早更新世帝汶海碳酸盐埋藏和陆源输入记录的古气候变化

王启炜, 徐建, AnnHolbourn, WolfgangKuhnt

王启炜,徐建,Ann Holbourn,等. 早更新世帝汶海碳酸盐埋藏和陆源输入记录的古气候变化[J]. 海洋地质与第四纪地质,2025,45(2): 121-132. DOI: 10.16562/j.cnki.0256-1492.2023121901
引用本文: 王启炜,徐建,Ann Holbourn,等. 早更新世帝汶海碳酸盐埋藏和陆源输入记录的古气候变化[J]. 海洋地质与第四纪地质,2025,45(2): 121-132. DOI: 10.16562/j.cnki.0256-1492.2023121901
WANG Qiwei,XU Jian,Ann Holbourn,et al. Early Pleistocene records of carbonate burial and terrestrial input in the Timor Sea and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology,2025,45(2):121-132. DOI: 10.16562/j.cnki.0256-1492.2023121901
Citation: WANG Qiwei,XU Jian,Ann Holbourn,et al. Early Pleistocene records of carbonate burial and terrestrial input in the Timor Sea and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology,2025,45(2):121-132. DOI: 10.16562/j.cnki.0256-1492.2023121901

早更新世帝汶海碳酸盐埋藏和陆源输入记录的古气候变化

基金项目: 国家自然科学基金项目“晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应”(41830539),“北半球冰盖扩大期印尼穿越流古海洋学记录及其意义”(41776060);西北大学研究生创新项目“早上新世北半球冰盖扩张期印尼穿越流变迁与碳循环”(CX2023007)
详细信息
    作者简介:

    王启炜(1999—),男,硕士研究生,地质学专业,E-mail:kezevnez@hotmail.com

    通讯作者:

    徐建(1977—),男,教授,主要从事古海洋学和古气候学研究,E-mail:jx08@live.cn

  • 中图分类号: P736.4

Early Pleistocene records of carbonate burial and terrestrial input in the Timor Sea and their paleoclimatic implications

  • 摘要:

    深海碳酸盐埋藏作为地球表层碳库的重要碳汇,在地质历史时期与大气二氧化碳浓度变化息息相关。古记录重建显示,大气二氧化碳浓度并不总是与全球平均气温具有较好的对应关系,其他因素可能在过去全球变化中起到了重要的作用。本文以澳大利亚西北岸外帝汶海IODP U1482站钻孔2~1.07 Ma沉积物为研究材料,测试其碳酸盐和主微量元素含量,探讨深海碳酸盐埋藏的影响因素。结果显示,碳酸盐含量与指示河流输入的钾元素含量、指示生产力的铀元素含量和底栖有孔虫δ13C以及指示风尘输入的log(Zr/Rb)等记录的长期变化趋势均可分为2~1.63 Ma、1.63~1.31 Ma和1.31~1.07 Ma等3个阶段,可能与沃克环流和哈德莱环流调控的印尼—澳洲地区的干湿条件有关。1.31 Ma之后钾元素含量的持续降低和碳酸盐含量的增加可能揭示哈德莱环流的加强导致了澳洲西北内陆的干旱化趋势。早更新世U1482站碳酸盐含量在轨道时间尺度上主要受以河流输入为主的陆源沉积物稀释的影响;频谱分析显示其具有显著的19 ka和约29 ka变化周期,可能指示该研究时段内除了岁差周期外,以斜率周期为主导的冰期-间冰期旋回对区域降水和陆源沉积物输入的调控作用。

    Abstract:

    Deep-sea carbonate burial is an important carbon sink of the Earth’s surface carbon reservoir. Its variations are closely related to that of atmospheric carbon dioxide. Paleo-environment reconstructions show that changes in atmospheric CO2 concentration do not always correlate well with past temperature changes, implying that other factors may contribute to the past global change. We examined deep-sea sediments spanning the interval of 2~1.07 Ma retrieved from IODP Site U1482 located offshore northwestern Australia in the Timor Sea. Carbonate and elemental contents were analyzed to investigate the factors that influenced carbonate burial. The early Pleistocene records at Site U1482 indicate that all of our records including carbonate content, potassium content (a proxy of regional precipitation), log(Zr/Rb) (a proxy of aeolian dust input), benthic foraminiferal δ13C, and uranium content (proxies of paleoproductivity) show long-term changes punctuated at 1.63 Ma and 1.31 Ma, possibly related to the precipitation pattern over Indonesia-Australia modulated by Walker and Hadley circulations. The continuous decrease in carbonate content and increase in potassium content after 1.31 Ma likely implicate that the intensified aridification in the northwestern Australian hinterland was caused by strengthening of the Hadley circulation. Dilution by terrestrial sediments, mainly of riverine origin, is the predominant factor modifying carbonate content on orbital timescales. Spectral analysis shows that the carbonate record was dominated by 19 ka and 29 ka cycles, likely suggesting the effect of the obliquity-paced glacial/interglacial cyclicity on the regional precipitation and terrestrial input in addition to the precessional control.

  • 富钴结壳广泛分布在全球各大洋中,是常见的深海矿产资源,它们通常生长在水深400~7 000 m的海山山顶边缘和斜坡的基岩表面[1-2],且富含Co、Ni、Cu、Zn、REY和铂族元素等元素,具有极高的经济价值和资源潜力[1]。海洋里的结壳分为3种:水成型,成岩型和热液型[2]。水成型富钴结壳中的金属离子主要来源于海水,在氧化环境下形成铁锰氧化物或者氢氧化物胶体[1];成岩型结壳中的金属离子主要来自于沉积物中的孔隙水,在亚氧化的环境下形成铁锰氧化物[3];热液型结壳中的金属离子主要来自于热液流体与海水混合作用[4-5]。水成型富钴结壳生长速率很低(1~10 mm/Ma),在这个缓慢的生长过程中,许多古海洋事件会被其记录下来,因此富钴结壳可以作为古海洋和古环境的研究对象 [6-9]。近年来的研究表明,Co被吸附在铁锰氧化物的过程中有细菌参与,这一结果说明微生物活动通过控制金属元素的富集来影响富钴结壳的生长[10-11]。采薇海山是位于我国富钴结壳勘探合同区内的一座重点海山,近些年来,前人对采薇海山区的富钴结壳资源开展了一系列地质调查, 对其分布特点、矿物学特征以及地球化学特征进行了大量研究,研究表明富钴结壳多形成在山顶边缘和斜坡[12-13]。富钴结壳主要由水羟锰矿以及非晶态的铁氧化物或者氢氧化物组成,为水成成因[14]。REY和Co的含量很高,已达到工业品位,并且随着水深的增加,REY含量有升高的趋势[15-16]。尽管前人对采薇海山的富钴结壳进行了研究,但是缺乏富钴结壳生长过程各个阶段的分析讨论。本文依据富钴结壳宏观结构对其进行分层,分析各层位的矿物学特征和地球化学特征,利用Co经验公式计算了各层位的生长速率和生长时间,结合古海洋事件探讨其成因类型和形成机制。

    麦哲伦海山区位于西北太平洋马里亚纳海盆以北,西邻马里亚纳海沟,由20个海山/海山群组成,采薇海山群是该海山区中的一个海山群(图1a)。采薇海山群主要由采薇海山、采杞海山和采菽海山组成,规模较大的主体海山为采薇海山[17]。采薇海山由地形平缓的山顶平台和陡峭的山坡组成,走向NE,长宽分别为110和95 km。山顶平台水深约1 450 m,最浅处1 230 m,山麓水深5 830 m,高差4 600 m[17]。采薇海山的基岩主要为火山碎屑岩和玄武岩;早白垩世—古新世的生物礁灰岩和泥岩,始新世—早中新世的有孔虫灰岩及古新世—全新世的有孔虫砂、软泥等钙、泥质沉积物等构成了海山的沉积盖层 [18-21]

    图  1  研究区位置以及现代大洋环流体系
    a: 采薇海山群地理位置(数据来源于http://www.gebco.net);b: 太平洋环流体系(据文献[22-23]),黄色星星代表采薇海山群的位置;c: 采薇海山地形图(数据来源于http://www.gebco.net)和富钴结壳位置图,黄色星星代表样品的位置。
    Figure  1.  Location of the study area and modern ocean circulation systems
    a: geographic location of Caiwei Seamounts (Data are quoted from http://www.gebco.net); b: Pacific circulation system (modified after [22-23]), and the yellow star represents the position of Caiwei Seamounts; c: topographic map of Caiwei Guyot (Data are quoted from http://www.gebco.net.) and the location map of the Co-rich crust, and the yellow star represents the sample position.

    采薇海山主要受到太平洋深层水(Pacific Deep Water, PDW)的影响[22], PDW由以温度极大值为特征的上层绕极深层水(Upper Circumpolar Deep Water, UCDW)和以盐度极大值为特征的下层绕极深层水(Lower Circumpolar Deep Water, LCDW)组成[23]。UCDW和LCDW沿着太平洋西部边界的海盆向北流动,在西北太平洋沿着陆坡上涌形成PDW [24]图1b)。UCDW和LCDW通过深层水混合最终形成较老的北太平洋深层水(North Pacific Deep Water, NPDW),NPDW循环进入西北太平洋和菲律宾海[22]图1b)。采薇海山的地形促进内波的增强,其山顶边缘的顺时针的反气旋环流(泰勒柱现象)不仅可以将沉积物清扫走(图1c),为富钴结壳的生长提供合适的环境[12],而且可以促进最低含氧带(Oxygen Minimum Zone, OMZ)中的金属离子的氧化[25]

    本文研究的样品是“科学”号在2018年HOBAB5航次于西北太平洋采薇海山的山顶边缘上通过电视抓斗获得的一块富钴结壳(图1),位置坐标为15°45′51.087″N、154°56′25.891″E,水深为1 608 m。样品长12 cm,未见下伏基岩。富钴结壳主要由3部分组成,从内到外分别是土黄色的疏松层、 黑色的致密层和粗糙的表面(图2a)。土黄色的疏松层中的铁锰氧化物的间隙被黄色的碎屑沉积物所填充,土黄色的沉积物与黑色铁锰氧化物相间排列,孔隙度较高,疏松多孔(图2a);黑色的致密层主要为铁锰氧化物,硬度相对较大, 具金属光泽,碎屑沉积物含量较低,孔隙度较低(图2a);粗糙的表面发育有直径约为1 cm的黑色葡萄状球体,葡萄状球体并非是单个颗粒存在的,而是几个颗粒球体连在一起形成聚合体,且在表面上成片发育。葡萄状球体表面的裂隙被土黄色的沉积物填充(图2b)。

    图  2  采薇海山富钴结壳样品手标本照片
    a: 样品生长剖面照片,从内到外分别是土黄色的疏松层(C8-5)、黑色的致密层(C8-2、C8-3和C8-4)和粗糙的表面(C8-1);b: 样品表面照片。
    Figure  2.  Hand specimens of the Co-rich crust on Caiwei Guyot
    a: Photographs of growth profile of the sample, and the layers from inside to outside are: yellowish loose layer (C8-5), black dense layers (C8-2, C8-3 and C8-4), and rough surface (C8-1); b: photographs of the sample surface.

    将富钴结壳样品用清水冲洗,烘干后加上比例尺拍照,之后将其切成两份,用超纯水清洗后,将其放入烘箱中烘干,设置烘箱温度为60℃。一份用来制作成探针片在扫描电镜下观察富钴结壳各层的显微构造,另一份按照内部结构沿着生长剖面将富钴结壳分层(图2a),从内到外分别是土黄色的疏松层(C8-5)、黑色的铁锰致密层(C8-2、C8-3和C8-4)和粗糙的表面(C8-1)。每一层都是独立的,用玛瑙研钵研磨至200目,再次置于烘箱中以60℃烘干后转入干燥器,干燥24 h后待用。

    样品的镜下观察是在中国科学院海洋研究所海洋地质与环境重点实验室通过VEGA3 TESCAN扫描电镜结合Oxford EDS牛津X射线能谱仪(英国)进行的。扫描电镜仪器使用20 kV高压,发射电流为1.4~1.9 Na,实验时保持15 mm的工作距离。另外,X射线能谱仪使用20 kV激发电压。

    样品的XRD实验是在广州海洋地质调查局XRD射线衍射分析实验室进行的,仪器为理学(Rigaku) D/Max 2500 PC 18 kW粉末衍射仪,仪器参数为铜靶,石墨单色器,其中管电压40 kV,管电流300 mA,实验采用连续扫描的方式,扫描时速度为2.5°(2θ)/min,步长为0.01°(2θ),扫描范围为5°~75°(2θ),环境温度25±2℃。

    样品的主量元素测试实验是在核工业北京地质研究院进行的,仪器为5300DV 等离子体发射光谱仪(ICP-OES),以GB/T 14506.32-2019 《硅酸盐岩石化学分析方法 第32部分:三氧化二铝等20个成分量测定 混合酸分解-电感耦合等离子体原子发射》为检测方法和依据进行实验。样品的微量元素测试实验是在中国科学院海洋研究所海洋地质与环境重点实验室进行的,仪器为ELAN9000电感耦合等离子体质谱仪(ICP-MS)。Re元素作为内标,外标样品包括(GBW07315、GBW07316、BCR-2、BHVO-2、Nod-A-1、Nod-P-1、GBW07295和GBW07296)。结果与推荐值基本一致,元素结果相对误差小于5%。

    富钴结壳的显微构造如图3所示,内部的构造较为复杂。沿着生长方向,富钴结壳主要由柱状构造、层状构造和斑杂构造组成,且各构造之间接触渐变。柱状构造主要由直立的圆柱体组成,柱体首尾连接,并向上和向外生长,其直径范围为100~300 µm(图3a、b)。柱体之间的空隙被碎屑物质如石英等充填。碎屑物质的进入抑制了铁锰氧化物的沉淀,原有柱状体的生长被打断,新的圆柱状体在此基础上生成,进一步促进了柱状构造的形成[26]图3a、b)。斑杂构造主要由圆形的斑块组成(图3c、d),主要成分是非晶态的铁锰氧化物和黏土矿物微层,斑块间的空隙被碎屑物质所填充,层状构造作为柱状构造和斑杂构造的过渡区域由铁锰氧化物与碎屑物质组成,厚度不一且横向延伸(图3c)。富钴结壳的显微构造特征与其形成的古海洋环境息息相关,过渡区域的层状构造多形成于水动力较弱以及较为稳定的环境中,柱状构造和斑杂构造形成于水动力较强以及氧化条件较好的环境中[27]。碎屑物质主要为Fe-Si胶结物,这一现象可能是因为局部的微还原环境使得氧化还原电位发生变化,这种变化促进了Fe的活化[28]

    图  3  采薇海山富钴结壳显微构造
    a、b: 来自于致密层(C8-3和C8-2)中的柱状构造,柱体的间隙由碎屑物质充填;c: 来自于致密层(C8-2)中的层状构造和斑杂构造;d: 来自于致密层(C8-2)中的斑杂构造,圆形斑块间的空隙被碎屑物质所填充。
    Figure  3.  Microstructure of the Co-rich crust on Caiwei Guyot
    a-b: Columnar structures derived from dense layers (C8-3 and C8-2), and the gaps between columns are filled with clastic materials; c: layered structures and mottled structures derived from the dense layer (C8-2); d: mottled structures derived from the dense layer (C8-2), and the gaps between circular patches are filled with clastic materials.

    样品的能谱分析表明,组成柱状构造的主要矿物为水羟锰矿。对样品各层位进行X射线衍射实验来分析其矿物组成,各层位的XRD衍射图谱如图4所示。通过图4可以看到各层位图谱衍射峰均不尖锐,强度宽泛且弥散,这一现象的原因主要在于富钴结壳中的锰矿物结晶程度较低。从外到内,富钴结壳各层位的主要矿物如下:C8-1 层位中主要矿物为水羟锰矿、石英和钙长石;C8-2层位中主要矿物是水羟锰矿、石英、钙长石和钠长石;C8-3层位中主要矿物是水羟锰矿、石英、钙长石和钠长石;C8-4层位中主要矿物是水羟锰矿、石英、钙长石和钠长石;C8-5层位中主要矿物是水羟锰矿、石英、钙长石、钠长石、钙十字沸石和钡镁锰矿。水羟锰矿晶体结构为层状结构,(Mn4+O6)8−八面体通过边缘相互连接成层,八面体层中以 Mn4+为主,金属阳离子可对Mn4+类质同象替换[29-31]。石英、钙长石和钠长石的发育可能是由于风成尘埃的输入[32]。钡镁锰矿被认为是成岩作用的产物[33],在亚氧化条件下的沉积物-海水界面受孔隙水的影响形成的。钡镁锰矿具有隧道结构, K+、Mg2+、Ba2+等阳离子和水分子通常占据钡镁锰矿隧道中的位点,而Co、Ni和 Cu等过渡金属元素可能主要以取代隧道的边角 Mn离子的方式进入到钡镁锰矿中[34-35]。钙十字沸石通常被认为是在海水与沉积物-水界面处的火山碎屑发生反应形成的[36]。由于钙十字沸石通常以自生矿物的形式出现,且存在于富钴结壳柱状构造的间隙中,因此钙十字沸石可能在富钴结壳生长过程中与柱体物理结合。

    图  4  采薇海山富钴结壳各层位XRD图谱
    层位的划分如图2a所示。Ver:水羟锰矿,Tod:钡镁锰矿,Qz:石英,Ab:钠长石,An:钙长石,Phi:钙十字沸石。
    Figure  4.  The XRD patterns of each layer of the Co-rich crust on Caiwei Guyot
    The layer division is shown in Fig. 2a. Ver: Fe-vernadite, Tod: todorokite, Qz: Quartz, Ab: albite,An: anorthite, Phi: phillipsite.

    各层位的常量元素组成见表1。其中,各层位Mn的含量为13.3%~18.5%,平均值为15.4%, Mn的含量从内部层位(C8-5)到外部层位(C8-1)先升高后逐渐降低,在C8-3处达到最大值(图5)。 各层位Fe的含量为9.24%~12.6%,平均值为10.9%, Fe的含量从内部层位(C8-5)到外部层位(C8-1)先降低后逐渐升高,在C8-2处达到最小值(图5)。各层位的Mn/Fe比值为1.16~1.85,平均值为1.43,Mn/Fe比值从内部层位(C8-5)到外部层位(C8-1) 先升高后逐渐降低,在C8-3处达到最大值(图5)。各层位Al的含量为0.64%~2.68%,平均值为1.74%,Al的含量从内部层位(C8-5)到外部层位(C8-1)先降低后逐渐升高,在C8-3处达到最小值(图5)。 各层位Ca的含量为1.61%~2.00%,平均值为1.85%。 各层位P的含量为0.62%~0.8%,平均值为0.68%。

    表  1  采薇海山富钴结壳各层位地球化学数据
    Table  1.  Geochemical data of the layers of the Co-rich crust on Caiwei Guyot
    C8-1C8-2C8-3C8-4C8-5
    常量元素/%Mn13.513.318.516.815.0
    Fe11.69.2410.011.112.6
    Al2.101.670.641.602.68
    Mn/Fe1.161.441.851.521.19
    Na1.621.461.881.711.73
    K0.610.410.360.480.60
    Ca1.761.612.001.971.90
    Mg1.210.941.111.191.43
    Ti1.110.760.961.161.20
    P0.720.620.630.630.80
    微量元素/10−6As204171189169152
    B189158178163191
    Ba10931096136013121307
    Be4.764.154.754.775.61
    Bi18.119.322.219.415.2
    Cd6.125.516.585.634.31
    Co48054396531138582534
    Cr10.29.5511.912.413.7
    Cs0.470.320.390.501.04
    Cu4796158288441080
    Ga6.035.516.716.497.35
    Hf6.746.897.828.9312.5
    Li6.322.913.074.0810.2
    Mo554559583449389
    Nb43.944.955.855.858.5
    Ni30123411422437403454
    Pb19971747171215601321
    Rb7.086.056.947.5210.7
    Sc7.616.066.557.0110.9
    Sr13621215141112841159
    Ta0.500.500.570.580.58
    Th16.210.89.469.078.74
    Tl71.466.365.653.959.9
    U13.311.912.310.89.04
    V620537592528487
    W84.683.693.67660.3
    Zn466514587559597
    Zr537501615633761
    稀土元素/10−6La233197210203200
    Ce605590740757580
    Pr41.533.736.935.934.6
    Nd183148159155149
    Sm37.930.332.232.030.6
    Eu9.537.688.007.987.63
    Gd46.938.940.340.137.9
    Tb7.145.845.925.805.56
    Dy40.533.733.631.930.9
    Y179147155139158
    Ho10.08.478.337.887.64
    Er26.022.322.020.619.9
    Tm4.123.623.593.323.23
    Yb25.522.122.220.319.9
    Lu4.183.633.643.333.34
    ΣLREE11101007118611911001
    ΣHREE164139139133128
    LREE/HREE6.767.278.518.947.80
    ΣREY14541293148014631288
    Co/(Fe+Mn)19119518613891.8
    Co/(Cu+Ni)1.381.091.050.840.56
    生长速率(mm/Ma)1.462.101.761.370.65
    下载: 导出CSV 
    | 显示表格
    图  5  采薇海山富钴结壳生长剖面的元素含量和比值图
    Figure  5.  Profiles of element contents and ratios of the Co-rich crust growth on Caiwei Guyot

    各层位的微量元素组成见表1。其中各层位Co的含量为(2 534~5 311)×10−6,平均值为4 181×10−6,Co的含量从内部层位(C8-5)到外部层位(C8-1)先逐渐升高,在C8-3处达到最大值,之后逐渐降低(图5)。 各层位Cu的含量为(479~1 080)×10−6,平均值为769×10−6,Cu的含量在生长初始达到最高值(C8-5),之后逐渐降低(图5)。Cu的含量与采薇海山相同水深的富钴结壳的Cu含量相近,低于采薇海山1 650 m水深的富钴结壳中Cu的含量,远低于采薇海山斜坡(水深3 116 m)铁锰结核中Cu的含量[37]。各层位Zn的含量为(466~597)×10−6,平均值为544×10−6,其含量变化趋势与Cu一致(图5)。各层位Ni的含量为(3 012~4 224)×10−6,平均值为3 568×10−6, Ni的含量从内部层位(C8-5)到外部层位(C8-1)先逐渐升高,在C8-3处达到最大值,之后逐渐降低(图5)。各层位Li的含量为(2.91~10.2) ×10−6,平均值为5.31×10−6,其含量在生长初期达到最大值(C8-5)。各层位V的含量为(487~620)×10−6,平均值为553×10−6,其含量随着富钴结壳的生长逐渐增加,在C8-1处达到最大值(图5)。各层位Ba的含量为(1 093~1 360)×10−6,平均值为1 234×10−6,其含量从内部层位(C8-5)到外部层位(C8-1)先逐渐升高,在C8-3处达到最大值,之后逐渐降低(图5)。

    各层位的稀土元素组成见表1。其中各层位的总稀土(∑REY)含量范围为( 1 288~1 480)×10−6, 平均值为1 396×10−6, 其中 Ce含量最高, 含量范围为(580~757)×10−6,平均值为654×10−6,其含量占比约为50%。各层位的轻稀土(∑LREE)含量范围为(1 001~1 191)×10−6, 平均值为1 099×10−6。各层位的重稀土(∑HREE)含量范围为 (128~164)×10−6, 平均值为141×10−6。 各层位Y 含量范围为 (139~158)×10−6, 平均值150×10−6。各层位的LREE/HREE 比值范围为7.27~8.94, 表现为LREE富集, 反映了水成型成因[38]。稀土元素的后太古宙澳大利亚页岩(PAAS)标准化图解如图6所示,其中PAAS数据来源于文献[39]。从图中可以看出,富钴结壳各层位具有明显的Ce正异常和Y负异常的特征。稀土元素一般为+3价,而 Ce 存在 Ce3+和 Ce4+。海洋环境中Ce3+被氧化成Ce4+形成 CeO2,从海水中沉淀出来,造成海水中 Ce 强烈亏损,因此海水具有Ce负异常的特征(图6),而样品中Ce呈正异常[40-41]图6)。因此,富钴结壳稀土后太古宙澳大利亚页岩(PAAS)标准化后显示强烈的Ce正异常往往被认为是氧化作用的影响[42]。Y元素的离子半径和原子结构与REE相似 (Ho3+和Y3+的离子半径为0.89×10−10 m[43]), 化学性质与重稀土元素相似,但Y没有4f电子,很难形成较稳定的络合物。因此在富钴结壳形成时, Y 和 Ho 会发生分异,导致 Y 的负异常。

    图  6  采薇海山富钴结壳后太古宙澳大利亚页岩标准化稀土元素配分图
    PAAS数据来源于文献[39],海水数据来源于文献[44],热液型结壳数据来源于文献[45],成岩型结壳数据来源于文献[46]。
    Figure  6.  PAAS-normalized rare earth elements patterns of the Co-rich crust on Caiwei Guyot
    PAAS data are from [39], seawater data are from [44], data of hydrothermal ferromanganese crusts are from [45], and data of diagenetic ferromanganese crusts are from [46].

    元素相关性结果如表2所示。由表2可知Mn与K、Ca、Ni和Ba正相关(95%CL,CL代表置信水平)。Fe与Mg显著正相关(99%CL),与Ti、Li和Be正相关(95%CL),与生长速率负相关(95%CL)。Co与Fe和 Mn无显著相关性。Ni与Mn和Mn/Fe正相关(95%CL),Al与K正相关(95%CL),与Mn/Fe负相关(95%CL)。生长速率(Gr)与Mg和Be显著负相关(99%CL),与Fe、Ti、Li、和Zr负相关(95%CL)。Q型因子分析结果表明,采薇海山富钴结壳主要分为3个因子(表3),因子1代表残渣相,占比41.1%,主要元素有B、V、Co、Cu、Zn、As、Sr、Nb、Mo、Cd、Hf、Tl、Pb、Th、U和REY(除Ce);因子2代表富铁氧化物和氢氧化物相,占比34.8%,主要元素有Fe、Al、K、Mg、 Ti、P、Li、Be、B、Sc、Cr、Co、Cu、Ga、Sr、Zr、Mo、Cd、Cs、Hf、W、Pb、Bi和U;因子3代表富锰氧化物和氢氧化物相,占比20.7%,主要元素有Mn、Al、Na、Ca、Cr、Ni、Cu、Zn、Ga、Zr、Nb、Ba、Ta和Ce。

    表  2  富钴结壳元素之间相关系数矩阵
    Table  2.  Element Correlation matrix of the Co-rich crust
    MnFeAlMn/FeKCaMgTiLiBeCoNiZrBaGr
    Mn1
    Fe−0.0931
    Al−0.6780.7411
    Mn/Fe0.808−0.659−0.950*1
    K−0.5350.8760.892*−0.923*1
    Ca0.894*0.356−0.3100.460−0.1051
    Mg0.0900.970**0.637−0.4980.7440.5041
    Ti0.1940.922*0.493−0.4100.7100.6110.908*1
    Li−0.2780.921*0.849−0.7380.8470.1240.912*0.7091
    Be0.1970.898*0.547−0.3680.6100.5590.977**0.8250.887*1
    Co0.219−0.674−0.7950.568−0.567−0.086−0.699−0.534−0.775−0.6991
    Ni0.928*−0.373−0.7740.925*−0.7730.691−0.163−0.139−0.444−0.0080.2581
    Cu0.5060.4420.1770.1280.0290.6440.6260.4610.4840.744−0.6940.487
    Zn0.7090.172−0.1540.444−0.2850.7100.3960.2490.2070.556−0.4280.742
    Zr0.3980.7250.378−0.1200.3440.6720.8620.7170.7200.931*−0.7440.2651
    Ba0.900*0.226−0.3170.547−0.2690.932*0.4270.4290.1050.543−0.2200.8130.7491
    Gr−0.044−0.956*−0.6960.528−0.738−0.456−0.987**−0.884*−0.920*−0.965**0.8040.180−0.886*−0.4191
    下载: 导出CSV 
    | 显示表格
    表  3  富钴结壳元素因子分析
    Table  3.  Element factor analysis of the Co-rich crust
    因子1因子2因子3
    Mn−0.180−0.2310.956
    Fe0.1590.9590.166
    Al−0.0490.849−0.513
    Na0.0560.1480.974
    K0.3450.868−0.284
    Ca−0.0860.1940.967
    Mg0.0240.9440.328
    Ti0.1640.7910.428
    P0.1060.959−0.091
    Li0.0070.990−0.050
    Be−0.0930.9010.406
    B0.5000.7450.226
    Sc−0.1490.9720.072
    V0.887−0.4400.103
    Cr−0.4110.6430.646
    Co0.569−0.7980.142
    Ni−0.393−0.4300.792
    Cu−0.6750.5040.524
    Zn−0.6740.2160.666
    Ga−0.2420.6810.673
    As0.904−0.4220.060
    Rb−0.2930.9220.222
    Sr0.697−0.5010.513
    Zr−0.4080.7470.520
    Nb−0.5310.3720.761
    Mo0.505−0.797−0.096
    Cd0.589−0.7440.316
    Cs−0.2960.9400.113
    Ba−0.4050.1510.901
    Hf−0.5290.7990.275
    Ta−0.4920.3210.806
    W0.472−0.8530.147
    Tl0.706−0.216−0.383
    Pb0.803−0.521−0.290
    Bi0.134−0.8980.417
    Th0.895−0.003−0.442
    U0.761−0.635−0.121
    La0.9950.0660.018
    Ce−0.064−0.4580.787
    Pr0.9800.0850.104
    Nd0.9890.056−0.009
    Sm0.9750.085−0.040
    Eu0.9700.072−0.122
    Gd0.971−0.016−0.125
    Tb0.963−0.029−0.238
    Dy0.945−0.114−0.307
    Y0.8440.387−0.173
    Ho0.923−0.149−0.355
    Er0.913−0.212−0.347
    Tm0.902−0.260−0.332
    Yb0.917−0.231−0.302
    Lu0.921−0.165−0.314
    方差贡献41.1%34.8%20.7%
    下载: 导出CSV 
    | 显示表格

    不同地区的地质条件和海水环境不同,结壳的地球化学特征也有所不同。前人研究表明,采薇海山西侧的马里亚纳岛弧热液活动频繁,该区域发育热液型结壳,相较于水成型富钴结壳,其微量元素和稀土元素含量较低。稀土元素配分模式具有Ce负异常、Y负异常和Eu正异常的特征(图6)。结壳与海底活火山和热液喷口之间的距离对结壳的成因类型有很大影响,即二者间的距离越大,海水中金属对结壳的贡献越大,成因类型越趋向于水成型,而靠近火山或热液喷口的结壳则受到热液活动的影响更大[45]。尽管靠近热液活动频繁的马里亚纳岛弧,采薇海山山顶边缘处的富钴结壳却不具备热液型结壳的特点,其生长过程不受热液活动的影响。成岩型结壳含有高含量的Ni和Cu(分别高达6%和2%)[46],远高于本文样品的Ni和Cu的含量。成岩型结壳稀土元素配分模式具有Ce负异常和Y负异常(图6)的特征。矿物组成方面,钡镁锰矿作为成岩型结壳的主要矿物存在[46]。根据前人的研究,Mn-(Cu + Co + Ni)-Fe三元成因判别图可将富钴结壳分为水成型结壳、成岩型结壳和热液型结壳[47],之后又使用了新的类型判别图解如(Fe + Mn)/4-100× (Zr + Y + Ce)-10×(Cu + Ni + Co) 三元图 [48],CeSN/CeSN-Nd 和CeSN/CeSN-YSN/HoSN [49]来区分富钴结壳的类型,结果发现采薇海山富钴结壳样品各层位均在水成成因的区域内(图78),表明其为水成成因型富钴结壳,且各层位明显富集 Cu、Co 和 Ni等金属元素。稀土元素标准化图解显示各层位呈Ce正异常和Y负异常(图6),同时在XRD图谱(图4)中可以看到水羟锰矿在各层位中发育,这是表明采薇海山富钴结壳是水成成因的另一重要证据。前人还利用 Mn/Fe 比值判别富钴结壳的成因类型,通常认为Mn/Fe小于2.5为水成型,大于2.5为成岩型[50],富钴结壳各层位的Mn/Fe皆小于2,指示其为水成成因。值得一提的是,在C8-5层位中发现有钡镁锰矿,其通常在成岩作用过程中形成,说明在富钴结壳内部的微层中可能发生了成岩作用,但是可能只是纳米级或者微米级,在全岩的地球化学中仍旧表现为水成成因类型。

    图  7  富钴结壳各层位成因类型判别三元图
    a. Mn-(Cu + Co + Ni)-Fe三元成因判别图[47],b. (Fe + Mn)/4-100×(Zr + Y + Ce)-10×(Cu + Ni + Co) 三元成因判别图[48]
    Figure  7.  Ternary discrimination in genetic classification of the Co-rich crust layers
    a: Mn - (Cu+Co+Ni) - Fe ternary genetic discrimination [47].b: (Fe+Mn)/4-100 × (Zr + Y + Ce)-10 ×(Cu+Ni+Co) ternary genetic discrimination [48].
    图  8  富钴结壳各层位成因类型稀土元素判别图
    a. CeSN/CeSN-Nd成因判别图[49],b. CeSN/CeSN-YSN/HoSN成因判别图[49]
    Figure  8.  REY discrimination of the Co-rich crust layers
    a:CeSN/CeSN-Nd genetic discrimination [49], b: CeSN/CeSN-YSN/HoSN genetic discrimination [49].

    在富钴结壳中,Co元素被认为水成来源且可以假定从海水进入富钴结壳中的Co通量基本恒定。因此Co含量与水成型富钴结壳的生长速率之间有一定关系, 即生长速率越快,Co含量越低[51]。前人对不同Co含量的富钴结壳总结出了不同的Co的经验公式,由于样品中各层位Co的含量小于0.7%,因此使用公式(1)计算富钴结壳的增长速度(Gr)[52]

    $$\rm Gr=0.68/(Co_{n})^{1.67 } $$ (1)

    其中,Con=Co*50/(Fe+Mn),Co、Fe和Mn以质量百分比(%)表示。从内到外,各层位生长速率分别为2.49、1.26、0.60、0.71和0.73 mm/Ma,平均为1.16 mm/Ma,与采薇海山的富钴结壳和铁锰结核的生长速率相似[34],远低于北冰洋、沙茨基海隆和加瓜海脊富钴结壳的生长速率[53-55]。年轻层位的生长速率小于较老层位的生长速率,且生长速率先逐渐降低之后再逐渐升高。用每层的厚度除以生长速率可以得到该层位的生长时间,从内到外,各层位的生长时间分别是41.7、35.7、28.6、16.8和4.10 Ma。因此我们推测富钴结壳大约在41.7 Ma时开始生长,在4.10 Ma时停止生长,即从始新世中期到上新世中期。

    由于富钴结壳是水成成因的,其金属离子来自于含氧海水,因此其生长过程受控于海水的溶解氧的含量,即海水的氧化程度。从渐新世晚期到中新世早期,德雷克海峡和塔斯马尼亚海峡完全打开,深水通道形成[56],现代大洋环流体系逐渐形成。具有高含量溶解氧的AABW影响着太平洋海山富钴结壳的生长过程[57-59]。进入西北太平洋后,PDW是麦哲伦海山地区溶解氧的主要来源,OMZ也逐渐在西北太平洋中发育。前人研究表明,采薇海山附近的OMZ水深小于1 000 m[60]。OMZ中的Mn2+和Fe2+是富钴结壳的直接物质来源[25], OMZ中Mn2+和Fe2+氧化成富铁和富锰氧化物胶体,吸附Co2+、Ni2+和Cu2+等金属离子,在山顶边缘逐渐成层堆积[25, 61-62]。富钴结壳中Co/(Fe+Mn)和Co/(Ni+Cu) 的变化能够反映其形成环境氧化程度的变化[57],在这一阶段(28.6~16.8 Ma),Co/(Fe+Mn)和Co/(Ni+Cu)升高(图5),说明此时海水的氧化性增强。此时Mn的含量也逐渐增加,Fe的含量略有减少(图5)。Al的含量在生长初期达到最高值,之后逐渐降低(图5),这一现象表明,富钴结壳生长过程中陆源物质的供应逐渐变少。这一点从图2a也可以看出,即富钴结壳逐渐由高孔隙度的疏松层转变为低孔隙度的致密铁锰层。原先钡镁锰矿和钙十字沸石在疏松层中(C8-5)发育,此时由于海水氧化性的增强,钡镁锰矿在之后的生长过程中不发育,而富钴结壳的内部显微构造也主要以水羟锰矿组成的柱状构造为主。柱状构造形成于水动力较强以及氧化条件较好的环境中[27]。这是由于采薇海山山顶发育反气旋环流(泰勒柱现象),高流速(>7 cm/s)使得山顶边缘的沉积物被清扫出去[12,63],暴露的基岩为富钴结壳的生长提供了良好的平台,强水动力环境也促进了柱状构造的形成。在强氧化条件下,Co2+被进一步氧化成Co3+,其含量逐渐增加[64] ,Ce呈正异常。当发生重大的全球变冷事件时,太平洋海山的环境氧化程度也将增加。15 Ma时的中新世中期,气候变冷,南极大陆东南极冰盖形成,北大西洋的冰岛-法罗海脊沉没[57,65],北冰洋的高密度海水流入大西洋,并随着环流体系进一步流进其他大洋,高溶解氧的PDW流经采薇海山,使得研究区海水氧化性进一步加强,Co/(Fe+Mn)和Co/(Ni+Cu)比值升高(图5)。由于全球气候变冷,大陆剥蚀作用增加[57, 66],Al的含量逐渐增加。前人研究表明,在6.5~5.6 Ma,中新世末期发生了显著的全球变冷现象, 大洋水温下降,底层环流增强[67],Co/(Fe+Mn)和Co/(Ni+Cu)比值升高(图5),Ce呈正异常。此时内部显微构造主要为斑杂构造,主要由圆形的斑块组成,斑块间的空隙被碎屑物质所填充。富钴结壳生长过程中,Cu、Ni和Ba等与生物活动有关的元素含量持续下降,说明较老的层位生长时,生物活动相对较强,之后逐渐变弱。

    Co、Cu、Ni和REY是富钴结壳中具有经济价值的金属元素[68]。本文中的富钴结壳Co含量(4 181×10−6)与印度洋(4 178×10−6)相近,远低于大西洋(6 213××10−6)、太平洋(6 189×10−6)以及前人研究中的采薇海山(6 163×10−6),略高于加利福尼亚大陆边缘(3 326×10−6)以及沙茨基海隆(2 441×10−6)(图9);Ni含量(3 149×10−6)仅次于前人研究中的采薇海山(4 593×10−6)与沙茨基海隆(3 625×10−6),略高于其他海域富钴结壳;REY含量(1 396×10−6)与加瓜海脊(1 540×10−6)相近,含量较低,低于其他研究中富钴结壳REY含量;除沙茨基海隆(2 441×10−6),其他海域富钴结壳Cu含量差距相对较小,基本在1 000×10−6以下,本文富钴结壳Cu含量(769×10−6)略高于北冰洋(642×10−6)、加利福尼亚大陆边缘(365×10−6)、太平洋(246×10−6)与大西洋(244×10−6)。本文中富钴结壳具有高含量的Co、REY 和Ni,具有极大的经济价值和开采价值。

    图  9  本文富钴结壳与其他海区富钴结壳关于有经济价值的元素对比图
    大西洋富钴结壳数据来源于文献[28],前人采薇海山富钴结壳数据来源于文献[37],加瓜海脊富钴结壳数据来源于文献[53],北冰洋富钴结壳数据来源于文献[54],沙茨基海隆富钴结壳数据来源于文献[55],加利福尼亚大陆边缘富钴结壳数据来源于文献[69],印度洋富钴结壳数据来源于文献[61],太平洋富钴结壳数据来源于文献[70]。
    Figure  9.  Comparison of elements of economic value between the Co-rich crust in this study and those in other areas
    The data of Co-rich crusts sources: the Atlantic Ocean [28], previous data of Caiwei Guyot [37], Gagua Ridge [53], the Arctic Ocean [54], Shatsky Rise [55], California Continental Margin [69], the Indian Ocean [61], and the Pacific Ocean [70].

    (1) 富钴结壳的结构从内到外分别是土黄色的疏松层、 黑色的铁锰致密层和发育葡萄状球体的粗糙表面。富钴结壳的内部显微构造较为复杂,沿着生长方向,可以看到富钴结壳主要由柱状构造、层状构造和斑杂构造组成。各层位主要由水羟锰矿、石英、钠长石和钙长石等矿物组成,其中在生长初期的土黄色疏松层有钡镁锰矿和钙十字沸石发育。

    (2)富钴结壳各层位具有高含量的Mn、Fe、Co、Ni和REY, Mn/Fe比值为1.16~1.85,具有Ce正异常和Y负异常的特征。各种地球化学判别图解表明,富钴结壳为水成成因类型,其金属元素来源于氧化性海水,未受到热液活动的影响。

    (3) 从渐新世末期到上新世中期,富钴结壳的生长过程一直受控于太平洋深层水,Co/(Fe+Mn)和Co/(Ni+Cu)的不断升高表明富钴结壳一直在氧化性较高的海水环境中生长。

    (4)相较于其他大洋和海区,采薇海山富钴结壳具有高含量的Co、Ni和REY,具有极高的经济价值和开采价值。

    致谢:感谢HOBAB5航次期间“科学”号所有船员和科学人员为样品采集所做出的贡献及帮助。

  • 图  1   研究区概况和IODP U1482站位图

    a: 印澳地区现代表层海水温度[28]与洋流方向[11,14];LC=Leeuwin Current (鲁汶流);使用Ocean Data View制图[29]; b:2023年1月表层海水叶绿素浓度;c: 2022年7月表层海水叶绿素浓度[30]

    Figure  1.   Regional oceanographic settings and the location of IODP Site U1482

    a:Map of modern sea surface temperature[28] and ocean currents[11,14] in the Indo-Pacific region, created using Ocean Data View[29], with LC representing the Leeuwin Current; b: sea surface chlorophyll concentration in January, 2023; c: sea surface chlorophyll concentration in July, 2022[30].

    图  2   IODP U1482站2~1.07 Ma期间碳酸盐含量与其他指标对比

    a: 碳酸盐含量,b: log(Ca/Ti), c:钾含量, d: log(Terr/Ca), e: log(Zr/Rb), f: 铀含量, g: 底栖有孔虫δ13C [14], h: 底栖有孔虫δ18O [14]

    Figure  2.   Comparison of carbonate content and other proxies from IODP Site U1482 during 2~1.07 Ma

    a: Carbonate content, b: log(Ca/Ti), c: potassium content, d: log(Terr/Ca), e: log(Zr/Rb), f: uranium content, g: benthic foraminiferal δ13C[14], h: benthic foraminiferal δ18O[14].

    图  3   IODP U1482站2~1.07 Ma期间碳酸盐含量与钾、铀元素记录的周期相关性以及相位关系

    a:碳酸盐含量频谱(灰色)与钾元素含量频谱(黑色), b: 碳酸盐含量频谱(灰色)与铀元素含量频谱(黑色),c: 碳酸盐含量与钾元素含量的频谱相关性与相位关系,d: 碳酸盐含量与铀元素含量的频谱相关性与相位关系。频谱分析采用Redfit-X软件[37]

    Figure  3.   Spectral coherence and phase relationship between carbonate content and elemental records of potassium and uranium from IODP Site U1482 during 2~1.07 Ma

    a:Spectra of carbonate content (gray) and potassium content (black), b: spectra of carbonate content (gray) and uranium content (black), c: coherence and phase relationship between carbonate content and potassium content,d: coherence and phase relationship between carbonate content and uranium content. Spectral analyses were performed using Redfit-X[37].

    图  4   IODP U1482站有孔虫壳体和碎片扫描电镜照片[8]

    a—c:Planulina Wuellerstorfi, d—f:Trilobatus Trilobus。样品取自A孔岩芯145.12~145.17 m CCSF处。

    Figure  4.   Scanning electron microscope images of foraminiferal tests and fragments of IODP Site U1482

    Tests and fragments of Planulina Wuellerstorfi (a-c) and Trilobatus Trilobus (d-f) are retrieved from Hole A between depths of 145.12 m and 145.17 m CCSF.

    图  5   IODP U1482站2~1.07 Ma期间碳酸盐、钾和铀元素含量及其堆积速率

    a: 碳酸盐含量(灰色线)与堆积速率(黑色线),b: 钾元素含量(灰色线)与堆积速率(黑色线),c: 铀元素含量(灰色线)与堆积速率(黑色线),d: U1482站线性沉积速率。

    Figure  5.   Mass accumulation rates and contents of carbonate, potassium, and uranium of IODP Site U1482 during 2~1.07 Ma

    a: Carbonate content (grey) and mass accumulation rate (black), b: potassium content (grey) and mass accumulation rate (black), c: uranium content (grey) and mass accumulation rate (black), d: linear sedimentation rate at Site U1482.

    图  6   IODP U1482站2~1.07 Ma期间碳酸盐含量和陆源输入记录与岁差的相位关系

    0相位设在岁差最大值。深灰色箭头长度与外圈半径之比为各记录在23 ka周期上与岁差的相关度。浅灰色扇形指代相位误差。6月21日夏季半球太阳辐射梯度为23°N与23°S之间太阳辐射量的差值。交叉频谱分析采用Redfit-X软件[37]

    Figure  6.   Relationship in phase between carbonate content and terrestrial input records on the precessional band from IODP Site U1482 during 2~1.07 Ma

    Phase zero was set at the precessional maxima. The ratio of the length of each vector to the radius of the outer circle corresponds to coherency. Shadings denote uncertainties of phase relationship. Summer intertropical insolation gradient on June 21 is the difference of June 21 insolation between at 23°N and 23°S. Cross-spectral analyses were performed using Redfit-X[37].

    图  7   U1482站和邻近站位古海洋记录与太平洋经向和纬向温度梯度对比

    a:U1482站与U1483站钾元素含量对比[48],b: U1482站铀元素含量与U1483站总氮含量对比[48],c: U1460站[53]与U1463表层海水温度[54]记录,d:赤道太平洋纬向温度梯度[55],e: 南海经向温度梯度[52,56]

    Figure  7.   Comparison of paleoceanographic records of Site U1482 and its neighboring sites with meridional and zonal temperature gradients of the Pacific Ocean

    a: Comparison in potassium contents between Sites U1482 and U1483[48], b: comparison between U1482 uranium content and U1483 total nitrogen content[48], c: sea surface temperature records from Sites U1460[53] and U1463[54], d: zonal temperature gradient in the equatorial Pacific Ocean[55], e: meridional temperature gradient in the South China Sea[52,56].

  • [1]

    Zeebe R E, Westbroek P. A simple model for the CaCO3 saturation state of the ocean: the “Strangelove, ” the “Neritan, ” and the “Cretan” Ocean[J]. Geochemistry, 2003, 4(12): 1104.

    [2]

    Ridgwell A. A Mid Mesozoic Revolution in the regulation of ocean chemistry[J]. Marine Geology, 2005, 217(3-4):339-357. doi: 10.1016/j.margeo.2004.10.036

    [3]

    Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2[J]. Philosophical Transactions of the Royal Society A, 2013, 371(2001):20130096. doi: 10.1098/rsta.2013.0096

    [4]

    Ridgwell A, Zeebe R E. The role of the global carbonate cycle in the regulation and evolution of the earth system[J]. Earth and Planetary Science Letters, 2005, 234(3-4):299-315. doi: 10.1016/j.jpgl.2005.03.006

    [5]

    Raymo M E, Ruddiman W F, Froelich P N. Influence of late Cenozoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7):649-653. doi: 10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2

    [6]

    Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7):641-683. doi: 10.2475/ajs.283.7.641

    [7]

    Pagani M, Liu Z H, LaRiviere J, et al. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations[J]. Nature Geoscience, 2010, 3:27-30. doi: 10.1038/ngeo724

    [8]

    Rosenthal Y, Holbourn A E, Kulhanek D K, et al. Western Pacific Warm Pool[M]. College Station: International Ocean Discovery Program, 2018.

    [9]

    Straume E O, Nummelin A, Gaina C, et al. Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(17):e2115346119.

    [10]

    Wei J L, Liu H L, Zhao Y, et al. Simulation of the climate and ocean circulations in the middle Miocene climate optimum by a coupled model FGOALS-g3[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617:111509. doi: 10.1016/j.palaeo.2023.111509

    [11]

    Gordon A L. Oceanography of the Indonesian seas[J]. Oceanography, 2005, 18(4):13. doi: 10.5670/oceanog.2005.18

    [12]

    Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago[J]. Nature, 2001, 411(6834):157-162. doi: 10.1038/35075500

    [13]

    He Y X, Wang H Y, Liu Z H. Development of the Leeuwin Current on the northwest shelf of Australia through the Pliocene-Pleistocene period[J]. Earth and Planetary Science Letters, 2021, 559:116767. doi: 10.1016/j.jpgl.2021.116767

    [14]

    Chen Y X, Xu J, Liu J, et al. Climatic and tectonic constraints on the Plio–Pleistocene evolution of the Indonesian Throughflow intermediate water recorded by benthic δ18O from IODP site U1482[J]. Quaternary Science Reviews, 2022, 295:107666. doi: 10.1016/j.quascirev.2022.107666

    [15]

    Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960):824-828. doi: 10.1038/nature02038

    [16]

    Kuhnt W, Holbourn A, Hall R, et al. Neogene history of the Indonesian throughflow[M]//Clift P, Kuhnt W, Wang P, et al. Continent‐Ocean Interactions Within East Asian Marginal Seas. Washington: American Geophysical Union, 2004: 299-320.

    [17]

    Talley L D, Sprintall J. Deep expression of the Indonesian Throughflow: Indonesian intermediate water in the South Equatorial Current[J]. Journal of Geophysical Research:Oceans, 2005, 110(C10):C10009.

    [18]

    Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004-2006[J]. Journal of Geophysical Research:Oceans, 2009, 114(C7):C07001.

    [19]

    Rosenthal Y, Linsley B K, Oppo D W. Pacific Ocean heat content during the past 10, 000 years[J]. Science, 2013, 342(6158):617-621. doi: 10.1126/science.1240837

    [20] 李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3):377-389 doi: 10.3969/j.issn.1671-6647.2020.03.001

    LI Tiegang, XIONG Zhifang, JIA Qi. Water exchange between western Pacific warm pool and Indian warm pool and its climatic effects since the late Miocene[J]. Advances in Marine Science, 2020, 38(3):377-389.] doi: 10.3969/j.issn.1671-6647.2020.03.001

    [21]

    Furnas M J, Carpenter E J. Primary production in the tropical continental shelf seas bordering northern Australia[J]. Continental Shelf Research, 2016, 129:33-48. doi: 10.1016/j.csr.2016.06.006

    [22]

    Marin M, Feng M. Intra-annual variability of the North West Shelf of Australia and its impact on the Holloway Current: excitement and propagation of coastally trapped waves[J]. Continental Shelf Research, 2019, 186:88-103. doi: 10.1016/j.csr.2019.08.001

    [23]

    Condie S A, Dunn J R. Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography[J]. Marine and Freshwater Research, 2006, 57(6):569-590. doi: 10.1071/MF06009

    [24]

    Pei R J, Kuhnt W, Holbourn A, et al. Monitoring Australian Monsoon variability over the past four glacial cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 568:110280. doi: 10.1016/j.palaeo.2021.110280

    [25]

    Sarim M, Xu J, Zhang P, et al. Late quaternary clay mineral and grain-size records from northwest Australia and their implications for paleoclimate, ocean currents, and paleodrainage of the Bonaparte basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 610:111353. doi: 10.1016/j.palaeo.2022.111353

    [26]

    Hesse P P, McTainsh G H. Australian dust deposits: modern processes and the Quaternary record[J]. Quaternary Science Reviews, 2003, 22(18-19):2007-2035. doi: 10.1016/S0277-3791(03)00164-1

    [27]

    Kuhnt W, Holbourn A, Schönfeld J, et al. Cruise report Sonne 257, WACHEIO - Western australian climate history from eastern Indian ocean sediment archives[R]. Darwin-Fremantle: Institut für Geowissenschaften, Christian-Albrechts-Universitat Kiel, 2017.

    [28]

    Boyer T P, Garcia H E, Locarnini R A, et al. World Ocean Atlas 2018: sea surface temperature[DB/OL]. NOAA National Centers for Environmental Information. [2022-10-24]. https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18.

    [29]

    Schlitzer R. Ocean data view[CP/DK]. [2023-10-25]. https://odv.awi.de.

    [30]

    NASA. SeaWiFS Mission page[DB/OL]. [2023-04-07]. https://oceancolor.gsfc.nasa.gov/.

    [31]

    Murgese D S, de Deckker P. The Late Quaternary evolution of water masses in the eastern Indian Ocean between Australia and Indonesia, based on benthic foraminifera faunal and carbon isotopes analyses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(3-4):382-401.

    [32]

    de Deckker P, Barrows T T, Rogers J. Land–sea correlations in the Australian region: post-glacial onset of the monsoon in northwestern Western Australia[J]. Quaternary Science Reviews, 2014, 105:181-194. doi: 10.1016/j.quascirev.2014.09.030

    [33]

    Holbourn A, Kuhnt W, Kawamura H, et al. Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 kyr[J]. Paleoceanography, 2005, 20(3):PA3002.

    [34]

    Lo Giudice Cappelli E, Holbourn A, Kuhnt W, et al. Changes in Timor Strait hydrology and thermocline structure during the past 130 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 462:112-124. doi: 10.1016/j.palaeo.2016.09.010

    [35]

    Liu W, Baudin F, Moreno E, et al. Comparison of 240 ka long organic carbon and carbonate records along a depth transect in the Timor Sea: primary signals versus preservation changes[J]. Paleoceanography, 2014, 29(5):389-402. doi: 10.1002/2013PA002539

    [36]

    de Vleeschouwer D, Dunlea A G, Auer G, et al. Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3):1053-1064. doi: 10.1002/2016GC006715

    [37]

    Ólafsdóttir K B, Schulz M, Mudelsee M. REDFIT-X: cross-spectral analysis of unevenly spaced paleoclimate time series[J]. Computers & Geosciences, 2016, 91:11-18.

    [38] 汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1):1-11

    WANG Pinxian. Glacial carbonate cycles in western Pacific marginal seas[J]. Marine Geology & Quaternary Geology, 1998, 18(1):1-11.]

    [39]

    Feely R A, Sabine C L, Lee K, et al. In situ calcium carbonate dissolution in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2002, 16(4):1144.

    [40]

    Fischer G, Wefer G. Use of Proxies in Paleoceanography: Examples from the South Atlantic[M]. Berlin: Springer, 1999: 255-284.

    [41]

    Sulpis O, Jeansson E, Dinauer A, et al. Calcium carbonate dissolution patterns in the ocean[J]. Nature Geoscience, 2021, 14(6):423-428. doi: 10.1038/s41561-021-00743-y

    [42]

    Kuhnt W, Holbourn A, Xu J, et al. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene[J]. Nature Communications, 2015, 6:5916. doi: 10.1038/ncomms6916

    [43]

    Zhang P, Xu J, Holbourn A, et al. Obliquity induced latitudinal migration of the Intertropical Convergence Zone during the past ~410 kyr[J]. Geophysical Research Letters, 2022, 49(21):e2022GL100039. doi: 10.1029/2022GL100039

    [44]

    Liu L W, Chen J, Chen Y, et al. Variation of Zr/Rb ratios on the Loess Plateau of Central China during the last 130000 years and its implications for winter monsoon[J]. Chinese Science Bulletin, 2002, 47(15):1298-1302. doi: 10.1360/02tb9288

    [45]

    Schofield A. Uranium Content of Igneous Rocks of Australia 1:5000000 Maps—Explanatory Notes and Discussion[M]. Camberra: Geoscience Australia, 2009: 20.

    [46]

    McManus J, Berelson W M, Klinkhammer G P, et al. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1):95-108. doi: 10.1016/j.gca.2004.06.023

    [47]

    Auer G, Hauzenberger C A, Reuter M, et al. Orbitally paced phosphogenesis in Mediterranean shallow marine carbonates during the middle Miocene Monterey event[J]. Geochemistry Geophysics Geosystems, 2016, 17(4):1492-1510. doi: 10.1002/2016GC006299

    [48]

    Zhang Y, Andrade T, Ravelo A C, et al. Aridification of northwest Australia and nutrient decline in the Timor sea during the 40 Kyr world[J]. Paleoceanography and Paleoclimatology, 2023, 38(10):e2023PA004683. doi: 10.1029/2023PA004683

    [49]

    Auer G, Petrick B, Yoshimura T, et al. Intensified organic carbon burial on the Australian shelf after the Middle Pleistocene transition[J]. Quaternary Science Reviews, 2021, 262:106965. doi: 10.1016/j.quascirev.2021.106965

    [50]

    Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724. doi: 10.1126/science.289.5485.1719

    [51]

    Etourneau J, Schneider R, Blanz T, et al. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition[J]. Earth and Planetary Science Letters, 2010, 297(1-2):103-110. doi: 10.1016/j.jpgl.2010.06.010

    [52]

    Herbert T D, Peterson L C, Lawrence K T, et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science, 2010, 328(5985):1530-1534. doi: 10.1126/science.1185435

    [53]

    Petrick B, Martínez-García A, Auer G, et al. Glacial Indonesian throughflow weakening across the mid-Pleistocene climatic transition[J]. Scientific Reports, 2019, 9(1):16995. doi: 10.1038/s41598-019-53382-0

    [54]

    Smith R A, Castañeda I S, Groeneveld J, et al. Retracted: Plio-Pleistocene Indonesian throughflow variability drove eastern Indian ocean sea surface temperatures[J]. Paleoceanography and Paleoclimatology, 2020, 35(10):e2020PA003872. doi: 10.1029/2020PA003872

    [55]

    Wara M W, Ravelo A C, Delaney M L. Permanent El Niño-like conditions during the Pliocene warm period[J]. Science, 2005, 309(5735):758-761. doi: 10.1126/science.1112596

    [56]

    Li L, Li Q Y, Tian J, et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change[J]. Earth and Planetary Science Letters, 2011, 309(1-2):10-20. doi: 10.1016/j.jpgl.2011.04.016

    [57]

    Stuut J B W, De Deckker P, Saavedra-Pellitero M, et al. A 5.3-million-year history of monsoonal precipitation in northwestern Australia[J]. Geophysical Research Letters, 2019, 46(12):6946-6954. doi: 10.1029/2019GL083035

    [58]

    Christensen B A, Renema W, Henderiks J, et al. Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene[J]. Geophysical Research Letters, 2017, 44(13):6914-6925. doi: 10.1002/2017GL072977

    [59]

    Fedorov A V, Brierley C M, Lawrence K T, et al. Patterns and mechanisms of early Pliocene warmth[J]. Nature, 2013, 496(7443):43-49. doi: 10.1038/nature12003

    [60]

    Chen H J, Xu Z K, Lim D, et al. Geochemical records of the provenance and silicate weathering/erosion from the eastern Arabian sea and their responses to the Indian summer monsoon since the mid-Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(4):e2019PA003732. doi: 10.1029/2019PA003732

    [61]

    Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J]. Science, 2001, 293(5539):2440-2444. doi: 10.1126/science.293.5539.2440

    [62]

    Di Nezio P N, Timmermann A, Tierney J E, et al. The climate response of the Indo-Pacific warm pool to glacial sea level[J]. Paleoceanography, 2016, 31(6):866-894. doi: 10.1002/2015PA002890

    [63]

    Windler G, Tierney J E, DiNezio P N, et al. Shelf exposure influence on Indo-Pacific Warm Pool climate for the last 450, 000 years[J]. Earth and Planetary Science Letters, 2019, 516:66-76. doi: 10.1016/j.jpgl.2019.03.038

    [64]

    Liautaud P, Huybers P. Uniformitarian prediction of early-Pleistocene atmospheric CO2[J]. Geophysical Research Letters, 2022, 49(20):e2022GL100304. doi: 10.1029/2022GL100304

  • 期刊类型引用(1)

    1. 江敏,陆新江,陈秉正,李江明. 深海富钴结壳矿料颗粒特性试验研究. 采矿技术. 2025(01): 251-256 . 百度学术

    其他类型引用(1)

图(7)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  7
  • PDF下载量:  17
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-02-04
  • 录用日期:  2024-02-04
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2025-04-27

目录

/

返回文章
返回