.85±0.22 180.2±4.3 63.3±5.1 14.70 1.11±0.3 6.27±0.6 1.79±0.03 16±5 2.25±0.18 174.5±8.2 77.6±7.2 15.70 1.71±0.3 9.13±0.6 1.75±0.03 19±5 2.59±0.19 289.1±17.0 111.7±10.6* 23.90 1.81±0.3 9.52±0.6 1.83±0.03 19±5 2.71±0.21 328±17 121±11* 26.64 1.91±0.3 9.43±0.6 1.88±0.03 20±5 2.72±0.21 325±20 119±12* 29.50 1.77±0.3 10.31±0.6 1.97±0.03 20±5 2.82±0.22 350.2±15.4 129±13* *光释光年龄超过极限值,仅做参考使用。 综合沉积物AMS14C、OSL测年结果和粒级变化特征,并与南黄海地区多个钻孔的晚第四纪沉积地层年龄结果及全球海平面变化曲线对比分析[1,20,24,33,35-37],基本可以建立SYSC-1孔上部30 m的年龄框架。钻孔24.24 m以下为MIS6期的沉积,3.2 m以上为MIS1期的沉积,中间大致为MIS5期至MIS3期的沉积。其中,24.24~14.8 m段以细颗粒沉积物为主,14.8 m之上沉积物相对较粗,推测分别为MIS5期高海平面时和MIS4期至MIS3期低海平面时的沉积。
3.2 稀土元素的垂向变化特征
钻孔沉积物平均粒径和14种稀土元素含量及其参数值如表2所示[4,26,40-42],其垂向变化特征见图2。沉积物中总稀土元素(∑REE)含量波动较大,为111.66~231.12 μg/g,平均值为189.35 μg/g(表2)。SYSC-1孔的∑REE含量均值高于黄海(134.03 μg/g)和东海(140.34 μg/g),低于渤海(229.29 μg/g)的平均含量[26],与中国大陆架沉积物的∑REE平均含量156 μg/g相比较高,与黄土∑REE含量均值(185 μg/g)相近[43]。
表 2 SYSC-1孔沉积物各稀土元素含量Table 2. Contents of rare earth elements of core SYSC-1 sediments沉积物 MZ/Φ La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE (δCe)N (δEu)N (La/Yb)N (La/Sm)N (Gd/Yb)N SYSC-1 最大值 7.86 50.08 94.34 11.30 42.07 8.24 1.72 7.01 1.17 5.99 1.29 3.51 0.54 3.45 0.51 231.12 0.97 0.70 10.83 3.96 1.77 最小值 5.08 24.17 45.59 5.25 20.17 3.92 0.79 3.45 0.56 3.04 0.67 1.79 0.28 1.71 0.27 111.66 0.92 0.65 8.94 3.56 1.53 平均值 6.75 40.91 78.25 9.13 34.25 6.63 1.34 5.64 0.93 4.83 1.04 2.80 0.44 2.74 0.41 189.35 0.95 0.68 9.84 3.76 1.65 黄河[4] 31.00 61.80 7.15 26.90 5.02 0.97 4.92 0.65 3.90 0.72 2.29 0.30 2.16 0.30 148.08 0.97 0.60 9.48 3.76 1.83 黄河[26] 28.97 53.92 7.07 26.67 4.99 1.04 4.65 0.75 3.92 0.84 2.23 0.35 2.05 0.31 137.76 0.88 0.67 9.33 3.54 1.82 长江[26] 36.09 65.08 8.33 32.60 6.09 1.30 5.58 0.85 4.71 0.98 2.56 0.37 2.23 0.33 167.10 0.88 0.69 10.69 3.61 2.01 长江[4] 39.50 78.70 8.87 33.60 6.37 1.30 5.98 0.82 4.74 0.89 2.71 0.35 2.48 0.35 186.66 0.98 0.65 10.52 3.78 1.94 锦江[39] 59.28 103.10 12.81 38.35 6.61 1.33 5.20 0.79 4.04 0.76 2.01 0.29 1.77 0.27 236.61 0.88 0.70 22.12 5.47 2.36 汉江[39] 76.94 140.50 16.47 44.21 7.50 1.52 6.56 1.08 5.31 1.26 2.76 0.48 3.09 0.46 308.14 0.92 0.67 16.44 6.25 1.70 荣山江[39] 46.05 78.03 10.09 31.16 5.45 1.15 4.37 0.69 3.64 0.70 1.98 0.29 1.81 0.30 185.71 0.85 0.73 16.80 5.15 1.94 球粒陨石[40] 0.32 0.81 0.12 0.60 0.19 0.07 0.26 0.05 0.33 0.07 0.21 0.03 0.21 0.03 上陆壳[41] 30.00 64.00 7.10 26.00 4.50 0.88 3.80 0.64 3.50 0.80 2.30 0.33 2.20 0.32 La-∑REE含量(μg/g);球粒陨石标准化值据文献[39] (以下标N表示)。 轻稀土元素(LREE:La—Eu)的总量为99.89~207.65 μg/g,均值为170.51 μg/g,相对较富集,约占总稀土含量的89%;重稀土元素(HREE:Gd—Lu)丰度较低,总量为11.77~23.47 μg/g,平均值为28.84 μg/g,约占∑REE的11%。从∑REE垂向变化特征看,∑REE含量变化与平均粒径的变化趋势较一致。依据∑REE含量变化趋势可将钻孔分为两段(图2):上段(0~14 m) ∑REE含量明显相对较低(174.75 μg/g),含量波动幅度较大,随着深度的减小而呈降低的趋势;下段(14~30 m) ∑REE含量相对较高(202.99 μg/g),在垂向上比较稳定,没有明显的波动变化;∑LREE/∑HREE值变化比较复杂,波动频繁且幅度较大。
3.3 稀土元素配分模式
对REE进行标准化是表征地质体类型的最明显、有效的形式[31]。钻孔沉积物REE上陆壳[42]标准化模式如图3所示。钻孔沉积物REE含量虽然有差别,但不同深度沉积物REE配分模式具有明显的一致性(图3a),呈近似的直线展布趋势,基本处于水平平行的状态,Ce呈弱负异常(δCe均值0.92),Eu呈稍弱的正异常(δEu均值1.03),且均表现为中稀土元素(MREE:Sm—Ho)相对富集的特征,表明岩芯的物质来源比较稳定。由配分模式曲线分布特征来看,长江和黄河沉积物均表现为MREE不同程度的富集,长江沉积物REE含量高,LREE含量较黄河呈现富集的特征,这主要与流域源岩背景差异有关,黄河沉积物近90%物质来自黄土高原,以蒸发盐和碳酸盐类风化物为主,土壤呈碱性,在沉积岩中属于REE含量偏低的类型[43];而长江流域中上游及下游地区中酸性火成岩多有出露,与酸性岩有关的REE矿产分布较广,导致长江沉积物中REE含量相对黄河流域具有较高的背景值[44]。锦江、汉江及荣山江等朝鲜半岛河流沉积物的REE配分模式明显异于长江和黄河,LREE富集与HREE亏损的特征更加明显,呈斜线型展布,可能主要因为流域主要由侏罗纪和白垩纪的花岗岩、前寒武纪的片麻岩以及第四纪的松散冲积物组成,而碳酸盐出露很少[40]。经与黄海周边主要河流的标准化曲线相比(图3b),SYSC-1孔沉积物REE与朝鲜半岛河流差异较大,更接近于黄河和长江的配分曲线特征。
图 3 SYSC-1孔与周边主要河流稀土元素上陆壳标准化配分模式上陆壳标准化值据文献[42]。a.SYSC-1孔部分沉积物稀土元素上陆壳标准化曲线,b.周边河流沉积物稀土元素上陆壳标准化曲线。Figure 3. The UCC-normalized REE distribution patterns of core SYSC-1 and major rivers in the regionThe UCC-normalized REE data are from reference [42]. a: The UCC-normalized REE distribution curves in some sediments of core SYSC-1, b: The UCC-normalized REE distribution curves of surrounding river sediments.3.4 稀土元素分馏特征
稀土元素分析时,通常用(La/Yb)N、(La/Sm)N、(Gd/Yb)N、(δCe)N和(δEu)N等典型参数来反映总稀土元素和轻、重稀土元素各自内部的分馏特征。(La/Yb)N一般用于指示总稀土元素中轻、重稀土元素之间的分馏特征,比值越大,说明轻稀土元素越富集。(La/Sm)N和(Gd/Yb)N的比值越大,说明轻稀土元素和重稀土元素内部分异特征越是明显[25]。(δCe)N和(δEu)N则分别是反映氧化还原环境和陆源碎屑供应的重要指标[31]。稀土元素分馏特征的典型参数值如表2所示:(La/Yb)N变化范围为8.94~10.83,平均值为9.84,表明沉积物中轻、重稀土元素分异较明显;(La/Sm)N值为3.5~3.96,均值3.76,(Gd/Yb)N均值为1.65。SYSC-1孔各分异参数的垂向变化特征如图2所示,(La/Yb)N、(Gd/Yb)N和∑LREE/∑HREE变化趋势较一致,其曲线垂向上又可进一步分为5段,在0~3、17.28~19.58和28.5~30 m段出现了较高值区,曲线变化比较平稳,说明轻稀土元素相对富集,均值低于朝鲜半岛河流沉积物,与长江沉积物比较接近(表2);另外2个层段则出现了低值区,曲线波动频繁且幅度较大,均值特征与黄河沉积物相近(表2)。
(δCe)N和(δEu)N的垂向变化分段性不明显,(δCe)N为0.92~0.97,平均值为0.95,Ce含量具有微弱的负异常,这可能与生物碳酸盐等自生沉积物有关[45]。
(δEu)N为0.65~0.7,平均值为0.68,Eu呈典型的负异常,主要继承了陆源碎屑的属性特征。
海洋沉积物中REE具有相似的化学性质和低溶解度,在风化和成岩作用过程中分馏作用影响较小,典型分馏特征参数受粒度影响不大。选择(La/Yb)N、(Gd/Yb)N、(δCe)N和(δEu)N等表征REE分馏的特征参数计算它们与平均粒径的相关性(图4),相关系数R2分别为0.1、0.23、0.03和0.04,相关性极低,表明SYSC-1孔岩芯沉积物中稀土元素的分馏几乎不受粒度的控制。
4. 讨论
4.1 稀土元素的制约因素
陆源碎屑沉积物中元素组成受到源岩类型、源区风化作用和矿物组成差异等一系列因素的影响[31]。已有研究发现,对于有较稳定物源的海洋沉积物来说,搬运过程中由分选作用引起的沉积粒度和矿物组成差异是控制其REE组成的重要因素[28]。REE具有通过类质同象作用进入黏土矿物的晶格中的特点,致使REE易于在黏土和粉砂质黏土等细颗粒沉积物中富集[27]。SYSC-1孔∑REE含量较低(174.75 μg/g)的层段(0~14 m),沉积物平均粒径均值为6.50 Φ,而∑REE含量较高(202.99 μg/g)的层段(14~30 m),沉积物平均粒径均值为6.97 Φ,∑REE也基本符合这种规律。通过计算钻孔整体∑REE含量与平均粒径相关性,相关系数为0.22,呈弱的正相关关系,说明了粒度对钻孔沉积物的REE有影响,但作用并不显著,这一现象与其他学者在周边海域分析结果一致[36]。
沉积物中一些重矿物对REE含量及配分形式也会产生影响,HREE趋向富集于锆石、电气石、石榴子石等矿物中[46],这些稳定重矿物受粒级的影响较大,通常粗碎屑中的含量相对较高。SYSC-1孔3~16.98 m段∑LREE/∑HREE值明显较低(8.95),与之对应的沉积物平均粒径也较粗(6.26 Φ),可能与该段粗碎屑中稳定重矿物含量较高有关。
4.2 物质来源探讨
不同河流的入海物质判别和扩散模式一直是黄海源汇过程的难题,近几年围绕南黄海晚第四纪时期的物源研究更是成为了热点问题[40]。黄海周边黄河、长江及朝鲜半岛河流为黄海提供了丰富的物质,特别是中国大陆的黄河和长江,每年的输沙量超过10亿t。
(La/Yb)N与(δEu)N分别是指示LREE和HREE分异特征、反映碎屑物源组成的两个重要参数,可以较好地指示物源信息[4]。鉴于SYSC-1孔沉积物中(La/Yb)N与(δEu)N的粒级效应并不显著(图4a、d),也适合用来进行物源分析。选择这两个参数与周边河流输入物质REE的相关数据进行对比分析(图5)。SYSC-1孔0~30 m段的稀土元素参数投点全部集中在中国大陆河流(黄河和长江)沉积物的附近(图5a),与锦江、汉江和荣山江沉积物存在明显不同,投点位置距离朝鲜半岛河流沉积物非常远,说明沉积物均来自中国大陆河流,主要为黄河源、长江源或两者的混合沉积物。与朝鲜半岛河流沉积物REE特征相比,虽然黄河和长江沉积物的REE相似性较高,但基于这2个参数的垂向变化特征(图2)进行分层物源判别,从投点结果来看(图5b—f),不同时期黄河和长江输入物质在SYSC-1孔中的影响存在差异。
海洋沉积物REE判别函数(DF)已被广泛用来判别样品与潜在物质来源河流沉积相关特征的接近程度[20,47],可以有效区分黄河、长江沉积物物源属性。为了进一步研究2条河流沉积物对本钻孔的贡献,利用判别函数分析SYSC-1孔沉积物与黄河、长江沉积物的接近程度。DF的计算公式如下:
$$ {\rm{DF}}=|X_{\rm{iz}}–X_{\rm{in}}|/ X_{\rm{in} } $$ 式中Xiz表示SYSC-1孔中元素i的质量分数或两元素质量分数比;Xin表示黄河或长江沉积物中元素i的质量分数或两种元素的质量分数比值。DF值越小表明物源相似度越高,通常DF值小于0.5时即被认为两种沉积物物源接近,尽可能选择化学性质相近的元素,而REE元素极为相似的属性特点完全满足判别函数(DF)计算条件。本次研究选取La和Yb作为判别元素,根据La/Yb计算了SYSC-1孔与黄河、长江沉积物的DF值,并分别用DFhh和DFcj表示,均值为0.06和0.08,结果远小于0.5,表明钻孔沉积物与黄河、长江沉积物相似,这与图5的结果一致。为了进一步确定不同时期两条河输入物质在钻孔中的主导作用,已有学者通过计算判别函数(DF)差值的方法对物源进行了有效区分[48]。在0~3、16.98~24.24 和27.98~30 m段差值基本为正(图6),表示长江输入物质占据优势;3~16.98 m和24.24~27.98 m段差值基本为负,反映了黄河源物质占据主导地位。
南黄海西部陆架区钻孔沉积物的矿物学和地球化学证据显示,至少自中更新世以来,黄河沉积物就开始产生影响[18],与此同时,长江三角洲沉积中心和河道系统已从苏北-南黄海盆地向南移动[49],长江对南黄海的物源影响力开始逐渐减弱。根据测年数据建立的SYSC-1孔地层格架,0~30 m段较完整地记录了中更新世晚期以来的物源演化过程。
物源判别函数(DF)的结果显示(图6),SYSC-1孔27.98 m左右记录了一次大的物源转换,沉积物由长江源(27.98~30 m)转为黄河源的物质(24.24~27.98 m)。24.24~30 m段沉积物颗粒相对较粗(平均粒径均值6.61 Φ),粒级由下而上发育了一个较完整的沉积旋回。从周边钻孔沉积环境来看,南黄海西部CSDP-1孔该时期经历了河流相沉积环境[24],说明尽管自中更新世开始长江对黄海的影响逐渐降低[16],但MIS6期低海平面情况下古长江三角洲的物质依然能够运移到南黄海中部36°N附近。至MIS6期末期,随着海侵的发生,古长江河口开始后退,黄河源沉积物开始大范围控制南黄海的沉积格局,同时期位于南黄海南部的NT2孔也发育了黄河源沉积物[37],说明黄河源物质影响范围已向南延伸至33°N附近。
16.98~24.24 m段的物源判别显示主要为长江源,在20~23 m段内混入少量的黄河源物质。该层位相当于MIS5.5期至MIS5.1期发育的浅水陆架冷水团沉积,沉积物以细颗粒为主(平均粒径均值7.35 Φ),且粒级基本没有变化。对比海平面变化曲线(图6)可以发现MIS5.5时期海平面高度与现今相似或略低,该时期黄海的浅海陆架区广泛发育了古黄海暖流[50],因此推测该时期黄河、长江入海口大幅退缩,陆架可容纳空间迅速扩大,黄河源的物质萎缩沉降在河口或近岸区域,而浅海陆架区的长江源细颗粒沉积物被古黄海暖流由南往北携带而来,并在冷涡区附近沉积下来。该层中还经历了MIS5.4期和MIS5.2期两个较短暂的低海平面时期,推测混入少量黄河源物质的相应层位可能就是该时期的沉积物。
16.98~3 m段的物源主要是黄河源,在4.2、5.2和14.6 m左右混入少量的长江源物质。该层位相当于MIS5.1期至MIS1期发育的沉积,沉积物相对以粗颗粒(平均粒径均值6.21 Φ)为主,但由下而上,粒级波动频繁且幅度较大,反映该时期经历了比较动荡的沉积环境。该时期南黄海西部CSDP-1孔和CSDP-2孔也是发育一套以粉砂和黏土质粉砂为主的粗颗粒沉积物,经历了河流相-滨岸相-三角洲相沉积环境[24,35],但SYSC-1孔所处位置水深更大,由此推测SYSC-1孔很可能发育了一套滨浅海相-河口/潮坪相-三角洲相沉积。对比海平面变化曲线(图6)可以发现,MIS5.1期以后海平面明显下降(大部分时候比现今低50~80 m或以上),陆架可容纳空间缩小,导致黄河、长江入海口向陆架区移动。南黄海西部的浅剖资料解译显示,在MIS3期时(海平面相对较高)南黄海西部和西南部陆架区广泛发育了黄河和长江古河道与古三角洲系统[2]。位于黄海西部北侧主河道附近的SYS-0701和SYS-0803孔,岩芯中黏土矿物和轻、重矿物的物源分析表明MIS3层段期间的沉积物与黄河源物质具有可比性[16],表明北侧古河道在一定程度上可能与古黄河水系有关。而南侧主河道附近的CSDP-1孔的黏土矿物和同位素物源结果显示[19],在MIS3早中期,古长江物源的主导地位,说明南侧发育的是长江古河道或古三角洲。随着海退的发生,古黄海暖流消失,长江源的细颗粒物质已无法运移到钻孔附近,仅能沉积在南黄海南部区域。
MIS1期中晚期(3~0 m段)以来,SYSC-1孔沉积物再次转换为长江源的物质,与MIS5.5期至MIS5.1期时的沉积非常相似,沉积物以细颗粒为主(平均粒径均值7.74 Φ),且粒级几乎没有变化。结合海平面变化曲线来看,MIS1期中后期海平面位置与现在相似,相较于MIS3期时,陆架区可容纳空间再度扩大,黄河、长江入海口大幅后退,超过一半的长江沉积物被困在河口内,形成了一个大型三角洲[51];剩余的沉积物沿浙闽沿海物源向南输送,形成了东海内陆架的泥带[52-53],少部分向东南输送至济州岛西南部的泥质区和东海外陆架及冲绳海槽区[54-55]。随着海平面的显著增高,黄海暖流再次进入浅海陆架区,将济州岛西南部泥质区的细颗粒物质搬运至SYSC-1孔附近的冷涡区沉积。此外,自8.5 ka以来,黄河主要向北流入渤海[56],泥沙量比目前低得多[57]。同时,山东半岛沿岸流的形成将黄河源沉积物主要控制在南黄海西部附近海域[4,58],对于物质大范围东扩起到阻碍作用,因此SYSC-1孔周边区域并未发现黄河源的物质混入其中。
5. 结论
(1)SYSC-1孔0~30 m段沉积物中∑REE为111.66~231.12 μg/g,垂向分布变化较大,均值为189.35 μg/g,与黄土∑REE均值185.00 μg/g比较接近。(La/Yb)N、(La/Sm)N、(Gd/Yb)N、(δCe)N和(δEu)N等REE分异指数受粒级影响较小,上陆壳标准化配分模式呈近似直线型展布,与中国大陆河流(黄河和长江)沉积物REE标准化曲线比较相似。
(2)海平面波动和海洋环流变化是SYSC-1孔物源转换的主要控制因素。根据(La/Yb)N和(δEu)N两个参数的物源归属区分发现,SYSC-1孔0~30 m段的沉积物几乎不受朝鲜半岛河流的物源影响。根据REE判别函数(DF)的进一步物源分析来看,MIS6期长江源物质(27.98~30 m)依然能够到达钻孔所在区域,在MIS6期末期经历了一次大的物源转换,沉积物由长江源转为黄河源(24.24~27.98 m)的物质。MIS5.5期至MIS5.1期发育了一套浅水陆架冷水团沉积,主要是长江源细颗粒沉积物被古黄海暖流由南往北携带而来,并在冷涡区附近沉积下来。MIS5.1期至MIS1期,主要发育了一套滨浅海相-河口/潮坪相-三角洲相沉积,随着陆架可容纳空间缩小,导致黄河、长江入海口向陆架区移动,黄河源物质控制了钻孔所处的南黄海北部区域。MIS1期中晚期,山东半岛沿岸流的形成将黄河源物质主要控制在南黄海西部附近海域,而黄海暖流将济州岛西南部泥质区的长江源细颗粒物质搬运至SYSC-1孔附近的冷涡区沉积下来。
致谢:感谢自然资源部国际合作司给予了项目资助和支持,感谢审稿专家的评审意见,在此一并致谢!
-
图 2 黄土高原不同剖面实测的布容/松山界限位置
a:PISO-1500相对古强度曲线[32],b:深海氧同位素曲线LR04[33],c:矾山剖面[34],d:吉县剖面[34],e:后沟剖面[35],f:邙山剖面[36],g:宋家店剖面[37],h:三门峡剖面[38],i:渭南剖面[39],j:蓝田剖面[17],k:宝鸡剖面[40],l:洛川剖面[30],m:灵台剖面[16, 41],n:西峰剖面[26],o:朝那剖面[42],p:靖边剖面[43],q:会宁剖面[44],r:九州台剖面[45],s:靖远剖面[46],t:断岘剖面[47]。
Figure 2. The measured Brunhes/Matuyama boundary recorded in Chinese loess
a: Virtual axial dipole moment VADM: from PISO-1500[32], b: Benthic δ18O records from LR04[33], c: Fanshan[34], d: Jixian[34], e: Hougou[35], f: Mangshan[36], g: Songjiadian[37], h: Sanmenxia[38], i: Weinan[39], j: Lanian[17], k: Baoji[40], l: Luochuan[30], m: Lingtai[16, 41], n: Xifeng[26], o: Chaona[42], p: Jingbian[43], q: Huining[44], r: Jiuzhoutai[45], s: Jingyuan[46], t: Duanxian[47].
图 3 黄土高原不同剖面实测的加拉米诺极性亚时顶底界线的位置
a:马村剖面[31],b:后沟剖面[31],c:曹村剖面[61],d:宋家店剖面[37],e:渭南剖面[39],f:蓝田剖面[17],g:宝鸡剖面[41, 62],h:洛川剖面[30],i:灵台剖面[63﹣64],j:西峰剖面[16, 65],k:朝那剖面[42],l:靖边剖面[43, 66],m:会宁剖面[44],n:九州台剖面[45],o:靖远剖面[46],p:断岘剖面[47]。红色字体代表加拉米诺界限在剖面中的实测位置。
Figure 3. The measured Jaramillo normal subchron recorded in Chinese loess
a: Macun[31], b: Hougou[31], c: Caocun[61], d: Songjiadian[37], e: Weinan[39], f: Lantian[17], g: Baoji[41, 62], h: Luochuan[30], i: Lingtai[63﹣64], j: Xifeng[16, 65], k: Chaona[42], l: Jingbian[43, 66], m: Huining[44], n: Jiuzhoutai[45], o: Jingyuan[46], p: Duanxian[47]. The measured Jaramillo boundaries located in loess or paleosol are represented by red font.
图 4 黄土高原不同剖面实测的奥尔都维极性亚时顶底界线的位置
a:曹村剖面[61],b:蓝田剖面[17],c:宝鸡剖面[62,70],d:洛川剖面[30],e:灵台剖面[43],f:任家坡[64],g:朝那剖面[42],h:会宁剖面[44],i:九州台剖面[45],j:龙担剖面[71]。红色字体代表奥尔都维界限在剖面中的实测位置。
Figure 4. The measured Olduvai normal subchron recorded in Chinese loess
a: Caocun[61], b: Lantian[17], c: Baoji[62,70], d:Luochuan[30], e: Lingtai[43], f: Renjiapo[64], g: Chaona[42], h: Huining[44], i: Jiuzhoutai[45], j: Longdan[71]. The measured Olduvai boundaries located in loess or paleosol are represented in red font.
图 5 黄土高原不同剖面实测的松山/高斯界限位置
a:曹村剖面[61],b:渭南剖面[80﹣81],c:蓝田剖面[82],d:宝鸡剖面[ 83],e:灵台剖面[43],f:任家坡剖面[64],g:西峰剖面[82],h:泾川剖面[84],i:佳县剖面[85],j:朝那剖面[42],k:那勒寺剖面[86],l:郭泥沟剖面[86]. 红色字体代表松山/高斯界限在剖面中的实测位置。
Figure 5. The measured Matuyama/Gauss boundary recorded in Chinese loess
a: Caocun[61], b: Weinan[80﹣81], c: Lantian[82], d: Baoji[ 83], e: Lingtai[43], f: Renjiapo[64], g: Xifeng[82], h: Jingchuan[84], i: Jiaxian[85], j: Chaona[42], k: Nalesi[86], l: Guonigou[86]. The measured Matuyama/Gauss boundary located in loess or paleosol are represented by red font.
-
[1] An Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1-5):171-187. doi: 10.1016/S0277-3791(99)00060-8
[2] An Z S. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-Arid Environment Evolution[M]. Dordrecht: Springer, 2014: 1-582.
[3] Guo Z T, Biscaye P, Wei L Y, et al. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China[J]. Geophysical Research Letters, 2000, 27(12):1751-1754. doi: 10.1029/1999GL008419
[4] Hao Q Z, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability[J]. Nature, 2012, 490(7420):393-396. doi: 10.1038/nature11493
[5] Liu T, Ding Z L. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Sciences, 1998, 26:111-145. doi: 10.1146/annurev.earth.26.1.111
[6] Cohen K M, Gibbard P L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500[J]. Quaternary International, 2019, 500:20-31. doi: 10.1016/j.quaint.2019.03.009
[7] Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020[M]. Amsterdam: Elsevier, 2020: 1-1357.
[8] Heller F, Tung-sheng L. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891):431-433. doi: 10.1038/300431a0
[9] Heller F, Tungsheng L. Magnetism of Chinese loess deposits[J]. Geophysical Journal International, 1984, 77(1):125-141. doi: 10.1111/j.1365-246X.1984.tb01928.x
[10] Kukla G, Heller F, Ming L X, et al. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology, 1988, 16(9):811-814. doi: 10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2
[11] Hovan S A, Rea D K, Pisias N G, et al. A direct link between the China loess and marine δ18O records: aeolian flux to the north Pacific[J]. Nature, 1989, 340(6231):296-298. doi: 10.1038/340296a0
[12] Ding Z, Yu Z, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1):39-70. doi: 10.1016/0277-3791(94)90124-4
[13] Lu H U, Liu X D, Zhang F Q, et al. Astronomical calibration of loess-paleosol deposits at Luochuan, central Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3):237-246. doi: 10.1016/S0031-0182(99)00113-3
[14] Heslop D, Langereis C G, Dekkers M J. A new astronomical timescale for the loess deposits of Northern China[J]. Earth and Planetary Science Letters, 2000, 184(1):125-139. doi: 10.1016/S0012-821X(00)00324-1
[15] Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3):1033.
[16] Sun Y B, Clemens S C, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1-2):33-48. doi: 10.1016/j.quascirev.2005.07.005
[17] Zhu Z Y, Dennell R, Huang W W, et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago[J]. Nature, 2018, 559(7715):608-612. doi: 10.1038/s41586-018-0299-4
[18] Ao H, Rohling E J, Stringer C, et al. Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification[J]. Earth-Science Reviews, 2020, 210:103354. doi: 10.1016/j.earscirev.2020.103354
[19] Beck J W, Zhou W J, Li C, et al. A 550, 000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391):877-881. doi: 10.1126/science.aam5825
[20] Han Y M, An Z S, Marlon J R, et al. Asian inland wildfires driven by glacial-interglacial climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(10):5184-5189.
[21] Sun Y B, McManus J F, Clemens S C, et al. Persistent orbital influence on millennial climate variability through the Pleistocene[J]. Nature Geoscience, 2021, 14(11):812-818. doi: 10.1038/s41561-021-00794-1
[22] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1):46-49. doi: 10.1038/ngeo1326
[23] Lu H X, Liu W G, Yang H, et al. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau[J]. Nature Communications, 2019, 10(1):1958. doi: 10.1038/s41467-019-09978-1
[24] Zhou L P, Shackleton N J. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences[J]. Earth and Planetary Science Letters, 1999, 168(1-2):117-130. doi: 10.1016/S0012-821X(99)00052-7
[25] Liu Q S, Roberts A P, Rohling E J, et al. Post-depositional remanent magnetization lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences[J]. Earth and Planetary Science Letters, 2008, 275(1-2):102-110. doi: 10.1016/j.jpgl.2008.08.004
[26] Zhou W J, Beck J W, Kong X H, et al. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using 10Be[J]. Geology, 2014, 42(6):467-470. doi: 10.1130/G35443.1
[27] Liu Q S, Jin C S, Hu P X, et al. Magnetostratigraphy of Chinese loess-paleosol sequences[J]. Earth-Science Reviews, 2015, 150:139-167. doi: 10.1016/j.earscirev.2015.07.009
[28] Jin C S, Liu Q S, Xu D K, et al. A new correlation between Chinese loess and deep-sea δ18O records since the middle Pleistocene[J]. Earth and Planetary Science Letters, 2019, 506:441-454. doi: 10.1016/j.jpgl.2018.11.022
[29] 强小科, 徐新文, 陈艇, 等. 黄土高原黄土序列松山-布容地磁极性倒转界线空间分布特征与影响因素探讨[J]. 第四纪研究, 2016, 36(5):1125-1138 doi: 10.11928/j.issn.1001-7410.2016.05.09 QIANG Xiaoke, XU Xinwen, CHEN Ting, et al. Spatial characteristics and influencing factors of Matuyama-Brunhes polarity reversal boundary (MBB) in eolian sequences from the Chinese Loess Plateau[J]. Quaternary Sciences, 2016, 36(5):1125-1138.] doi: 10.11928/j.issn.1001-7410.2016.05.09
[30] 刘维明, 张立原, 孙继敏. 高分辨率洛川剖面黄土磁性地层学[J]. 地球物理学报, 2010, 53(4):888-894 doi: 10.3969/j.issn.0001-5733.2010.04.013 LIU Weiming, ZHANG Liyuan, SUN Jimin. High resolution magnetostratigraphy of the Luochuan loess-paleosol sequence in the central Chinese Loess Plateau[J]. Chinese Journal of Geophysics, 2010, 53(4):888-894.] doi: 10.3969/j.issn.0001-5733.2010.04.013
[31] Pan Q, Xiao G Q, Zhao Q Y, et al. The Jaramillo subchron in Chinese loess-paleosol sequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572:110423. doi: 10.1016/j.palaeo.2021.110423
[32] Channell J E T, Xuan C, Hodell D A. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500)[J]. Earth and Planetary Science Letters, 2009, 283(1-4):14-23. doi: 10.1016/j.jpgl.2009.03.012
[33] Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.
[34] Wang X S, Løvlie R, Chen Y, et al. The Matuyama-Brunhes polarity reversal in four Chinese loess records: high-fidelity recording of geomagnetic field behavior or a less than reliable chronostratigraphic marker?[J]. Quaternary Science Reviews, 2014, 101:61-76. doi: 10.1016/j.quascirev.2014.07.005
[35] Xiao G Q, Pan Q, Zhao Q Y, et al. Early Pleistocene integration of the Yellow River II: evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577:110550. doi: 10.1016/j.palaeo.2021.110550
[36] Zheng H B, Huang X T, Ji J L, et al. Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7: implication for the Yellow River erosion of the Sanmen Gorge[J]. Geomorphology, 2007, 85(3-4):131-142. doi: 10.1016/j.geomorph.2006.03.014
[37] Wang D J, Wang Y C, Han J T, et al. Geomagnetic anomalies recorded in L9 of the Songjiadian loess section in southeastern Chinese Loess Plateau[J]. Chinese Science Bulletin, 2010, 55(6):520-529. doi: 10.1007/s11434-009-0565-9
[38] Wang X S, Løvlie R, Yang Z Y, et al. Remagnetization of Quaternary eolian deposits: a case study from SE Chinese Loess Plateau[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(6):Q06H18.
[39] Pan Y X, Zhu R X, Liu Q S, et al. Geomagnetic episodes of the last 1.2 Myr recorded in Chinese loess[J]. Geophysical Research Letters, 2002, 29(8):1282.
[40] Yang T S, Hyodo M, Yang Z Y, et al. Multiple rapid polarity swings during the Matuyama-Brunhes transition from two high-resolution loess-paleosol records[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B5):B05101.
[41] Meng X Q, Liu L W, Wang X T, et al. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 2018, 486:61-69. doi: 10.1016/j.jpgl.2017.12.048
[42] Song Y G, Fang X M, Li J J, et al. The Late Cenozoic uplift of the Liupan Shan, China[J]. Science in China Series D:Earth Sciences, 2001, 44(1):176-184.
[43] Ding Z L, Sun J M, Liu D S. Stepwise advance of the Mu Us Desert since late Pliocene: evidence from a red clay-loess record[J]. Chinese Science Bulletin, 1999, 44(13):1211-1214. doi: 10.1007/BF02885968
[44] Niu Y N, Fan Y X, Qiao Y S, et al. Chronostratigraphy of a loess-paleosol sequence in the western Chinese Loess Plateau based on ESR dating and magnetostratigraphy[J]. Quaternary International, 2022, 637:1-11. doi: 10.1016/j.quaint.2022.08.005
[45] Zhang J, Li J J, Guo B H, et al. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 139:17-29. doi: 10.1016/j.quascirev.2016.02.025
[46] Sun Y B, Yin Q Z, Crucifix M, et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications, 2019, 10(1):352. doi: 10.1038/s41467-018-08257-9
[47] 杨东, 方小敏, 董光荣, 等. 1.8 Ma BP以来陇西断岘黄土剖面沉积特征及其反映的腾格里沙漠演化[J]. 中国沙漠, 2006, 26(1):6-13 doi: 10.3321/j.issn:1000-694X.2006.01.002 YANG Dong, FANG Xiaomin, DONG Guangrong, et al. Loess deposit characteristic in Duanxian section of Longxi Basin and its reflected evolution of Tengger Desert at north of China since last 1.8 Ma[J]. Journal of Desert Research, 2006, 26(1):6-13.] doi: 10.3321/j.issn:1000-694X.2006.01.002
[48] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66. doi: 10.1038/35075035
[49] Spassov S, Heller F, Evans M E, et al. A lock-in model for the complex Matuyama-Brunhes boundary record of the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau)[J]. Geophysical Journal International, 2003, 155(2):350-366. doi: 10.1046/j.1365-246X.2003.02026.x
[50] Sun Y B, Qiang X K, Liu Q S, et al. Timing and lock-in effect of the Laschamp geomagnetic excursion in Chinese Loess[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11):4952-4961. doi: 10.1002/2013GC004828
[51] Zhu R X, Pan Y X, Guo B, et al. A recording phase lag between ocean and continent climate changes: constrained by the Matuyama/Brunhes polarity boundary[J]. Chinese Science Bulletin, 1998, 43(19):1593-1599. doi: 10.1007/BF02883400
[52] Jin C S, Liu Q S. Reliability of the natural remanent magnetization recorded in Chinese loess[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B4):B04103.
[53] Løvlie R, Wang R H, Wang X S. In situ remagnetization experiments of loess on the Chinese Loess Plateau: evidence for localized post-depositional remanent magnetization[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(12):Q12015.
[54] Channell J E T, Hodell D A, Curtis J H. Relative paleointensity (RPI) and oxygen isotope stratigraphy at IODP Site U1308: North Atlantic RPI stack for 1.2-2.2 Ma (NARPI-2200) and age of the Olduvai Subchron[J]. Quaternary Science Reviews, 2016, 131:1-19. doi: 10.1016/j.quascirev.2015.10.011
[55] Channell J E T, Singer B S, Jicha B R. Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives[J]. Quaternary Science Reviews, 2020, 228:106114. doi: 10.1016/j.quascirev.2019.106114
[56] Valet J P, Bassinot F, Simon Q, et al. Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments[J]. Earth and Planetary Science Letters, 2019, 506:323-331. doi: 10.1016/j.jpgl.2018.11.012
[57] Valet J P, Meynadier L, Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435(7043):802-805. doi: 10.1038/nature03674
[58] Guyodo Y, Valet J P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr[J]. Nature, 1999, 399(6733):249-252. doi: 10.1038/20420
[59] Izett G A, Obradovich J D. 40Ar/39Ar age constraints for the Jaramillo Normal Subchron and the Matuyama‐Brunhes geomagnetic boundary[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B2):2925-2934. doi: 10.1029/93JB03085
[60] Singer B S, Hoffman K A, Chauvin A, et al. Dating transitionally magnetized lavas of the late Matuyama Chron: toward a new 40Ar/39Ar timescale of reversals and events[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B1):679-693. doi: 10.1029/1998JB900016
[61] 赵志中, 吴锡浩, 蒋复初, 等. 三门峡地区黄土与古季风[J]. 地质力学学报, 2000, 6(4):19-26,66 doi: 10.3969/j.issn.1006-6616.2000.04.003 ZHAO Zhizhong, WU Xihao, JIANG Fuchu, et al. The loess stratigraphy in Sanmenxia area[J]. Journal of Geomechanics, 2000, 6(4):19-26,66.] doi: 10.3969/j.issn.1006-6616.2000.04.003
[62] Rutter N, Ding Z L, Evans M E, et al. Magnetostratigraphy of the Baoji loess-paleosol section in the north-central China Loess Plateau[J]. Quaternary International, 1990, 7-8:97-102. doi: 10.1016/1040-6182(90)90043-4
[63] Ding Z L, Sun J M, Yang S L, et al. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau[J]. Geophysical Research Letters, 1998, 25(8):1225-1228. doi: 10.1029/98GL00836
[64] Sun D H, Shaw J, An Z S, et al. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau[J]. Geophysical Research Letters, 1998, 25(1):85-88. doi: 10.1029/97GL03353
[65] Li T, Liu F, Abels H A, et al. Continued obliquity pacing of East Asian summer precipitation after the mid-Pleistocene transition[J]. Earth and Planetary Science Letters, 2017, 457:181-190. doi: 10.1016/j.jpgl.2016.09.045
[66] Guo B, Zhu R X, Florindo F, et al. A short, reverse polarity interval within the Jaramillo subchron: evidence from the Jingbian section, northern Chinese Loess Plateau[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B6):2124.
[67] Jin C S, Liu Q S. Remagnetization mechanism and a new age model for L9 in Chinese loess[J]. Physics of the Earth and Planetary Interiors, 2011, 187(3-4):261-275. doi: 10.1016/j.pepi.2011.03.010
[68] 朱日祥, 岳乐平, 白立新. 中国第四纪古地磁学研究进展[J]. 第四纪研究, 1995, 15(2):162-173 doi: 10.3321/j.issn:1001-7410.1995.02.009 ZHU Rixiang, YUE Leping, BAI Lixin. Progress of quaternary paleomagnetism in China[J]. Quaternary Sciences, 1995, 15(2):162-173.] doi: 10.3321/j.issn:1001-7410.1995.02.009
[69] Rolph T C. The Matuyama-Jaramillo R-N transition recorded in a loess section near Lanzhou, P. R. China[J]. Journal of Geomagnetism and Geoelectricity, 1993, 45(4):301-318. doi: 10.5636/jgg.45.301
[70] Yang S L, Ding Z L. Drastic climatic shift at ~ 2.8 Ma as recorded in eolian deposits of China and its implications for redefining the Pliocene-Pleistocene boundary[J]. Quaternary International, 2010, 219(1-2):37-44. doi: 10.1016/j.quaint.2009.10.029
[71] 刘平, 张崧, 韩家懋, 等. 甘肃龙担早第四纪黄土堆积古地磁年代研究[J]. 第四纪研究, 2008, 28(5):796-805 doi: 10.3321/j.issn:1001-7410.2008.05.002 LIU Ping, ZHANG Song, HAN Jiamao, et al. Paleomagnetic chronology of Quaternary stratigraphy of the Longdan section in Gansu Province of China[J]. Quaternary Sciences, 2008, 28(5):796-805.] doi: 10.3321/j.issn:1001-7410.2008.05.002
[72] Yang T S, Hyodo M, Yang Z Y, et al. Latest Olduvai short-lived reversal episodes recorded in Chinese loess[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B5):B05103.
[73] Spassov S, Hus J, Heller F, et al. The termination of the Olduvai Subchron at Lingtai, Chinese Loess Plateau: geomagnetic field behavior or complex remanence acquisition?[M]//Petrovský E, Ivers D, Harinarayana T, et al. The Earth's Magnetic Interior. Dordrecht: Springer, 2011: 235-245.
[74] Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6093-6095. doi: 10.1029/94JB03098
[75] Deino A L, Kingston J D, Glen J M, et al. Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central Kenya Rift, and calibration of the Gauss/Matuyama boundary[J]. Earth and Planetary Science Letters, 2006, 247(1-2):41-60. doi: 10.1016/j.jpgl.2006.04.009
[76] Ohno M, Hayashi T, Komatsu F, et al. A detailed paleomagnetic record between 2.1 and 2.75 Ma at IODP Site U1314 in the North Atlantic: geomagnetic excursions and the Gauss-Matuyama transition[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5):Q12Z39.
[77] Liu X M, Liu T, Xu T C, et al. The Chinese loess in Xifeng, I. The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province[J]. Geophysical Journal International, 1988, 92(2):345-348. doi: 10.1111/j.1365-246X.1988.tb01146.x
[78] 孙建中, 赵景波, 孙秀英, 等. 黄土, 还要更老些[J]. 海洋地质与第四纪地质, 1987, 7(1):105-112 SUN Jianzhong, ZHAO Jingbo, SUN Xiuying, et al. Loess is even older[J]. Marine Geology & Quaternary Geology, 1987, 7(1):105-112.]
[79] Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2):45-55. doi: 10.1016/j.jpgl.2005.06.036
[80] 朱日祥, 郭斌, 丁仲礼, 等. Gauss-Matuyama极性转换期间地球磁场方向和强度变化特征[J]. 地球物理学报, 2000, 43(5):621-634 doi: 10.3321/j.issn:0001-5733.2000.05.006 ZHU Rixiang, GUO Bin, DING Zhongli, et al. Gauss-Matuyama polarity transition obtained from a loess section at Weinan, North-Central China[J]. Chinese Journal of Geophysics, 2000, 43(5):621-634.] doi: 10.3321/j.issn:0001-5733.2000.05.006
[81] Ding Z L, Rutter N W, Liu T. The onset of extensive loess deposition around the G/M boundary in China and its palaeoclimatic implications[J]. Quaternary International, 1997, 40:53-60. doi: 10.1016/S1040-6182(96)00061-4
[82] Zhou W J, Kong X H, Du Y J, et al. 10Be indicator for the Matuyama‐Gauss magnetic polarity reversal from Chinese Loess[J]. Geophysical Research Letters, 2023, 50(8):e2022GL102486. doi: 10.1029/2022GL102486
[83] Yang T S, Hyodo M, Yang Z Y, et al. High-frequency polarity swings during the Gauss-Matuyama reversal from Baoji loess sediment[J]. Science China Earth Sciences, 2014, 57(8):1929-1943. doi: 10.1007/s11430-014-4825-4
[84] 杨石岭, 侯圣山, 王旭, 等. 泾川晚第三纪红粘土的磁性地层及其与灵台剖面的对比[J]. 第四纪研究, 2000, 20(5):423-434 doi: 10.3321/j.issn:1001-7410.2000.05.003 YANG Shiling, HOU Shengshan, WANG Xu, et al. Completeness and continuity of the Late Tertiary red clay sequence in Northern China: evidence from the correlation of magnetostratigraphy and pedostratigraphy between Jingchuan and Lingtai[J]. Quaternary Sciences, 2000, 20(5):423-434.] doi: 10.3321/j.issn:1001-7410.2000.05.003
[85] 丁仲礼, 孙继敏, 朱日祥, 等. 黄土高原红粘土成因及上新世北方干旱化问题[J]. 第四纪研究, 1997, 17(2):147-157 doi: 10.3321/j.issn:1001-7410.1997.02.007 DING Zhongli, SUN Jimin, ZHU Rixiang, et al. Eolian origin of the red clay deposits in the Loess Plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences, 1997, 17(2):147-157.] doi: 10.3321/j.issn:1001-7410.1997.02.007
[86] Zan J B, Fang X M, Zhang W L, et al. A new record of late Pliocene-early Pleistocene aeolian loess-red clay deposits from the western Chinese Loess Plateau and its palaeoenvironmental implications[J]. Quaternary Science Reviews, 2018, 186:17-26. doi: 10.1016/j.quascirev.2018.02.010
[87] 岳乐平. 中国黄土与红色粘土记录的地磁极性界限及地质意义[J]. 地球物理学报, 1995, 38(3):311-320 doi: 10.3321/j.issn:0001-5733.1995.03.006 YUE Leping. Palaeomagnetic polarity boundary were recorded in Chinese loess and red clay, and geological significance[J]. Acta Geophysica Sinica, 1995, 38(3):311-320.] doi: 10.3321/j.issn:0001-5733.1995.03.006
[88] 谢兴俊, 周卫健, 鲜锋, 等. 中国黄土中松山-高斯极性倒转事件记录的空间对比[J]. 中山大学学报:自然科学版, 2014, 53(2):121-130 XIE Xingjun, ZHOU Weijian, XIAN Feng, et al. The spatial discrepancy records of Matuyama-Gauss polarity reversal in Chinese loess[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(2):121-130.]
[89] Zhao X, Roberts A P. How does Chinese loess become magnetized?[J]. Earth and Planetary Science Letters, 2010, 292(1-2):112-122. doi: 10.1016/j.jpgl.2010.01.026
[90] Deng C L, Shaw J, Liu Q S, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: implications for Quaternary development of Asian aridification and cooling[J]. Earth and Planetary Science Letters, 2006, 241(1-2):248-259. doi: 10.1016/j.jpgl.2005.10.020
[91] Tauxe L, Herbert T, Shackleton N J, et al. Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences[J]. Earth and Planetary Science Letters, 1996, 140(1-4):133-146. doi: 10.1016/0012-821X(96)00030-1
[92] Head M J, Gibbard P L. Early-Middle Pleistocene transitions: linking terrestrial and marine realms[J]. Quaternary International, 2015, 389:7-46. doi: 10.1016/j.quaint.2015.09.042
[93] Wang X S, Yang Z Y, Løvlie R, et al. A magnetostratigraphic reassessment of correlation between Chinese loess and marine oxygen isotope records over the last 1.1 Ma[J]. Physics of the Earth and Planetary Interiors, 2006, 159(1-2):109-117. doi: 10.1016/j.pepi.2006.07.002
[94] Sun J M. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(10-11):1279-1286. doi: 10.1016/j.quascirev.2004.08.018
[95] Liu T, Ding Z L, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma[J]. Quaternary Science Reviews, 1999, 18(10-11):1205-1212. doi: 10.1016/S0277-3791(98)00110-3
[96] Cai S H, Jin G Y, Tauxe L, et al. Archaeointensity results spanning the past 6 kiloyears from eastern China and implications for extreme behaviors of the geomagnetic field[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1):39-44.
[97] Tauxe L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice[J]. Reviews of Geophysics, 1993, 31(3):319-354. doi: 10.1029/93RG01771
[98] Cheng H, Edwards R L, Southon J, et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave[J]. Science, 2018, 362(6420):1293-1297. doi: 10.1126/science.aau0747
[99] Zhou W J, Xian F, Beck J W, et al. Reconstruction of 130-kyr relative geomagnetic intensities from 10Be in two Chinese loess sections[J]. Radiocarbon, 2010, 52(1):129-147. doi: 10.1017/S0033822200045082
[100] Xian F, An Z S, Wu Z K, et al. A simple model for reconstructing geomagnetic field intensity with 10Be production rate and its application in Loess studies[J]. Science in China Series D:Earth Sciences, 2008, 51(6):855-861. doi: 10.1007/s11430-008-0054-z
[101] Raisbeck G M, Yiou F, Cattani O, et al. 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core[J]. Nature, 2006, 444(7115):82-84. doi: 10.1038/nature05266
[102] Baumgartner S, Beer J, Masarik J, et al. Geomagnetic modulation of the 36Cl flux in the GRIP ice core, Greenland[J]. Science, 1998, 279(5355):1330-1332. doi: 10.1126/science.279.5355.1330
[103] Guyodo Y, Valet J P. Relative variations in geomagnetic intensity from sedimentary records: the past 200, 000 years[J]. Earth and Planetary Science Letters, 1996, 143(1-4):23-36. doi: 10.1016/0012-821X(96)00121-5
[104] Laj C, Kissel C, Mazaud A, et al. North Atlantic palaeointensity stack since 75ka (NAPIS-75) and the duration of the Laschamp event[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 358(1768): 1009-1025.
[105] Stoner J S, Laj C, Channell J E T, et al. South Atlantic and North Atlantic geomagnetic paleointensity stacks (0-80 ka): implications for inter-hemispheric correlation[J]. Quaternary Science Reviews, 2002, 21(10):1141-1151. doi: 10.1016/S0277-3791(01)00136-6
[106] Yamazaki T, Oda H. A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11):Q11H20.
[107] Pan Y X, Zhu R X, Shaw J, et al. Can relative paleointensities be determined from the normalized magnetization of the wind-blown loess of China?[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B9):19221-19232. doi: 10.1029/2001JB000360
[108] Kent D V. Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments[J]. Nature, 1982, 299(5883):538-539. doi: 10.1038/299538a0
[109] Jin C S, Liu Q S, Larrasoaña J C. A precursor to the Matuyama–Brunhes reversal in Chinese loess and its palaeomagnetic and stratigraphic significance[J]. Geophysical Journal International, 2012, 190(2):829-842. doi: 10.1111/j.1365-246X.2012.05537.x
[110] Zhu R X, Ding Z L, Wu H N, et al. Details of magnetic polarity transition recorded in Chinese loess[J]. Journal of Geomagnetism and Geoelectricity, 1993, 45(4):289-299. doi: 10.5636/jgg.45.289
[111] Wu Y, Zhu Z Y, Qiu S F, et al. Magnetic stratigraphy constraints on the Matuyama-Brunhes boundary recorded in a loess section at the southern margin of Chinese Loess Plateau[J]. Geophysical Journal International, 2016, 204(2):1072-1085. doi: 10.1093/gji/ggv502
[112] Li G H, Xia D S, Appel E, et al. Characteristics of a relative paleointensity record from loess deposits in arid central Asia and chronological implications[J]. Quaternary Geochronology, 2020, 55:101034. doi: 10.1016/j.quageo.2019.101034
[113] Liu Q S, Banerjee S K, Jackson M J, et al. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage 5 and indications of pedogenesis[J]. Quaternary Science Reviews, 2005, 24(1-2):195-210. doi: 10.1016/j.quascirev.2004.07.021