海洋沉积体系甲烷生物地球化学循环的微量元素地球化学示踪研究进展

王旭东, 庄光超, 冯东

王旭东,庄光超,冯东. 海洋沉积体系甲烷生物地球化学循环的微量元素地球化学示踪研究进展[J]. 海洋地质与第四纪地质,2024,44(6): 82-95. DOI: 10.16562/j.cnki.0256-1492.2023123001
引用本文: 王旭东,庄光超,冯东. 海洋沉积体系甲烷生物地球化学循环的微量元素地球化学示踪研究进展[J]. 海洋地质与第四纪地质,2024,44(6): 82-95. DOI: 10.16562/j.cnki.0256-1492.2023123001
WANG Xudong,ZHUANG Guangchao,FENG Dong. Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry[J]. Marine Geology & Quaternary Geology,2024,44(6):82-95. DOI: 10.16562/j.cnki.0256-1492.2023123001
Citation: WANG Xudong,ZHUANG Guangchao,FENG Dong. Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry[J]. Marine Geology & Quaternary Geology,2024,44(6):82-95. DOI: 10.16562/j.cnki.0256-1492.2023123001

海洋沉积体系甲烷生物地球化学循环的微量元素地球化学示踪研究进展

基金项目: 国家自然科学基金(42106059);上海市青年科技英才“扬帆计划”(21YF1416800);上海市教育发展基金会和上海市教育委员会“晨光计划”(22CGA58)
详细信息
    作者简介:

    王旭东(1992—),男,博士,副研究员,从事海洋沉积地球化学和地球生物学研究,E-mail:xd-wang@shou.edu.cn

    通讯作者:

    冯东(1980—),男,博士,教授,从事海洋沉积地球化学研究,E-mail:dfeng@shou.edu.cn

  • 中图分类号: P736.4

Advancements in studying the biogeochemistry of methane in marine depositional systems through trace element geochemistry

  • 摘要:

    由地质过程与微生物作用共同塑造的地球环境,当前正受到全球变暖的威胁,其中甲烷作为一种极为重要的温室气体,对全球变暖的贡献率已经达到了20%。海洋沉积物是地球最大的甲烷储库,在海洋富甲烷环境,微生物参与的产甲烷、甲烷厌氧氧化和甲烷有氧氧化过程广泛存在,是研究错综复杂的甲烷生物地球化学循环过程的理想实验室。本文从地质微生物学角度解析了含微量元素的酶或辅酶介导的甲烷循环过程,梳理了微生物潜在的微量元素需求,并重点综述了近年来主要涉及海洋甲烷循环过程研究的微量元素和同位素地球化学证据。由于参与甲烷循环过程的微生物纯培养相对困难,而地球化学研究又难以实现对生物地球化学过程的精细刻画,微生物学与地球化学的学科交叉研究优势明显、前景广阔。阐明海洋富甲烷环境微生物活动与微量元素的耦合关系,对于探索当前全球变暖背景下海洋甲烷循环过程和全球甲烷排放的调控至关重要,也有望为解析地质历史时期的甲烷排放事件及其全球生态环境效应提供独特的视角。

    Abstract:

    The habitable planet, shaped by geological processes and microbial activity, is currently threatened by global warming. Methane, as an important greenhouse gas, is responsible for 20% of global warming. The largest amount of methane on the Earth is found in marine sediment. In these methane-rich marine environments, microbial process such as methanogenesis, anaerobic methane oxidation, and aerobic methane oxidation play a crucial role. In this review, the methane cycle mediated by enzymes or coenzymes containing trace elements was analyzed from the perspective of geological microbiology, the potential trace element demand of microorganisms was examined, and the geochemical evidence of trace elements and isotopes that primarily related to the study of the marine methane cycle in recent years were emphasized. At present, the pure culture of microorganisms involved in the methane cycle presents challenges, and to accurately describe biogeochemical processes in geochemical research is difficult. Therefore, interdisciplinary research that combines microbiology and geochemistry offers clear advantages and promising prospects. Understanding the interplay between microbial activities and trace elements in marine methane-rich environments is crucial for investigating the marine methane cycle and regulating global methane emissions in the context of current global warming. Additionally, this knowledge is anticipated to offer a distinctive vantage point for analyzing historical methane emission events and their global ecological/environmental impacts.

  • 长达200余万年的第四纪时期,洞庭湖区构造运动总趋势表现为凹陷,但其升降活动的幅度和强弱出现了多次变化。在湖区内部,受新构造运动差异凹陷与凸起的影响,洞庭盆地演变形成太阳山凸起、澧县凹陷、临澧凹陷、安乡凹陷、赤山凸起、华容凸起、沅江凹陷及湘阴凹陷等多个地质构造单元(图1),其活动主要受北东和西北向断裂的控制,并以北东向构造块体为主。西、南、东三面分别为武陵凸起、雪峰凸起和幕阜山凸起,北为江汉盆地。

    图  1  洞庭盆地构造格局
    A1-武陵凸起,A2-雪峰凸起,A3-幕阜山凸起,A4-澧县凹陷,A5-临澧凹陷,A6-太阳山凸起,A7-安乡凹陷,A8-赤山凸起,A9-沅江凹陷,A10-华容凸起,A11-湘阴凹陷,A12-江汉盆地。
    Figure  1.  Quaternary tectonic framework of Dongting Basin
    A1-Wuling Uplift,A2-Xuefeng Uplift,A3-Mufushan Uplift,A4-Lixian Sag,A5-Linli Sag,A6-Taiyangshan Uplift,A7-Anxiang Sag,A8-Chishan Uplift,A9-Yuanjiang Sag,A10-Huarong Uplift,A11-Xiangyin Sag,A12-Jianghan Basin.

    洞庭盆地构造沉积演化复杂,导致学者们对洞庭盆地第四纪地质问题的认识尚存在一定分歧。对于洞庭盆地第四纪构造属性,存在“断陷盆地”[1]、“拗陷盆地”[2-3]、“先断陷后拗陷”[4-5]等多种观点。此外,对近代洞庭湖历史演变也有不同见解,有人认为构造沉降是控制近代洞庭湖演变的关键因素[5-6],也有人认为泥沙淤积是控制近代洞庭湖演变的主要原因[7]。另外,对洞庭盆地出露的网纹红土成因,也有水成[8]和风成[9]两种观点。同时,也有学者对洞庭盆地第四纪构造沉积演变研究现状进行了总结论述[10-11]。但这些研究大都是针对整个洞庭湖第四纪,对盆地内不同构造单元的研究较少,其中柏道远等[12-18]分别对洞庭盆地安乡凹陷、澧县凹陷、华容凸起、临澧凹陷等内部构造单元的构造沉积特征与环境演化进行了深入研究;戴传瑞等[19-20]对洞庭盆地与周边造山带耦合关系及沅江凹陷地层沉积相特征及演化做了分析探讨。这些湖内不同构造单元第四纪地质研究,极大深化了洞庭盆地第四纪构造沉积演变特性研究。

    第四纪以来,洞庭湖赤山凸起构造沉积演变活跃,致使其第四纪地层沉积时代、成因及构造活动较为复杂,而赤山凸起作为洞庭湖内部重要的地质构造单元,研究其第四纪构造沉积演变特性对探索洞庭湖第四纪历史演变有着重要的地质意义。

    本文从地质构造、地层沉积、古气候、文化遗址等多角度入手,对洞庭湖赤山凸起第四纪沉积时代、成因及构造活动规律等进行深入探讨,以期丰富赤山凸起第四纪构造沉积演变特性研究成果。

    根据洞庭盆地广布的第四纪堆积物及前人研究成果[10-11],第四纪期间,洞庭盆地各次级凹陷的构造活动总体为沉降,而周缘凸起区及盆地内部的赤山凸起总体为抬升,这一构造活动差异使湖区内部凹陷和周缘凸起区(包括赤山凸起)的第四纪沉积形成时代、成因、厚度、岩土体颗粒组成等特性具显著差异。

    赤山凸起为洞庭盆地南部的小型凸起断块,主要受其东、西两侧正断裂所控制,东侧为大通湖-草尾断裂,西侧为目平湖断裂,形成一南北向地垒构造。大通湖-草尾断裂走向北北东,倾向东部沅江凹陷内部,其东盘下降,形成了下陷深达150 m以上的沅江凹陷,西盘上升,出露地层为古近纪红层、早更新世、中更新世及全新世地层,断距在150 m以上;目平湖断裂走向也为北北东,倾向西部安乡凹陷内部,其西盘下降,形成了安乡凹陷,东盘上升。

    赤山凸起东西两侧发育了两条走向基本一致的反向倾斜的正断层,赤山凸起为中部地垒,其第四纪以来总体处于凸起状态,东西两侧则处于沉陷状态。

    赤山凸起大体为南北向展布的长条状低矮丘陵区,北端窄,仅有2.2 km,南端稍宽,为8~15 km,长约18 km,高程50~115 m,是洞庭湖内最大的岛屿,位于洞庭盆地南部,为东、西洞庭湖天然分界(图1),中部偏西为岛内地势最高地,东、南、北侧较低。其中较高地区域(基岩面海拔约为75 m)地表出露地层为早更新世汨罗组,次高地(基岩面海拔约为55 m)为中更新世新开铺组,低地(基岩面海拔约为0 m)为中更新世白沙井组,地势最高的中西部出露古近纪红层。

    根据赤山凸起上已有钻孔资料、研究成果[13]及笔者长期地质调查测绘和钻探成果,赤山凸起地层沉积划分见表1。总体发育特征为:在赤山凸起南、北端基岩面海拔 0 m左右发育有更新世白沙井组、新开铺组、汨罗组和全新世地层,缺失晚更新世及中更新世晚期地层;高程55 m左右发育更新世新开铺组、汨罗组和全新世地层,缺失晚更新世及中更新世中、晚期地层;中西部基岩面海拔75 m左右发育少量早更新世汨罗组和全新世地层,缺失整个晚更新世和中更新世地层。3个不同高程基岩面区域第四纪沉积之间呈相互切割关系,组成镶嵌阶地(图2)。

    表  1  赤山凸起第四纪地层划分
    Table  1.  Quaternary stratigraphy of Chishan Uplift
    时代名称地层代号厚度/m
    全新世全新世冲积Qhal3~10
    晚更新世缺失
    中更新世白沙井组Qp2b15~30
    新开铺组Qp2x20~30
    早更新世汨罗组Qp1m5~8
    下载: 导出CSV 
    | 显示表格
    图  2  赤山凸起东西向地质剖面图
    A-赤山凸起南部新湾镇ZK1东西向地质剖面图,B-赤山凸起中部鸡婆村ZK2东西向地质剖面图。1-含碎石砂质黏土,2-砂质黏土,3-含卵砂质黏土,4-黏土,5-砂卵砾石,6-粉砂质黏土,7-泥质粉砂岩,8-第四系地层分界线,9-第四系与基岩分界线,10-钻孔编号及位置。Q4S-全新世人工堆积,Q4edl-全新世风成堆积,Qp2b-中更新世白沙井组,Qp2x-中更新世新开铺组,Qp1m-早更新世汨罗组,E-古近纪。
    Figure  2.  EW-trending geological profile through Chishan Uplift
    A-EW-trending geological section of ZK1 through Xinwan town in the south of Chishan Uplift,B- EW-trending geological section of ZK2 through Jipo village in the middle of Chishan Uplift.1-sandy clay with gravel,2-sandy clay,3-sandy clay with pebbles,4-clay,5-sand gravel,6-silty clay,7-pelitic siltstone,8-Quaternary stratigraphic boundary,9-boundary between Quaternary system and bedrock,10- number and location of drilling hole.Q4S-artificial accumulation of Holocene,Q4edl-wind accumulation of Holocene,Qp2b-Baishajing Formation of Middle Pleistocene, Qp2x-Xinkaipu Formation of Middle Pleistocene,Qp1m-Miluo Formation of Early Pleistocene;E-Paleogene.

    为研究赤山凸起基岩面海拔0 m左右区域地层特性,笔者在赤山岛南部新湾镇镇区204省道东部空地上布置了一个钻孔,该钻孔揭露第四系厚度为52.31 m,分为全新世、中更新世中期白沙井组和早期新开铺组以及早更新世晚期汨罗组地层,缺失中更新世晚期及晚更新世地层,其第四纪地层自上而下可分为8层(图3):

    图  3  赤山岛南部新湾镇ZK1综合柱状图及南北向地质剖面图
    A-南部新湾镇ZK1综合柱状图,B-南部新湾镇ZK1南北向地质剖面图,Q4S-全新世人工堆积,Q4edl-全新世风成堆积,Qp2b-中更新世白沙井组,Qp2x-中更新世新开铺组,Qp1m-早更新世汨罗组,E-古近纪。
    Figure  3.  Integrated column of ZK1 and NS-trending geological profile through Xinwan town, Southern Chishan Uplift
    A-Comprehensive histogram of ZK1 in Xinwan town in the south,B-NS-trending geological section of ZK1 in Xinwan town in the south;Q4S-artificial accumulation of Holocene,Q4edl-wind accumulation of Holocene,Qp2b-Baishajing formation of Middle Pleistocene,Qp2x-Xinkaipu Formation of Middle Pleistocene,Qp1m-Miluo Formation of Early Pleistocene,E-Paleogene.

    ①层以黄褐、灰褐色含碎石砂质黏土为主,并夹有生活垃圾和建筑垃圾等,厚度为3.74 m;为全新统人工堆积。

    ②层为红褐色含细粒砂质黏土,呈网纹状,明显经过湿热化,网纹细长而散乱无规则,长度约1~10 cm不等,厚度为3.22 m,河湖、湖泊相沉积,为中更新统白沙井组湖积堆积。

    ③层为白色—浅灰黄色粉砂质黏土,中间夹一层厚度为0.2 m砂层,硬塑状,结构密实,手摸岩芯有轻微砂感,厚度为2.13 m,河湖、湖泊相沉积,为中更新统白沙井组湖积堆积。

    ④层为黄赤带紫红色黏土,质纯,黏性、韧性强,硬塑状,结构密实,刀切面光滑,厚度为8.26 m,河湖、湖泊相沉积,为中更新统白沙井组湖积堆积。

    ⑤层为灰紫色粉砂质黏土,夹三层厚度分别约为0.1、0.4、0.5 m粉砂层和少量卵砾石,硬塑状,结构密实,手摸岩芯有轻微砂感,厚度为10.14 m,河湖相沉积,为中更新统新开铺组冲湖积堆积。

    ⑥层为灰红色粉砂质黏土,硬塑状,结构密实,手摸岩芯有轻微砂感,厚度为5.09 m,河湖相沉积,为早更新统汨罗组冲湖积堆积。

    ⑦层为黄褐色砂砾层,砾石占50%~65%,砂约占30%~40%,砾石成分为砂岩、硅质岩、板岩等,磨圆度一般较差,粒径一般小于3 cm,厚度约为18.82 m,河流、河湖相,略具定向排列,优势产状近似NE向。为早更新统汨罗组冲湖积堆积。

    ⑧层为红褐色泥质粉砂岩,古近纪地层,未揭露层底。

    笔者在赤山岛中部南嘴镇鸡婆村东南部岗地上也布置了一个钻孔,研究基岩面海拔55 m左右区域地层特性,揭露第四纪厚度为25.88 m,分别为早更新世晚期汨罗组和中更新世早期新开铺组地层,缺失晚更新世、中更新世中期和晚期地层,其第四纪地层自上而下可分为5层(图4):

    图  4  赤山岛中部鸡婆村ZK2综合柱状图及南北向地质剖面图
    A-中部鸡婆村ZK2综合柱状图,B-中部鸡婆村ZK南北向地质剖面图。Q4edl-全新世风成堆积,Qp2x-中更新世新开铺组,Qp1m-早更新世汨罗组,E-古近纪。
    Figure  4.  Integrated column of ZK2 and NS-trending geological profile through Xinwan town, Southern Chishan Uplift
    A-Comprehensive histogram of ZK2 in the central section,B- NS-trending geological section of ZK2 in the central section.Q4edl-wind accumulation of Holocene,Qp2b-Baishajing Formation of Middle Pleistocene,Qp1m-Miluo Formation of Early Pleistocene,E-Paleogene.

    ①紫红、红褐色粉砂质黏土,表层厚度约2.1 m,呈网纹状,明显经过湿热化,土中存在交错层理的砂层透镜体,网纹细长而散乱无规则,长度约1~12 cm不等,厚度为7.24 m,河湖相沉积,为中更新统新开铺组湖积堆积。

    ②灰褐色含砾粉砂质黏土,硬塑状,结构密实,手摸岩芯有轻微砂感,厚度为3.72 m,河湖相沉积,为早更新统汨罗组冲湖积堆积。

    ③暗紫红色砾石层夹砂砾层,砾石成分以石英砂岩为主,脉石英、硅质岩次之,填隙物为含细砾黏土质粗—细砂,弱固结,局部夹有黏土层透镜体,厚度为3.18 m,河流、河湖相沉积,为早更新统汨罗组冲湖积堆积。

    ④灰红色砾石层,砾石含量90%左右,成分中以脉石英和硅质岩为主,约80%,其他为石英砂岩,磨圆多较好,呈次圆—圆状,且具有上细下粗特征,粒径上部多为1~5 cm,下部多为4~20 cm,砾石间填隙物多为粗—细砂,含量约8%~14%,且该层上部夹有厚15 cm左右的砂层,厚度为11.36 m,河流、河湖相沉积,为早更新统汨罗组冲湖积堆积。

    ⑤红褐色泥质粉砂岩,为古近纪红层,未揭露层底。通过钻孔附近人工开挖露头剖面还发现,②层在赤山凸起东北部砂层透镜体过渡为砂层,且砂层逐渐增厚,此特性揭露了该地层沉积过程中赤山凸起区域存在着自南西往北东持续的水流运动;③层砾石略具定向,优势产状约为230°∠18°;④层砾石呈定向沉积特征更为明显,优势产状大致与③层相近,部分呈倾斜状切蚀下伏层,表明④层沉积过程中,赤山凸起区域内水流方向可能长期保持由SWW向NEE,且顺水流方向有由薄缓慢变厚的趋势。

    经过长期地质调查测绘,在赤山凸起中西部、基岩面海拔75 m左右区域第四系主要为全新统和早更新世晚期汨罗组地层,且部分区域汨罗组地层剥蚀较为严重,甚至已不完整或缺失,通过零星露头剖面,其第四纪沉积自上而下可分为5层(图5)。

    图  5  赤山凸起基岩面海拔75 m左右南北向地质剖面图
    Q4edl-全新世风成堆积,Qp1m-早更新世汨罗组,E-古近纪。
    Figure  5.  NS-trending geological profile of the bedrock surface of Chishan Uplift and field photos of Miluo Formation
    Q4edl-wind accumulation of Holocene,Qp1m-Miluo Formation of Early Pleistocene,E-Paleogene.

    ①层为粉砂质黏土,局部含泥质粉砂岩细碎石,厚度变化较大,约为0.4~1.2 m,结构松散,明显为第四纪全新统地层,风成沉积。

    ②层为泥砾层,属泥、砾混杂堆积,成分复杂,沉积散乱不规律,可能为坡积与冲积堆积混合地层,结构较松散,厚度为0.2~0.6 m,为过渡层。

    ③层为网纹红土,成分为粉砂质黏土,网纹发育,明显经过湿热化,多呈水平状,并见黄色斑点和铁质结核,厚度约为2.0 m,并与下部④层表部的含砾网纹红土呈过渡关系,河湖相,为早更新统汨罗组冲湖积堆积。

    ④层为灰红色砾石层,砾石成分以脉石英(70%左右)为主,其次为砂岩、硅质岩,含量高达85%左右,粒径一般1~3 cm,形状以次圆—圆状为主,少量次棱角状,分选较好,砾石多为等轴或近等轴状,定向性不明显,砾石间孔隙充填物多为细—粗砂,河湖相,为早更新统汨罗组冲湖积堆积。厚度约为10~20 m。

    ⑤层为红褐色泥质粉砂岩,为古近纪红层,未揭露层底。

    根据第四纪古气候有关研究[14, 21],早更新世早期和晚期气候皆是先干冷后暖湿;中更新世早期为冷干,中期为暖湿,晚期为湿热;晚更新世为干冷、严寒;全新世早期为干冷向暖湿过渡。干冷气候,雨水少,水位低,湖泊面积小,湖区大部分裸露成陆地,处于剥蚀状态,沉积以河流相和河湖相为主;暖湿气候,降雨量多,汇入湖区径流多,湖水位高,湖面广;湿热气候,温度高,蒸发强烈,湿度大,降雨和汇入湖区径流相比暖湿气候明显偏少,湖水位也较低,且地表土层在长期湿热气候作用下易发生网纹化。

    结合第四纪古气候、钻孔揭露的地层资料和地质调查测绘,赤山凸起不同高程区沉积地层差异可解释为:

    (1)由于早更新世早期、晚期古气候皆为先干冷后暖湿,若赤山凸起未发生隆起或沉陷,在两个暖湿气候时段,降雨充沛,湖区水位较高,赤山部分或全部区域应处于水下接受早更新世早期和晚期河湖相地层沉积,但本次钻孔揭露发现,赤山只沉积了早更新世晚期汨罗组地层,未见早期地层。可能是早更新世早期赤山凸起地势较高,早期一直裸露于湖水面,处于剥蚀状态,而未沉积早期地层;早更新世早期末至晚期早段,赤山凸起发生了沉陷,晚期暖湿气候来临后,湖区水位上涨,整个赤山凸起绝大部分区域淹没在湖水中,开始接受晚期汨罗组地层,且由于降雨量大,流速快,其沉积的地层多为粒径相对较粗的砂卵砾石,且呈现出岛内低地势区域沉积砾石层厚、高地势区域薄的特征;早更新世末期气候慢慢向干冷气候过渡,湖水位开始下降,水流搬运能力变弱,赤山凸起沉积的汨罗组地层颗粒变细,赤山高地势区域露出水面不再接受汨罗组地层沉积,导致岛内高地势汨罗组地层较薄而低地势相对较厚,这与本次揭露的3个高程区汨罗组沉积颗粒特性下部粗上部细及厚度变化特征是相一致的。

    (2)中更新世早期,气候干冷,径流小,入湖水流挟沙能力弱、颗粒粒径小,湖区水位较低,湖面窄,赤山凸起发生小幅沉陷后稳定,使得岛内基岩面海拔55 m左右及以下区域淹没在水中,开始接受中更新统新开铺组地层,到中更新世早期晚段赤山强烈凸起,虽然气候慢慢进入暖湿,降雨增多、入湖径流大,湖区水位上升,但赤山凸起地势较高区域裸露地表。这与赤山凸起中沉积的新开铺组地层为细粒黏性土且厚度较薄较为一致。

    (3)中更新世中期,赤山构造稳定,气候暖湿,湖区水位上升,但由于赤山凸起地势较高,仅地势相对较低区域(主要为基岩面海拔55 m以下区域,以上区域是否在内无法确定)再次淹没在水中,沉积白沙井组地层,其他高地势区域处于剥蚀状态,但由于目平湖凹陷的持续扩大,挟沙水流进入湖区后流速变慢,而无法将大颗粒的砾石等搬运至赤山区域,导致该时期内沉积的地层颗粒粒径较小。

    (4)中更新世晚期气候转为湿热,湖区水位稍有下降,导致基岩面海拔0 m左右及以上区域皆已裸露水表成陆,处于剥蚀状态,导致赤山凸起地表裸露的汨罗组、新开铺组和白沙井组地层厚度变薄,甚至部分区域部分时代地层被完全剥蚀;同时受湿热气候长期作用,赤山裸露区域表部土层发生网纹化。与本次钻探揭露更新世最顶部地层皆存在一定厚度的网纹化土层相一致。

    据湖南省文物考古研究所联合益阳市文物处等单位对赤山凸起旧石器遗址长期考古调查研究[22],赤山凸起共发现旧石器遗址10余处,大部分发现于地表,少部分深埋于第四纪地层中,且主要位于地势相对较低区域的第四纪中更新世白沙井组或新开铺组上覆堆积层中。

    岛内比较有代表性的两个旧石器遗址枫树嘴遗址和杨腊丘遗址,两地点南北相距约2 km。揭露的文化层剖面厚4~5 m,地层堆积基本相同,自上而下分别为(图6):

    图  6  赤山凸起旧石器遗址地质剖面图
    Q4edl-全新世风成堆积,Qp2b-中更新世白沙井组,E-古近纪。
    Figure  6.  Geological profile of paleolithic sites in Chishan Uplift
    Q4edl- Holocene aeolian deposits,Qp2b-Baishajing Formation of Middle Pleistocene,E-Paleogene.

    第①层,灰褐色粉砂黏土,土质疏松,含有少量青花、白釉、酱釉等瓷器碎片,属近现代表土层,厚0.4~0.5 m;

    第②层,浅红色黏土粉砂,土质较疏松,厚0.3~0.8 m,出土有石制品,属上文化层;

    第③层,黄—红褐色黏土粉砂,较细的灰黄色网纹较密集分布其中,含大量褐色的铁锰结核颗粒,土质较紧密,厚0.6~1.5 m,出土有较多石制品,属主要文化层;

    第④层,网纹红土,呈褐红色,分布其中的灰黄色网纹较上层粗、稀疏,铁锰结核颗粒渐少,但与上部层位无明显界限,呈渐变状态,土质紧密,厚1.0~1.5 m,出土有石制品;

    第⑤层,网纹红土,呈赭红色,灰白色网纹较上部粗,极少或不含铁锰结核,土质紧密,基本不见石制品,已发掘0.4~0.5 m,其下约5 m至底部含卵砂质黏土。

    石制品主要出自第③层和第④层上部,第②层中有少量,其余层位没有遗物发现。可见较多石制品埋藏在均质红土层至铁锰结核弱网纹红土层,也有部分石制品出自网纹红土层的上部,一些采集的石器表面清晰见有网状印迹。从出土层位分析,遗址可能有两个不同的人类活动时期,但含铁锰结核颗粒较多的第③层网纹红土堆积所对应的阶段应是赤山凸起区域古人类活动最为频繁的时间段。因此,赤山凸起内旧石器遗址文化层主要位于网纹红土的上部及上覆堆积土层中,遗址的年代应较网纹红土(即中更新世白沙井组二元结构上部黏性土层)形成的时代偏晚,属中更新世晚期至晚更新世早期,绝对年代大致为200~100 ka,在考古学上大致与旧石器时代早期晚段或旧石器中期相当。

    赤山凸起区域并未发现旧石器晚期和新石器遗址,即晚更新世早期之后至新石器时代结束,赤山凸起区域皆无人类活动。但湖区其他地区却发现众多新石器遗址[23-24],据不完全统计,遗址约有130多处。可能是晚更新世早期,世界性低海面出现,引发长江干流河床发生溯源侵蚀,导致洞庭湖出口河床发生强烈下切,洞庭湖水位剧降,湖水被迅速排干,湖面急剧萎缩,湖盆底部大多露出成为陆地,形成一片由滨湖阶地环绕的河网平原[25-26],人类天性近水生存,从而搬离海拔较高、离水源较远的赤山凸起,而居住在离水较近的河网平原,也就造成赤山凸起无新石器遗址而湖区地势低矮河网平原却广泛分布。

    赤山凸起旧石器文化遗址发现于第③层和第④层上部,第②层只有少量,其余层位没有发现,表明:

    (1)中更新世晚期初,赤山凸起基岩面海拔0 m左右及以上区域已裸露湖面,并开始有人类活动,由于古人类临水而居的天性,其活动主要集中在岛内地势相对较低的临水区域,使得刚刚凸起露出地表的中更新世中期白沙井组地层顶部土层中存在人类活动的痕迹,并遗留下旧石器遗址,表现为第④层上部存在旧石器时代石制品。

    (2)旧石器遗址文化层在第④层上部、第③层和第②层土中皆有,可见赤山凸起从中更新世晚期至第②层土沉积(全新世早期)过程中,一直存在人类活动,即这一时期岛内基岩面海拔0 m及以上区域一直裸露水表,处于剥蚀状态,且中更新世晚期气候湿热,晚更新世干冷、严寒,全新世早期由干冷缓慢过渡至暖湿,湖区这一时期水位较低,特别是晚更新世洞庭湖已演变成河网平原,同时该时期内赤山凸起构造活动较平静[5],其被湖水淹没可能性极小,这一时期内沉积的地层应主要为风成堆积。

    (3)赤山凸起基岩面0 m及以上区域第四系地层顶部存在一定厚度风成堆积土,应大部分来源于岛内相对较高的第四系沉积和岛内丘陵风化剥蚀;高海拔区域的汨罗组和新开铺组上部部分地层被风化剥蚀,甚至部分地层分布局限且局部残留,厚度也较薄,顶部一般存在一定厚度的风化坡积产物。

    (1)赤山凸起第四纪沉积除了浅表层存在较薄的全新统外,其他皆为更新世地层。其中基岩面海拔75 m左右区域沉积有早更新世晚期汨罗组地层,缺失中、晚更新世地层;55 m左右区域沉积有早更新世晚期汨罗组和中更新世早期新开铺组地层,缺失中更新世中期、晚期及晚更新世地层;0 m左右区域沉积有早更新世汨罗组和中更新世早期开铺组、中期白沙井组地层,缺失晚更新世地层;且不同基岩面海拔区相互之间组成镶嵌阶地。

    (2)赤山凸起早更新世晚期构造活动表现为先凹陷后稳定,中更新世早期—中期末表现为稳定—凹陷—稳定—凸起—稳定。

    (3)中更新世晚期初,赤山凸起基岩面海拔0 m左右区域绝大部分已裸露成陆,人类活动开始,并在这些区域地层顶部及之后沉积地层中遗留下连续性较好的旧石器遗址,即中更新世晚期至全新世早期赤山凸起均处于剥蚀状态,凸起内中更新世晚期及之后沉积的第四纪地层应主要为风成堆积。

    本文通过多角度分析论证,揭示了赤山凸起第四纪以来构造沉积演变特性,但仍有一些疑问之处,如早更新世晚期赤山凸起凹陷下沉持续时间、基岩面海拔75及55 m左右区域是否曾经沉积过中更新世早期和中期地层(只是后来被完全剥蚀)等,需加强相关论证研究。

  • 图  1   酶或辅酶介导的产甲烷途径 [24]

    浅蓝色椭圆和长方形框内为促进产甲烷作用的各种酶,目前并不确定Ftr/Mch、Mtd/Mer和Pta/Ack是否会形成复合体,其他已知酶分别为:Fwd:甲酰甲烷呋喃脱氢酶;Mtr:四氢甲蝶呤S-甲基转移酶复合物;Mcr:甲基辅酶M还原酶; Acs:乙酰辅酶A合成酶; Codh:一氧化碳脱氢酶;Mt:甲基转移酶;Mto:辅酶M甲基转移酶系统;Acr:烷基辅酶M还原酶复合物。

    Figure  1.   Different pathways of methanogenesis mediated by enzyme or coenzyme [24]

    The blue ovals and boxes contain various enzymes that promote methanogenesis. It is uncertain whether Ftr/Mch, Mtd/Mer, and Pta/Ack will form a complex at present, and other known enzymes are: Fwd: formyl-methanofuran dehydrogenase complex; Mtr: tetrahydromethanopterin S-methyl-transferase complex; Mcr: methyl-coenzyme M reductase complex; Acs: acetyl-CoA synthase; Codh: carbon monoxide dehydrogenase; Mt: methyltransferase; Mto: methoxyltransferase; Acr: alkyl-coenzyme M reductase complex.

    图  2   甲烷厌氧氧化过程

    整合自文献[42, 45-47, 49, 56]。

    Figure  2.   The process of anaerobic oxidation of methane

    Integrated from references[42, 45-47, 49, 56].

    图  3   目前已知的甲烷有氧氧化过程

    据文献[70]修改。浅蓝色长方形框内为促进反应的各种酶和中间产物。MMO:甲烷单加氧酶; MDH:甲醇脱氢酶; FADH:甲醛脱氢酶; FDH:甲酸脱氢酶。

    Figure  3.   Currently known process of aerobic oxidation of methane

    Modified from reference [70]. Various enzymes and intermediates that promote this process are shown in the blue rectangular. MMO: methane monooxygenase; MDH: methanol dehydrogenase; FADH: formaldehyde dehydrogenase; FDH: formate dehydrogenase.

    图  4   产甲烷和甲烷厌氧氧化作用的野外证据

    a: 黑海冷泉细菌席两种含Ni蛋白质[19];b:法国南部晚阿普弟阶Marnes Bleues组地层出露的冷泉碳酸盐岩,富有机质区Ni含量剧增[86];c:甲烷循环过程的微生物成矿作用被认为一定程度上造就了哥伦比亚高Ni品味红土矿床,其中Ni含量最高达8 wt.%[85];d:产甲烷菌造成了大范围的Ni同位素分馏[88];e:Ni同位素指示产甲烷作用增强一定程度上驱动了6.35亿年前雪球地球的终止[92]

    Figure  4.   Field evidence of methanogenesis and anaerobic oxidation of methane

    a: two types of Ni-containing proteins were identified in the bacterial mats within the Black Sea cold seep area[19]; b: the cold seep carbonates exposed from the Marnes Bleues formation in southern France during the late Apudian Period exhibit a significant increase in Ni content within the organic-rich zone[86]; c: microbial mineralization during the methane cycle is believed to have contributed, to some extents, to the formation of a high Ni-grade laterite deposit in Colombia, where the maximum Ni content reaches 8 wt.%[85]; d: methanogenic bacteria have been shown to cause significant Ni isotope fractionation[88]; e: Ni isotopes suggest that the intensification of methanogenesis played a role in partially ending the Snowball Earth (635 million years ago)[92].

    图  5   甲烷有氧氧化作用的野外证据

    a: 极端嗜酸性甲烷氧化菌在加入轻REE后生长速率明显加快[20];b: 墨西哥湾漏油事故发生后,在水深900-1200m处形成了碳氢化合物羽流区。该深度范围内海水甲烷浓度明显升高,但轻REE含量明显降低[21];c: 甲烷有氧氧化作用造成了马尾藻海200-500m水深处海水中轻REE含量明显减少[23];d: 甲烷营养型双壳的软组织和钙质壳体都有明显的轻REE富集,但硫营养型双壳则没有此类特征[22];e: 管状蠕虫Escarpia southwardae几丁质外壳的Cu和La含量含量在顶端明显升高[95];f: 在大氧化事件开始之前,AeOM过程就已经不断增强并持续了一段时间,造成晚太古代沉积体系的δ65Cu值明显降低[97]

    Figure  5.   Field evidence of aerobic oxidation of methane

    a: the growth rate of highly acidophilic methane-oxidizing bacteria is significantly enhanced upon the introduction of light rare earth elements[20]; b: following the oil spill in the Gulf of Mexico, a hydrocarbon plume region developed at a water depth ranging from 900 to 1200 m. In this depth range, there was a noticeable increase in the concentration of methane in seawater, while the abundance of light rare earth elements decreased significantly[21]; c: the aerobic oxidation of methane led to a significant decrease in light rare earth elements in seawater at depths of 200-500m in the Sargasso Sea[23]; d: methanotrophic bivalves exhibit enrichment of light REE in their soft tissues and calcareous shells, whereas thiotrophic bivalves lack this characteristic[22]; e: the chitinous tube of the tubeworm Escarpia southwardae showed a noticeable increase in Cu and La contents at the top[95]; f: prior to the Great Oxidation Event, the aerobic oxidation of methane intensified continuously over a period, resulting in a significant decrease in the δ65Cu value of the late Archean sediments[97].

    表  1   涉及甲烷循环过程的反应方程式

    Table  1   Reaction equations of methane cycle processes

    反应 甲烷循环过程 具体类型 反应方程式
    1 产甲烷作用 氢营养型 4H2 + CO2 → CH4 + 2H2O
    2 4HCOOH → CH4 + 3CO2 + 2H2O
    3 4CO + 2H2O → CH4 + 3CO2
    4 乙酸营养型 CH3COOH → CH4 + CO2
    5 甲基营养型 CH3OH + H2 → CH4 + H2O
    6 4CH3OH→3CH4 + CO2 + 2H2O
    7 2(CH3)2-S + 2H2O → 3CH4 + CO2 + 2H2S
    8 4CH3-NH2 + 2H2O → 3CH4 + CO2 + 4NH3
    9 2(CH3)2-NH + 2H2O → 3CH4 + CO2 + 2NH3
    10 4(CH3)-N + 6H2O → 9CH4 + 3CO2 + 4NH3
    11 4CH3NH3Cl + 2H2O → 3CH4 + CO2 + 4NH4Cl
    12 甲氧基营养型 4CH3-O-R + 2H2O → 3CH4 + CO2 + 4R-OH
    13 烷基营养型 4C16H34 + 30H2O → 49CH4 + 15CO2
    14 甲烷厌氧氧化 反向产甲烷 CH4 + 2H2O → CO2 + 4H2
    15 SO42– + 4H2 + H+ → HS + 4H2O
    16 乙酸生成 2CH4 + 2H2O → CH3COOH + 4H2
    17 (同15) SO42– + 4H2 + H+ → HS + 4H2O
    18 CH3COOH + SO42– → 2HCO3 + HS + H+
    19 CH4 + SO42– → HCO3 + HS + H2O
    20 CH4 + HCO3 → CH3COO + H2O
    21 CH3COO + SO42– → 2HCO3 + 2HS
    22 (同19) CH4 + SO42– → HCO3 + HS + H2O
    23 甲基生成 3CH4 + HCO3 + 5H+ + 4HS → CH3-SH + 3H2O
    24 4CH3-SH + 3SO42– → 4HCO3 +7HS + 5H+
    25 甲烷有氧氧化 总反应 CH4 + 2O2 → CO2 + 2H2O
    26 甲烷转化为甲醇 CH4 + O2 + 2e + 2H+ → CH3OH + H2O
    27 甲醇转化为甲醛 CH3OH → HCHO + H2
    28 甲醛转化为甲酸 HCHO + H2O → HCOOH + H2
    29 甲酸转化为CO2和H2 HCOOH → CO2 + H2
    下载: 导出CSV
  • [1]

    Reay D S, Smith P, Christensen T R, et al. Methane and global environmental change[J]. Annual Review of Environment and Resources, 2018, 43:165-192. doi: 10.1146/annurev-environ-102017-030154

    [2]

    Mißbach H, Duda J P, van den Kerkhof A M, et al. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions[J]. Nature Communications, 2021, 12(1):1101. doi: 10.1038/s41467-021-21323-z

    [3]

    Chen C S, Qin S F, Wang Y P, et al. High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions[J]. Nature Communications, 2022, 13(1):6893. doi: 10.1038/s41467-022-34645-3

    [4]

    Peng S S, Lin X, Thompson R L, et al. Wetland emission and atmospheric sink changes explain methane growth in 2020[J]. Nature, 2022, 612(7940):477-482. doi: 10.1038/s41586-022-05447-w

    [5]

    Rocher-Ros G, Stanley E H, Loken L C, et al. Global methane emissions from rivers and streams[J]. Nature, 2023, 621(7979):530-535. doi: 10.1038/s41586-023-06344-6

    [6]

    Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes[M]//Gibson R N, Atkinson R J A, Gordon J D M. Oceanography and Marine Biology: an Annual Review. Boca Raton: CRC Press, 2005: 1-46.

    [7]

    Yang S S, Lv Y X, Liu X P, et al. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J]. Nature Communications, 2020, 11(1):3941. doi: 10.1038/s41467-020-17860-8

    [8]

    Giovannelli D. Trace metal availability and the evolution of biogeochemistry[J]. Nature Reviews Earth & Environment, 2023, 4(9):597-598.

    [9]

    Tagliabue A, Bowie A R, Boyd P W, et al. The integral role of iron in ocean biogeochemistry[J]. Nature, 2017, 543(7643):51-59. doi: 10.1038/nature21058

    [10]

    Swanner E D, Planavsky N J, Lalonde S V, et al. Cobalt and marine redox evolution[J]. Earth and Planetary Science Letters, 2014, 390:253-263. doi: 10.1016/j.jpgl.2014.01.001

    [11]

    Shafiee R T, Diver P J, Snow J T, et al. Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches[J]. ISME Communications, 2021, 1(1):1. doi: 10.1038/s43705-021-00001-7

    [12]

    Buessecker S, Palmer M, Lai D X, et al. An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea[J]. Nature Communications, 2022, 13(1):3773. doi: 10.1038/s41467-022-31452-8

    [13]

    Dupont C L, Butcher A, Valas R E, et al. History of biological metal utilization inferred through phylogenomic analysis of protein structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23):10567-10572.

    [14]

    Mele B H, Monticelli M, Leone S, et al. Oxidoreductases and metal cofactors in the functioning of the earth[J]. Essays in Biochemistry, 2023, 67(4):653-670. doi: 10.1042/EBC20230012

    [15]

    Rudroff F, Mihovilovic M D, Gröger H, et al. Opportunities and challenges for combining chemo- and biocatalysis[J]. Nature Catalysis, 2018, 1(1):12-22. doi: 10.1038/s41929-017-0010-4

    [16]

    Glass J B, Orphan V J. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide[J]. Frontiers in Microbiology, 2012, 3:61.

    [17]

    Glass J B, Yu H, Steele J A, et al. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments[J]. Environmental Microbiology, 2014, 16(6):1592-1611. doi: 10.1111/1462-2920.12314

    [18]

    Glass J B, Chen S, Dawson K S, et al. Trace metal imaging of sulfate-reducing bacteria and methanogenic archaea at single-cell resolution by synchrotron X-ray fluorescence imaging[J]. Geomicrobiology Journal, 2018, 35(1):81-89. doi: 10.1080/01490451.2017.1321068

    [19]

    Krüger M, Meyerdierks A, Glöckner F O, et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically[J]. Nature, 2003, 426(6968):878-881. doi: 10.1038/nature02207

    [20]

    Pol A, Barends T R M, Dietl A, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots[J]. Environmental Microbiology, 2014, 16(1):255-264. doi: 10.1111/1462-2920.12249

    [21]

    Shiller A M, Chan E W, Joung D J, et al. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy[J]. Scientific Reports, 2017, 7(1):10389. doi: 10.1038/s41598-017-11060-z

    [22]

    Wang X, Barrat J A, Bayon G, et al. Lanthanum anomalies as fingerprints of methanotrophy[J]. Geochemical Perspectives Letters, 2020, 14:26-30. doi: 10.7185/geochemlet.2019

    [23]

    Meyer A C S, Grundle D, Cullen J T. Selective uptake of rare earth elements in marine systems as an indicator of and control on aerobic bacterial methanotrophy[J]. Earth and Planetary Science Letters, 2021, 558:116756. doi: 10.1016/j.jpgl.2021.116756

    [24]

    Garcia P S, Gribaldo S, Borrel G. Diversity and evolution of methane-related pathways in archaea[J]. Annual Review of Microbiology, 2022, 76:727-755. doi: 10.1146/annurev-micro-041020-024935

    [25]

    Mayumi D, Mochimaru H, Tamaki H, et al. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309):222-225. doi: 10.1126/science.aaf8821

    [26]

    Wang Y Z, Wegener G, Williams T A, et al. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism[J]. Science Advances, 2021, 7(27):eabj1453. doi: 10.1126/sciadv.abj1453

    [27]

    Zhou Z, Zhang C J, Liu P F, et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2022, 601(7892):257-262. doi: 10.1038/s41586-021-04235-2

    [28]

    Thauer R K, Kaster A K, Seedorf H, et al. Methanogenic archaea: ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8):579-591. doi: 10.1038/nrmicro1931

    [29]

    Liu Y C, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1):171-189. doi: 10.1196/annals.1419.019

    [30]

    Fricke W F, Seedorf H, Henne A, et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis[J]. Journal of Bacteriology, 2006, 188(2):642-658. doi: 10.1128/JB.188.2.642-658.2006

    [31]

    Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture[J]. Microbiology, 1998, 144(9):2377-2406. doi: 10.1099/00221287-144-9-2377

    [32]

    Ferry J G. Enzymology of one-carbon metabolism in methanogenic pathways[J]. FEMS Microbiology Reviews, 1999, 23(1):13-38. doi: 10.1111/j.1574-6976.1999.tb00390.x

    [33]

    Zhuang G C, Elling F J, Nigro L M, et al. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2016, 187:1-20. doi: 10.1016/j.gca.2016.05.005

    [34]

    Kurth J M, Nobu M K, Tamaki H, et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds[J]. The ISME Journal, 2021, 15(12):3549-3565. doi: 10.1038/s41396-021-01025-6

    [35]

    Laso-Pérez R, Hahn C, van Vliet D M, et al. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico[J]. mBio, 2019, 10(4):e01814-19.

    [36]

    Zerkle A L, House C H, Brantley S L. Biogeochemical signatures through time as inferred from whole microbial genomes[J]. American Journal of Science, 2005, 305(6-8):467-502. doi: 10.2475/ajs.305.6-8.467

    [37]

    Timmis K N. Handbook of Hydrocarbon and Lipid Microbiology[M]. Berlin Heidelberg: Springer, 2010.

    [38]

    Hedderich R, Whitman W B. Physiology and biochemistry of the methane-producing archaea[M]//Dworkin M, Falkow S, Rosenberg E, et al. The Prokaryotes. New York: Springer, 2006: 1050-1079.

    [39]

    Wagner T, Koch J, Ermler U, et al. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction[J]. Science, 2017, 357(6352):699-703. doi: 10.1126/science.aan0425

    [40]

    Segarra K E A, Schubotz F, Samarkin V, et al. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions[J]. Nature Communications, 2015, 6(1):7477. doi: 10.1038/ncomms8477

    [41]

    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63:311-334. doi: 10.1146/annurev.micro.61.080706.093130

    [42]

    Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochemical Cycles, 1994, 8(4):451-463. doi: 10.1029/94GB01800

    [43]

    Hallam S J, Putnam N, Preston C M, et al. Reverse methanogenesis: testing the hypothesis with environmental genomics[J]. Science, 2004, 305(5689):1457-1462. doi: 10.1126/science.1100025

    [44]

    Scheller S, Goenrich M, Boecher R, et al. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane[J]. Nature, 2010, 465(7298):606-608. doi: 10.1038/nature09015

    [45]

    Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2(5):477-484. doi: 10.1046/j.1462-2920.2000.00135.x

    [46]

    Lessner D J, Li L Y, Li Q B, et al. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47):17921-17926.

    [47]

    Zehnder A J, Brock T D. Methane formation and methane oxidation by methanogenic bacteria[J]. Journal of Bacteriology, 1979, 137(1):420-432. doi: 10.1128/jb.137.1.420-432.1979

    [48]

    Moran J J, Beal E J, Vrentas J M, et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(1):162-173. doi: 10.1111/j.1462-2920.2007.01441.x

    [49]

    Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature, 2012, 491(7425):541-546. doi: 10.1038/nature11656

    [50]

    Jermy A. Zero-valent sulphur and marine methane oxidation[J]. Nature Reviews Microbiology, 2013, 11(1):5.

    [51]

    Lichtschlag A, Kamyshny A, Ferdelman T G, et al. Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea)[J]. Geochimica et Cosmochimica Acta, 2013, 105:130-145. doi: 10.1016/j.gca.2012.11.025

    [52]

    Zhang X, Du Z F, Zheng R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123:1-12. doi: 10.1016/j.dsr.2017.02.005

    [53]

    Zopfi J, Ferdelman T G, Fossing H. Distribution and fate of sulfur intermediates – sulfite, tetrathionate, thiosulfate, and elemental sulfur – in marine sediments[M]//Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry – Past and Present. Boulder, Colorado: Geological Society of America, 2004: 97-116.

    [54]

    Zhang J, Liu R, Xi S C, et al. A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea[J]. The ISME Journal, 2020, 14(9):2261-2274. doi: 10.1038/s41396-020-0684-5

    [55]

    Liu R, Shan Y Q, Xi S C, et al. A deep-sea sulfate-reducing bacterium generates zero-valent sulfur via metabolizing thiosulfate[J]. mLife, 2022, 1(3):257-271. doi: 10.1002/mlf2.12038

    [56]

    McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia[J]. Nature, 2015, 526(7574):531-535. doi: 10.1038/nature15512

    [57]

    Wegener G, Krukenberg V, Riedel D, et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J]. Nature, 2015, 526(7574):587-590. doi: 10.1038/nature15733

    [58]

    Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction[J]. Science, 2016, 351(6274):703-707. doi: 10.1126/science.aad7154

    [59]

    Dekas A E, Poretsky R S, Orphan V J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia[J]. Science, 2009, 326(5951):422-426. doi: 10.1126/science.1178223

    [60]

    Thauer R K. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2[J]. Current Opinion in Microbiology, 2011, 14(3):292-299. doi: 10.1016/j.mib.2011.03.003

    [61]

    Mao S H, Zhang H H, Zhuang G C, et al. Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters[J]. Nature Communications, 2022, 13(1):7309. doi: 10.1038/s41467-022-35082-y

    [62]

    Chen Y, Murrell J C. Ecology of aerobic methanotrophs and their role in methane cycling[M]//Timmis K N. Handbook of Hydrocarbon and Lipid Microbiology. Berlin Heidelberg: Springer, 2010: 3067-3076.

    [63]

    Valentine D L, Blanton D C, Reeburgh W S, et al. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel river Basin[J]. Geochimica et Cosmochimica Acta, 2001, 65(16):2633-2640. doi: 10.1016/S0016-7037(01)00625-1

    [64]

    Blumenberg M, Seifert R, Michaelis W. Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column[J]. Organic Geochemistry, 2007, 38(1):84-91. doi: 10.1016/j.orggeochem.2006.08.011

    [65]

    Leonte M, Kessler J D, Kellermann M Y, et al. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin[J]. Geochimica et Cosmochimica Acta, 2017, 204:375-387. doi: 10.1016/j.gca.2017.01.009

    [66]

    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734. doi: 10.1038/ngeo1926

    [67]

    Spencer-Jones C L, Wagner T, Talbot H M. A record of aerobic methane oxidation in tropical Africa over the last 2.5Ma[J]. Geochimica et Cosmochimica Acta, 2017, 218:27-39. doi: 10.1016/j.gca.2017.08.042

    [68]

    Anthony K W, Daanen R, Anthony P, et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s[J]. Nature Geoscience, 2016, 9(9):679-682. doi: 10.1038/ngeo2795

    [69]

    Weber T, Wiseman N A, Kock A. Global ocean methane emissions dominated by shallow coastal waters[J]. Nature Communications, 2019, 10(1):4584. doi: 10.1038/s41467-019-12541-7

    [70]

    Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29:142-152. doi: 10.1016/j.ymben.2015.03.010

    [71]

    Stanley S H, Prior S D, Leak D J, et al. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures[J]. Biotechnology Letters, 1983, 5(7):487-492. doi: 10.1007/BF00132233

    [72]

    Picone N, Op den Camp H J M. Role of rare earth elements in methanol oxidation[J]. Current Opinion in Chemical Biology, 2019, 49:39-44. doi: 10.1016/j.cbpa.2018.09.019

    [73]

    Ōgushi S, Ando M, Tsuru D. Formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme[J]. The Journal of Biochemistry, 1984, 96(5):1587-1591. doi: 10.1093/oxfordjournals.jbchem.a134988

    [74] 朱小飞, 谭相石. 金属组学: Wood-Ljungdahl通路中的金属蛋白/金属酶[J]. 中国科学 B辑: 化学, 2009, 39(7): 607-619

    ZHU Xiaofei, TAN Xiangshi. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-ljungdahl pathway[J]. Science in China Series B: Chemistry, 2009, 52(12): 2071-2082.]

    [75]

    Smrzka D, Feng D, Himmler T, et al. Trace elements in methane-seep carbonates: potentials, limitations, and perspectives[J]. Earth-Science Reviews, 2020, 208:103263. doi: 10.1016/j.earscirev.2020.103263

    [76]

    Feng D, Lin Z J, Bian Y Y, et al. Rare earth elements of seep carbonates: indication for redox variations and microbiological processes at modern seep sites[J]. Journal of Asian Earth Sciences, 2013, 65:27-33. doi: 10.1016/j.jseaes.2012.09.002

    [77]

    Chen L Y, Jin M, Wang X D, et al. The effects of diagenetic processes and fluid migration on rare earth element and organic matter distribution in seep-related sediments: a case study from the South China Sea[J]. Journal of Asian Earth Sciences, 2020, 191:104233. doi: 10.1016/j.jseaes.2020.104233

    [78]

    Wang X D, Bayon G, Kim J H, et al. Trace element systematics in cold seep carbonates and associated lipid compounds[J]. Chemical Geology, 2019, 528:119277. doi: 10.1016/j.chemgeo.2019.119277

    [79]

    Lee D H, Kim J H, Lee Y M, et al. Metalloenzyme signatures in authigenic carbonates from the Chukchi Borderlands in the western Arctic Ocean[J]. Scientific Reports, 2022, 12(1):16597. doi: 10.1038/s41598-022-21184-6

    [80]

    Shima S, Thauer R K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea[J]. Current Opinion in Microbiology, 2005, 8(6):643-648. doi: 10.1016/j.mib.2005.10.002

    [81]

    Wrede C, Krukenberg V, Dreier A, et al. Detection of metabolic key enzymes of methane turnover processes in cold seep microbial biofilms[J]. Geomicrobiology Journal, 2013, 30(3):214-227. doi: 10.1080/01490451.2012.665150

    [82]

    Mayr S, Latkoczy C, Krüger M, et al. Structure of an F430 variant from archaea associated with anaerobic oxidation of methane[J]. Journal of the American Chemical Society, 2008, 130(32):10758-10767. doi: 10.1021/ja802929z

    [83]

    Shima S, Krueger M, Weinert T, et al. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically[J]. Nature, 2012, 481(7379):98-101. doi: 10.1038/nature10663

    [84]

    Allen K D, Wegener G, White R H. Discovery of multiple modified F430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F430 in nature[J]. Applied and Environmental Microbiology, 2014, 80(20):6403-6412. doi: 10.1128/AEM.02202-14

    [85]

    Castrillón Peña A, Cramer T H, Guerrero J. Hydrothermal organic aggregates associated with the High-Ni grades of the Cerro Matoso laterite deposit, Montelibano, Colombia[J]. Ofioliti, 2022, 47(2):113-135.

    [86]

    Reitner J, Blumenberg M, Walliser E O, et al. Methane-derived carbonate conduits from the late Aptian of Salinac (Marne Bleues, Vocontian Basin, France): petrology and biosignatures[J]. Marine and Petroleum Geology, 2015, 66:641-652. doi: 10.1016/j.marpetgeo.2015.05.029

    [87]

    Hausrath E M, Liermann L J, House C H, et al. The effect of methanogen growth on mineral substrates: will Ni markers of methanogen-based communities be detectable in the rock record?[J]. Geobiology, 2007, 5(1):49-61. doi: 10.1111/j.1472-4669.2007.00095.x

    [88]

    Cameron V, Vance D, Archer C, et al. A biomarker based on the stable isotopes of nickel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27):10944-10948.

    [89]

    Chen C, Wang J S, Algeo T J, et al. Sulfate-driven anaerobic oxidation of methane inferred from trace-element chemistry and nickel isotopes of pyrite[J]. Geochimica et Cosmochimica Acta, 2023, 349:81-95. doi: 10.1016/j.gca.2023.04.002

    [90]

    Konhauser K O, Pecoits E, Lalonde S V, et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event[J]. Nature, 2009, 458(7239):750-753. doi: 10.1038/nature07858

    [91]

    Fontecilla-Camps J C. Nickel and the origin and early evolution of life[J]. Metallomics, 2022, 14(4):mfac016. doi: 10.1093/mtomcs/mfac016

    [92]

    Zhao Z Q, Shen B, Zhu J M, et al. Active methanogenesis during the melting of Marinoan snowball Earth[J]. Nature Communications, 2021, 12(1):955. doi: 10.1038/s41467-021-21114-6

    [93]

    Valentine D L. Emerging topics in marine methane biogeochemistry[J]. Annual Review of Marine Science, 2011, 3:147-171. doi: 10.1146/annurev-marine-120709-142734

    [94]

    Durisch-Kaiser E, Klauser L, Wehrli B, et al. Evidence of intense archaeal and bacterial methanotrophic activity in the black sea water column[J]. Applied and Environmental Microbiology, 2005, 71(12):8099-8106. doi: 10.1128/AEM.71.12.8099-8106.2005

    [95]

    Bayon G, Lemaitre N, Barrat J A, et al. Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation[J]. Chemical Geology, 2020, 555:119832. doi: 10.1016/j.chemgeo.2020.119832

    [96]

    Guggenheim C, Brand A, Bürgmann H, et al. Aerobic methane oxidation under copper scarcity in a stratified lake[J]. Scientific Reports, 2019, 9(1):4817. doi: 10.1038/s41598-019-40642-2

    [97]

    Zavina-James N A V, Zerkle A L, Steele R C J, et al. A copper isotope investigation of methane cycling in Late Archaean sediments[J]. Precambrian Research, 2021, 362:106267. doi: 10.1016/j.precamres.2021.106267

图(5)  /  表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  13
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-02-12
  • 刊出日期:  2024-12-27

目录

/

返回文章
返回