90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程

陶菁, 刘升发, 艾丽娜, 曹鹏, 黄牧, 张辉, 吴凯凯, 齐文菁, 方桐冰, 孟元库, 石学法

陶菁,刘升发,艾丽娜,等. 90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程[J]. 海洋地质与第四纪地质,2024,44(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2023121201
引用本文: 陶菁,刘升发,艾丽娜,等. 90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程[J]. 海洋地质与第四纪地质,2024,44(2): 146-156. DOI: 10.16562/j.cnki.0256-1492.2023121201
TAO Jing,LIU Shengfa,AI Lina,et al. Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP[J]. Marine Geology & Quaternary Geology,2024,44(2):146-156. DOI: 10.16562/j.cnki.0256-1492.2023121201
Citation: TAO Jing,LIU Shengfa,AI Lina,et al. Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP[J]. Marine Geology & Quaternary Geology,2024,44(2):146-156. DOI: 10.16562/j.cnki.0256-1492.2023121201

90 kaBP 以来阿拉伯海中部海域沉积物来源及沉积过程

基金项目: 全球变化与海气相互作用(二期)专项“西印度洋 WIND-CJ06 区块海洋底质与底栖生物调查”(GASI-01-WIND-CJ06)
详细信息
    作者简介:

    陶菁(1998—),女,硕士研究生,主要从事海洋沉积学研究,E-mail:taojmagia@163.com

    通讯作者:

    刘升发(1979—),男,研究员,研究方向为海洋沉积学,E-mail:liushengfa@fio.org.cn

  • 中图分类号: P736.2

Sediment sources and sedimentary processes in the middle Arabian Sea since 90 kaBP

  • 摘要:

    通过对阿拉伯海中部 AS06-13 岩芯的地球化学特征、黏土矿物组成特征分析,结合有孔虫壳体 AMS14C 年龄和氧同位素数据建立的年代框架,探讨了阿拉伯海中部海域沉积物的来源及沉积过程。结果显示:AS06-13 岩芯涵盖了阿拉伯海 90 kaBP以来的沉积序列,平均沉积速率为 2.34 cm/ka;稀土元素含量为 64~194 μg/g,平均值为 114 μg/g,δEu(平均值为0.71)负异常显著;黏土矿物主要由伊利石(平均含量为56%)、坡缕石(平均含量为18%)、绿泥石(平均含量为15%)、高岭石(平均含量为8%)和蒙脱石(平均含量为2%)组成。球粒陨石标准化的稀土元素配分曲线表现为轻稀土元素富集,重稀土元素亏损的右倾模式,表明研究区沉积物以陆源碎屑为主,通过 δEuUCC-(La/Yb)UCC 判别图进一步将 90 kaBP 以来阿拉伯海中部海域沉积物来源变化划分为 3 个阶段:S1阶段(90~73 kaBP)研究区主要接受印度河入海物质和阿拉伯半岛风尘物质的输入;S2阶段(73~11 kaBP)仍然以印度河和阿拉伯半岛风尘的物质输入为主,但逐渐受到印度半岛的片麻岩区物质的影响;S3 阶段(11~0 kaBP)主要接受来自印度河的河流沉积物、阿拉伯半岛风尘、印度半岛的片麻岩区和德干高原物质的共同沉积。坡缕石含量和高岭石/伊利石比值指示 90 kaBP 以来阿拉伯海中部海域沉积物的陆源物质输入和沉积演化主要受季风和海平面的共同控制,西南季风的减弱和海平面下降导致印度河、德干高原物质对研究区的输入量增多,东北季风的增强和西北风相对增强使阿拉伯半岛的风尘输入增加;全新世海平面快速上升使输入阿拉伯海的河流沉积物急剧减少。

    Abstract:

    Based on the geochemical characteristics and clay mineral composition of Core AS06-13 in the middle Arabian Sea, we combined the age of foraminifera shell AMS14C and the dating framework of oxygen isotope data , the provenance and sedimentary evolution of the middle Arabian Sea were studied. Results show that Core AS06-13 was deposited since 90 kaBP, with average depositional rate of 2.34 cm/ka. The Rare Earth Element (REE) content ranged from 64.38 to 194.33 μg/g, with average of 113.66 μg/g. The δEu, on average of 0.71, dispalyed significant negative anomaly. The clay minerals were mainly composed of illite (56% in average), palychite (18% in average), chlorite (15% in average), kaolinite (8% in average), and montmorillonite (2% in average). The chondrites normalized patterns of REEs had shown a right-leaning pattern of the enrichment in light REEs and deficit in heavy REEs, suggesting that sediments in the study area were mainly terrigenous detritals. According to the δEuUCC-(La/Yb)UCC discriminant diagram, the provenance changes in the middle Arabian Sea can be divide into three stages since 90 kaBP. The stage S1 (90~73 kaBP) were mainly sourced from the Indus River and the Arabian Peninsula dust. The stage S2 (73~11 kaBP) exhibited similarities to the stage S1, albeit with a discernible tendency towards being influenced by the Peninsular Gneissic rock region. The stage S3 (11~0 kaBP) had a mixed sources including the Indus River, Arabian Peninsula dust, gneiss region, and the Deccan Plateau. The content of palygorskite and the ratio of kaolinite/illite indicated that the terrigenous input and sedimentary evolution in the central Arabian Sea were mainly controlled by monsoon and sea level changes since 90 kaBP . The weakening of the southwest monsoon and decrease in sea level led to an increase in fluvial sediment inputs from Indus River and Deccan Plateau to the study area. The enhanced winter winds and the relative strengthened northwesterly winds resulted in an elevated dust input originating from the Arabian Peninsula. The Holocene sea-level rise led to a rapid decline in fluvial sediments supply to the Arabian Sea.

  • 海洋沉积物可保存历史时期的环境和气候变化信息[1-2],全球海底沉积物中陆源物质占总量的一半以上,主要通过冰川、河流、风尘等方式输送入海[3-4],在此过程中保存了丰富的气候与环境信息[5-6],是探究陆海相互作用和过去气候演化历史的良好载体。大量的研究表明,海底沉积物的组成特征和时空分布规律与气候变化、海平面波动及环境变迁等有着十分密切的联系[7-9],因而可通过选择有效的替代性指标,追踪历史时期海底沉积物来源、洋流演化及气候和环境变化等关键地质因素的演化过程[6,10]

    阿拉伯海位于印度洋北部,西侧毗邻阿拉伯半岛,东侧与印度大陆相邻,在青藏高原隆升的大背景下接受了大量陆源碎屑物质输入(图1),形成了全球重要的沉积物“源-汇”体系[11]。表层沉积物综合研究表明阿拉伯海物源较为复杂,且空间分布差异明显,其北部主要接受印度河输入的西喜马拉雅和青藏高原物质[12-13],而东部陆架和陆坡区的沉积物主要来自德干高原的火山区和南印度半岛的片麻岩区[14-18]。此外,阿拉伯海的沉积物来源还包括:阿拉伯半岛、印度北部(主要来自塔尔沙漠)、东非的风尘物质[19]嘉士伯岭的海底风化产物和孟加拉湾的沉积物[15]

    图  1  阿拉伯海 AS06-13 岩芯位置及周边季风与洋流示意图[21]
    红点为 AS06-13 岩芯,黄点为对比分析站位,黑线为拉克西米海盆内现代深海水道系统的位置,黄色虚线为深海扇大致范围。SWM:西南季风,NEW:东北季风,SCS:夏季表层环流,SCW:冬季表层环流。
    Figure  1.  Location of core AS06-13, monsoons and oceanic circulations in the Arabian Sea[21]
    Red dot: the location of Core AS06-1; yellow dots: all the cores discussed in this study; black lines: the locations of modern deep-sea channel systems in the Laxmi Basin; yellow dotted lines: approximate extent of the deep-sea fan; SWM: southwest summer monsoon; NEW: northeast winter monsoon; SCS: surface currents in summer; SCW: surface currents in winter.

    阿拉伯海以季风气候为主,风和降水的季节性逆转导致海水性质和沉积物运输有较大的周期性变化[20]。在阿拉伯海及周边大陆,印度夏季风带来了大部分降雨(>3000 mm),而冬季风在降雨上的影响较低[22]。印度夏季风期间,西南风带来的强降雨控制着周边大陆表层的风化剥蚀强度,进而影响通过河流搬运入海的陆源碎屑物质运移过程[23-24]。此外,海平面升降和洋流活动对陆源入海物质的搬运和沉积过程也发挥了重要作用[23,25],冰期-间冰期海平面波动可改变从大陆向深海输送的沉积物的总体收支平衡[18,26-28],而季风流的强弱变化则是陆源物质在海洋环境中搬运、沉积和改造的直接动力[29]

    当前对阿拉伯海沉积物运输和演化方面的研究主要集中在东部大陆架和印度河峡谷[13,30],而对阿拉伯海中部深海盆的沉积特征研究较少[31-32],极大地限制了对阿拉伯海沉积环境特征和陆海相互作用过程的深入研究。本文以阿拉伯海中部的 AS06-13 岩芯为研究对象,通过 AMS14C 年龄和氧同位素数据建立高精度年代框架,在此基础上分析岩芯沉积物的稀土元素和黏土矿物组成特征,揭示阿拉伯海中部海域沉积物来源及其沉积演化过程,为深入研究北印度洋的陆海相互作用提供理论支撑。

    AS06-13 岩芯(14.54°N、65.80°E)位于阿拉伯海中部的阿拉伯海深海扇,取样站位水深 3909 m,岩芯长 193 cm(图1),样品由 2020 年“全球变化与海气相互作用”专项西印度洋海洋底质调查航次采集。岩芯剖开后进行了详细的岩性描述,按照 1 cm 间隔分样后置于 4 ℃ 冷库低温保存。

    根据沉积物岩性特征选取上段(0~100 cm)5 个典型层位进行 AMS14C 测试。沉积物样品经 55 ℃ 低温烘干,过筛冲洗选取 >63 μm 组分,低温烘干后在光学显微镜下挑选直径大于 250 μm 且个体均匀的浮游有孔虫单种 Globorotalia menardii 壳体 8~10 mg。AMS14C 测试在美国 BETA 实验室完成,使用 Calib 8.2 程序将原始年龄数据校正至日历年龄[33],区域碳库年龄 △R 选择 45±62 a[34-35]

    岩芯上段(0~100 cm)按照 1 cm 间隔,下段(100~193 cm)按照 10 cm 间隔共挑取 118 件样品进行 δ18O 同位素测试。沉积物样品经 55 ℃ 低温烘干,过筛冲洗选取>63 μm 组分,低温烘干后在光学显微镜下挑选浮游有孔虫单种 Globigerinoides ruber 的完整壳体(直径约 300~350 μm)10~15 枚,加入无水乙醇经超声处理后放入 55 ℃ 烘箱中 6 h以上取出,放在碳酸盐制备样品瓶中,在 70 ℃ 温度下加适量磷酸溶液除去 CO2,然后用稳定同位素质谱仪(MAT 253)分析测试,测试工作在同济大学海洋地质国家重点实验室完成,测试结果参考国际标样 NBS 19 转换为 Pee Dee Belemnite(PDB)国际标准。为保证分析精密度和准确度,确保测试标准偏差小于 0.5,测试过程中使用国标 NBS 19 进行质量控制。

    根据沉积物岩性特征选取 20 个典型层位进行稀土元素测试。取 2 g 左右沉积物样品冷冻干燥,研磨至 200 目,在 100 ℃ 烘箱中烘干,称取 50 mg 样品置于聚四氟乙烯消解罐,加入 3 mL 1∶1 的 HNO3 和 HF 后密闭,放置于 190 ℃ 烘箱中 48 h 后取出冷却,置于 150 ℃ 电热板赶尽 HF 后加入 3 mL 50% 的 HNO3,密闭后在 150 ℃ 烘箱中反应 8 h 以上,冷却后移液定容等待测试。用电感耦合等离子体质谱(ICP-MS)法测定稀土元素含量,测试工作在自然资源部第一海洋研究所海洋地质测试中心完成。测试分析过程严格控制流程,用 GSD-9 标样作为质控样,选取 10% 重复样监测精密度,确保测试相对误差小于 5%[36]

    根据沉积物岩性特征选取 20 个典型层位进行黏土矿物测试。取 2 g 沉积物样品,用 10% 的过氧化氢和冰醋酸分别去除有机质和碳酸钙。依据斯托克斯沉降原理,提取小于 2 μm 的颗粒离心富集。采用涂片方法制成定向薄片,在 60 ℃ 下用乙二醇饱和 24 h 后等待上机,测试工作在自然资源部第一海洋研究所海洋地质测试中心完成。测试仪器采用 D/max 22500 转靶 X 射线衍射仪,铜靶,管电流 100 mA、管电压 40 kV;连续扫描,扫描速度为 2(°)/min、步长 0.02°(2θ),扫描范围 3°~30°(2θ)。测得数据用 Jade 6.0 软件处理,选取蒙脱石(17Å)、坡缕石(10.5Å)、伊利石(10Å)、高岭石+绿泥石(7Å)为特征衍射峰。参考 Biscaye 和 Ehrmann 的计算方法选取权重系数对蒙脱石、坡缕石、伊利石、高岭石、绿泥石 5 类黏土矿物进行半定量计算[37,38]

    AS06-13 岩芯结构均一,以含有孔虫的黏土质粉砂为主,沉积记录连续无间断,揭示了较为稳定的沉积环境,其中 0~45 cm 段有孔虫含量较多,并含深棕色砂质夹层和斑块;45~48 cm 处见灰绿色夹层;77~173 cm 段有孔虫含量较少,119~132 cm 处有浅灰色夹层,151~152 cm 处见黑色夹层;173~193 cm 段有棕黑色薄层。

    AS06-13 岩芯上段样品 AMS14C 测年结果如表1 所示,通过线性内插法获得岩芯上段(0~84 cm)年龄框架,测年结果涵盖了 37.45 kaBP 以来的沉积记录,平均沉积速率为 2.15 cm/ka。下段(84~193 cm)样品有孔虫壳体 δ18O 结果如图2所示,通过与全球低纬地区广泛应用的 LR04 标准 δ18O 曲线[39]进行对比,获取 AS06-13 岩芯下段沉积物年龄数据。综合两种方法建立的 AS06-13 岩芯年龄框架覆盖了 90 kaBP 以来的连续沉积序列,时间跨度可追溯至深海氧同位素阶段 5 期。

    表  1  AS06-13 岩芯有孔虫壳体 AMS14C 测年数据
    Table  1.  AMS14C dating data of foraminifera shell from Core AS06-13
    层位/cmAMS14C 年龄/aBP日历年龄/kaBP沉积速率/(cm/ka)
    3~44040±303.8280.91
    23~2411910±4013.1952.14
    43~4420180±6023.3151.98
    63~6427920±12031.1382.56
    83~8433610±24037.4523.17
    下载: 导出CSV 
    | 显示表格
    图  2  AS06-13 岩芯年龄框架
    LR04 δ18O 数据据文献 [39]。蓝色圆点代表 AMS14C 测年值。
    Figure  2.  The age framework of Core AS06-13
    The data of LR04 δ18O are from reference [39]. The blue dots represent the AMS14C ages.

    AS06-13 岩芯沉积物稀土元素含量和相关参数的垂向分布如图3 所示,总稀土元素(∑REE)含量为 64.38~194.33 μg/g,平均值为 113.66 μg/g,其中轻稀土元素(∑LREE)含量(平均值为 83.66 μg/g)远高于重稀土元素(∑HREE)含量(平均值为 11.29 μg/g),轻重稀土元素的比值(∑LREE/∑HREE)为 5.73~9.31,平均值为 7.28。球粒陨石标准化的 δCe 平均值为 0.93,表现为微弱的负异常,球粒陨石标准化的 δEu 平均值为 0.71,呈现明显负异常。(Gd/Lu)N平均为 1.43,(La/Yb)N 平均为 7.82。AS06-13 岩芯沉积物稀土元素垂向分布上呈现明显阶段性特征,以 11 、73 kaBP 为界可将岩芯大致划分为 3 个阶段,分别为 S1 阶段(90~73 kaBP)、S2 阶段(73~11 kaBP)、S3 阶段(11~0 kaBP),在 S1 和 S3 阶段,稀土元素含量呈逐渐降低趋势,而在 S2 阶段稀土元素含量较为稳定。

    图  3  AS06-13 岩芯沉积物稀土元素含量及相关参数垂向分布
    球粒陨石标准化数引自文献 [40]。
    Figure  3.  Vertical distribution of rare earth element content and related parameters of Core AS06-13
    The data of the normalized chondrite are from reference [40].

    AS06-13 岩芯沉积物共鉴定出5类黏土矿物,含量最高的为伊利石,含量为 46%~67% ,平均值为 56%;其次为坡缕石和绿泥石,平均值分别为 18% 和 15%;高岭石和蒙脱石含量较低,平均值分别为 8% 和 2%。垂向分布上,伊利石、蒙脱石、绿泥石三者的含量表现为自下而上逐渐降低的趋势,而坡缕石和高岭石变化趋势则相反,以 73 、11 kaBP 为界可划分为 S1、S2、S3 三个阶段,5 类矿物均在 S2 阶段呈现出较大的波动(图4)。

    图  4  AS06-13 岩芯黏土矿物含量垂向分布
    Figure  4.  Vertical distribution of clay mineral content of Core AS06-13

    探究沉积环境演化及其驱动机制的前提是明确沉积物来源,前人研究表明阿拉伯海的沉积物以陆源碎屑物质为主,河流和风尘输入是其主要来源,而海洋自生物质和火山物质的贡献量相对较少[17,41-42]

    稀土元素的地球化学性质稳定,在风化、剥蚀、搬运、沉积过程中并不发生分异,影响其地球化学性质的主要因素为其原岩组成,[43-45],因此沉积物中的稀土元素被广泛用作物源识别的指标[11,46-47],其中 (La/Sm)UCC、(La/Yb)UCC、(Gd/Lu)UCC、δEuUCC、δCeUCC 等稀土元素比值和参数被广泛应用于海洋沉积物来源判别[11,48],效果良好。为揭示阿拉伯海中部海域沉积物相对原始地球物质的分异程度,将 AS06-13 岩芯沉积物以球粒陨石为标准进行标准化[40],结果表明 AS06-13 岩芯沉积物轻重稀土元素分异显著,不同阶段的稀土元素配分模式均表现为轻稀土元素富集,重稀土元素亏损的右倾模式,轻稀土的含量远高于重稀土, Eu 负异常显著,揭示了 AS06-13 岩芯沉积物的陆源属性(图5)。另外,通过对比分析发现,AS06-13 岩芯沉积物与印度河河流沉积物、德干高原物质、片麻岩区物质和阿拉伯半岛风尘的稀土元素配分曲线非常相似,说明其潜在物源区可能为印度半岛西侧和阿拉伯半岛。

    图  5  AS06-13 岩芯沉积物稀土元素球粒陨石标准化配分曲线
    潜在沉积物来源选取印度河[22]、德干高原[50,51]、片麻岩区[50]、北非风尘[52]和阿拉伯半岛现代风尘[53];稀土元素经球粒陨石标准化[40]
    Figure  5.  Chondrite normalized rare earth element patterns in Core AS06-13
    Potential sediment sources are from the Indus River[22], the Deccan Traps[50,51], the Peninsular Gneissic rock[50]; the North African dust[52] and modern dust of the Arabian Peninsula[53]; rare earth elements are normalized by chondrite [40].

    为了进一步明确研究区物质来源,采用上陆壳标准化的 δEuUCC 与 (La/Yb)UCC 来判识 AS06-13 岩芯不同阶段(S1、S2、S3)沉积物来源[49],结果显示 AS06-13 岩芯沉积物整体上与印度河沉积物、片麻岩区物质和阿拉伯半岛风尘相近,德干高原亦有一定物质贡献,而北非风尘对研究区的物质几乎没有贡献(图6)。黏土矿物中的坡缕石出现也证明了风尘物质的输入[4,48],这与稀土元素指标判别的物源结果一致。然而,3 个阶段物源表现出明显的不同,S1 阶段研究区主要受印度河源区和阿拉伯半岛风尘控制,S2 阶段除了印度河和风尘的物质输入,其物源还受到片麻岩区的影响;S3 阶段受到来自印度河、阿拉伯半岛风尘、片麻岩区和德干高原的综合影响。由此可见, 90 kaBP 以来阿拉伯海中部海域沉积物受控于周边陆源入海物质,且呈现出明显的阶段性特征,印度河、阿拉伯半岛风尘、片麻岩区和德干高原等物源区的贡献量处于动态平衡的关系,进一步指示了北印度洋陆海相互作用的复杂性。

    图  6  AS06-13 岩芯沉积物 δEuUCC-(La/Yb)UCC 物源判别图
    潜在沉积物来源选取印度河[22]、德干高原[50,51]、片麻岩区[50]、北非风尘[52]和阿拉伯半岛现代风尘[53];UCC:上陆壳数据[49]
    Figure  6.  δEuUCC-(La/Yb)UCC provenance discrimination diagram of Core AS06-13
    Potential sediment sources are from the Indus River[22], the Deccan Traps[50,51], the Peninsular Gneissic rock[50]; the North African dust[52], and modern dust of the Arabian Peninsula[53]; UCC: Upper Continental Crust[49].

    黏土矿物是一定气候条件下源区沉积物风化蚀变的产物,其含量和组合已被广泛应用于沉积环境和古气候演化研究[54]。阿拉伯海中部海域沉积物源区黏土矿物各具特色,印度河搬运的沉积物主要为西喜马拉雅山脉和青藏高原的风化剥蚀产物,以结晶度良好的伊利石和绿泥石为特征[21,23],德干高原主要由基性玄武岩组成,其气候条件有利于生成大量的蒙脱石[14,17],片麻岩区处在亚热带-热带地区,黏土矿物以高岭石为主[17,55]。Pourmand等[56]用阿拉伯海东北部 93 KL 岩芯的 232Th 通量作为风尘通量的替代指标,重建了 110 kaBP 以来阿拉伯半岛风尘输入演变过程,发现风尘输入与季风存在密切联系,高风尘通量归因于减弱的西南季风和加强的西北风[4]。另有研究表明,来自阿拉伯半岛的风尘有较高的坡缕石含量(8%~37% )[42,53],坡缕石作为特征矿物种类已被广泛用于示踪阿拉伯海沉积物中的风尘输入[42,54]。因此,AS06-13 岩芯坡缕石含量的变化可作为阿拉伯半岛风尘物质的供应指标;伊利石结晶度是反映气候的有效指标,低值指示源区气候寒冷干燥[21];高岭石作为温暖潮湿条件下经强烈化学风化形成的黏土矿物,与强烈物理侵蚀形成的伊利石作比值,可以反映化学风化的强弱,进而指示印度河和片麻岩区物源供应变化。

    因此,在明确研究区物源的基础上,我们将 AS06-13 岩芯黏土矿物与海平面[57]、印度夏季风强度指标[58]等进行对比(图7),并绘制了不同阶段的沉积演化示意图(图8),以此来进一步探讨 90 kaBP 以来阿拉伯海中部海域沉积过程。

    图  7  AS06-13 岩芯 90 kaBP 以来的沉积过程综合分析图
    a:阿拉伯海北部 NIOP 455 δ15N 值[58],b:全球相对海平面[57],c:AS06-13 岩芯 δ18O 变化,d:AS06-13 岩芯坡缕石含量,e:阿拉伯海北部 93KL 232Th 通量[56],f:AS06-13 岩芯高岭石/伊利石比值,g:AS06-13 岩芯伊利石结晶度。灰色阴影部分代表冰阶;S1—S3 表示不同阶段。
    Figure  7.  Comprehensive analysis of sedimentary processes of Core AS06-13 since 90 kaBP
    a: The δ15N record in Core NIOP 455 in the northern Arabian Sea[58], b: global relative sea level[57],c: the δ18O record in Core AS06-13, d: the palygorskite content of Core AS06-13, e: 232Th flux of Core 93KL in the northern Arabian Sea[56], f: the kaolinite/illite ratio of Core AS06-13, g: the illite crystallinity in Core AS06-13. Grey shadows represent glacial step. S1-S3 indicates different stages.
    图  8  阿拉伯海中部海域 90 kaBP 以来沉积演化示意图
    据文献 [21] 修改。a:S1 阶段(90~73 kaBP), b:S2 阶段(73~11 kaBP), c:S3 阶段(11~0 kaBP)。
    Figure  8.  Schematic diagram of sedimentary evolution in the middle Arabian Sea since 90 kaBP
    The datasets are referred from [21]. a: Stage S1 (90~73 kaBP), b: Stage S2 (73~11 kaBP), c: Stage S3 (11~0 kaBP).

    (1)S1 阶段(90~73 kaBP)

    S1 阶段属于间冰期,该阶段全球气候温暖潮湿,全球海平面比现今低,西南季风较强,该阶段研究区物源受到印度河和阿拉伯半岛风尘控制,印度河为主要源区(图8a)。强烈的西南季风导致的高降水量促进了喜马拉雅山脉的机械剥蚀[53,54],大量碎屑物质经印度河及其周边河流输送至阿拉伯海深海扇,在沿岸流和深海通道的驱动下重新搬运至研究区。此外,研究区高坡缕石含量体现了阿拉伯半岛的风尘影响(图7d),这与 232Th 通量变化一致。西南季风减弱期间,阿拉伯海中部通过相对加强的西北风接收来自阿拉伯半岛的风尘输入[56,59]。温暖干燥的西北风携带大量灰尘,在抬升期间遇到了西南季风的潮湿低空急流,导致两个气团的季风逆转,风尘被输送到阿拉伯海中部海域[4,60]

    (2)S2 阶段(73~11 kaBP)

    S2 阶段属于末次冰期,该阶段气候寒冷干燥,海平面快速下降,西南季风减弱,这在 δ18O、δ15N 曲线上都有所体现。研究区除了受到印度河和风尘的物质输入,还受到片麻岩区物质的影响(图8b)。研究区高岭石/伊利石比值降低,伊利石结晶度较低(图7f,g),表明在冰期寒冷干燥的气候下,化学风化较低,高岭石形成缓慢,而喜马拉雅和青藏高原的冰川侵蚀加速,导致大量来自印度河源区的物质输入到阿拉伯海中部海域。同时,海平面快速下降导致大陆架大范围出露和河口向海迁移[25,61],提高了陆源碎屑沉积物向海洋输送的效率[28]图7d 显示此阶段坡缕石含量增加,指示末次冰期西南季风减弱,较强的西北风将大量来自阿拉伯半岛的风尘物质输送到阿拉伯海中部[4,60],研究区风尘输入增多。在末次冰期的间冰阶(56~26 kaBP),西南季风有所增强,伊利石结晶度显示化学风化增强(图7g),气候较为温暖潮湿,高岭石/伊利石比值升高(图7f),更多来自片麻岩区的物质通过季风驱动的表层沿岸流被输送到研究区[17],而来自印度河的沉积物相对减少[62]

    (3)S3 阶段(11~0 kaBP)

    S3 阶段属于全新世,海平面迅速上升,研究区 δ18O 下降(图7c),反映印度半岛及周边海域的季风降雨量增强,伊利石结晶度的快速上升表明气候逐渐变为温暖湿润(图7g)。全新世研究区物质输入为混合来源,整体表现为来自印度河、德干高原和片麻岩区的河流碎屑沉积减少,而来自阿拉伯半岛的风尘输入增加(图8c)。由图7f可知,全新世高岭石/伊利石的比值相对 S2 阶段(末次冰期)有所升高,表明阿拉伯海来自印度河的沉积物输送减少,而高坡缕石含量反映来自阿拉伯半岛的风尘增多[48],这与 232Th 通量变化一致(图7d,e),推测此阶段阿拉伯海沉积物来源的转变主要受海平面的波动影响,而季风为次级影响因素[61]。海平面的升降和随后大陆架的淹没或出露,使沉积物路径形态改变,从而导致输送到海底的沉积物通量发生变化[61-62]。全新世海平面的快速上升导致阿拉伯海深海扇系统的河流沉积物供应减少,沿海海平面上升的速度不及河流沉积物输入的速度,陆架沉积空间有限[63],陆源河流物质被限制在深海扇的浊流通道内,导致输入阿拉伯海中部海盆的河流沉积物急剧减少。

    (1)阿拉伯海中部 AS06-13 岩芯的总稀土元素平均含量为 113.66 μg/g,球粒陨石标准化的配分曲线表明轻稀土元素富集重稀土元素亏损,δEu(平均为 0.71)存在明显负异常,陆源特征明显。AS06-13岩芯沉积物共鉴定出 5 类黏土矿物,其中伊利石含量最高(平均值为 56%),蒙脱石含量最低(平均为 2%)。此外,岩芯中还发现了一定量的坡缕石(平均含量为 18%)。

    (2)δEuUCC-(La/Yb)UCC 判别结果显示 90 kaBP 以来 AS06-13 岩芯的物源为混合来源,并呈现出明显的阶段性特征,可以划分为 3 个阶段(S1、S2、S3),其中 S1 阶段研究区主要受印度河源区和阿拉伯半岛风尘控制,S2 阶段除了受到印度河和风尘的物源输入,还受到来自片麻岩区的物质影响;S3 阶段受到来自印度河、阿拉伯半岛风尘、片麻岩区和德干高原的综合影响。

    (3)90 kaBP 以来阿拉伯海中部 AS06-13 岩芯的沉积物来源和沉积演化过程主要受季风和海平面的共同控制,且不同阶段影响程度不同。S1、S2 阶段研究区物源演化受季风、海平面的共同驱动,海平面的降低导致大陆架裸露,更多河流沉积物经深海通道输送到研究区,西南季风的减弱和海平面下降导致印度河、德干高原物质对研究区的输入量增多,东北季风的增强和西北风相对增强使阿拉伯半岛的风尘输入增加。S3 阶段则受到全新世海平面快速上升的强烈影响,使输入阿拉伯海的河流沉积物急剧减少。

    致谢:感谢西印度洋海洋底质调查航次所有参航人员为样品采集所做出的贡献,感谢自然资源部第一海洋研究所在样品测试分析过程中提供的帮助。

  • 图  1   阿拉伯海 AS06-13 岩芯位置及周边季风与洋流示意图[21]

    红点为 AS06-13 岩芯,黄点为对比分析站位,黑线为拉克西米海盆内现代深海水道系统的位置,黄色虚线为深海扇大致范围。SWM:西南季风,NEW:东北季风,SCS:夏季表层环流,SCW:冬季表层环流。

    Figure  1.   Location of core AS06-13, monsoons and oceanic circulations in the Arabian Sea[21]

    Red dot: the location of Core AS06-1; yellow dots: all the cores discussed in this study; black lines: the locations of modern deep-sea channel systems in the Laxmi Basin; yellow dotted lines: approximate extent of the deep-sea fan; SWM: southwest summer monsoon; NEW: northeast winter monsoon; SCS: surface currents in summer; SCW: surface currents in winter.

    图  2   AS06-13 岩芯年龄框架

    LR04 δ18O 数据据文献 [39]。蓝色圆点代表 AMS14C 测年值。

    Figure  2.   The age framework of Core AS06-13

    The data of LR04 δ18O are from reference [39]. The blue dots represent the AMS14C ages.

    图  3   AS06-13 岩芯沉积物稀土元素含量及相关参数垂向分布

    球粒陨石标准化数引自文献 [40]。

    Figure  3.   Vertical distribution of rare earth element content and related parameters of Core AS06-13

    The data of the normalized chondrite are from reference [40].

    图  4   AS06-13 岩芯黏土矿物含量垂向分布

    Figure  4.   Vertical distribution of clay mineral content of Core AS06-13

    图  5   AS06-13 岩芯沉积物稀土元素球粒陨石标准化配分曲线

    潜在沉积物来源选取印度河[22]、德干高原[50,51]、片麻岩区[50]、北非风尘[52]和阿拉伯半岛现代风尘[53];稀土元素经球粒陨石标准化[40]

    Figure  5.   Chondrite normalized rare earth element patterns in Core AS06-13

    Potential sediment sources are from the Indus River[22], the Deccan Traps[50,51], the Peninsular Gneissic rock[50]; the North African dust[52] and modern dust of the Arabian Peninsula[53]; rare earth elements are normalized by chondrite [40].

    图  6   AS06-13 岩芯沉积物 δEuUCC-(La/Yb)UCC 物源判别图

    潜在沉积物来源选取印度河[22]、德干高原[50,51]、片麻岩区[50]、北非风尘[52]和阿拉伯半岛现代风尘[53];UCC:上陆壳数据[49]

    Figure  6.   δEuUCC-(La/Yb)UCC provenance discrimination diagram of Core AS06-13

    Potential sediment sources are from the Indus River[22], the Deccan Traps[50,51], the Peninsular Gneissic rock[50]; the North African dust[52], and modern dust of the Arabian Peninsula[53]; UCC: Upper Continental Crust[49].

    图  7   AS06-13 岩芯 90 kaBP 以来的沉积过程综合分析图

    a:阿拉伯海北部 NIOP 455 δ15N 值[58],b:全球相对海平面[57],c:AS06-13 岩芯 δ18O 变化,d:AS06-13 岩芯坡缕石含量,e:阿拉伯海北部 93KL 232Th 通量[56],f:AS06-13 岩芯高岭石/伊利石比值,g:AS06-13 岩芯伊利石结晶度。灰色阴影部分代表冰阶;S1—S3 表示不同阶段。

    Figure  7.   Comprehensive analysis of sedimentary processes of Core AS06-13 since 90 kaBP

    a: The δ15N record in Core NIOP 455 in the northern Arabian Sea[58], b: global relative sea level[57],c: the δ18O record in Core AS06-13, d: the palygorskite content of Core AS06-13, e: 232Th flux of Core 93KL in the northern Arabian Sea[56], f: the kaolinite/illite ratio of Core AS06-13, g: the illite crystallinity in Core AS06-13. Grey shadows represent glacial step. S1-S3 indicates different stages.

    图  8   阿拉伯海中部海域 90 kaBP 以来沉积演化示意图

    据文献 [21] 修改。a:S1 阶段(90~73 kaBP), b:S2 阶段(73~11 kaBP), c:S3 阶段(11~0 kaBP)。

    Figure  8.   Schematic diagram of sedimentary evolution in the middle Arabian Sea since 90 kaBP

    The datasets are referred from [21]. a: Stage S1 (90~73 kaBP), b: Stage S2 (73~11 kaBP), c: Stage S3 (11~0 kaBP).

    表  1   AS06-13 岩芯有孔虫壳体 AMS14C 测年数据

    Table  1   AMS14C dating data of foraminifera shell from Core AS06-13

    层位/cmAMS14C 年龄/aBP日历年龄/kaBP沉积速率/(cm/ka)
    3~44040±303.8280.91
    23~2411910±4013.1952.14
    43~4420180±6023.3151.98
    63~6427920±12031.1382.56
    83~8433610±24037.4523.17
    下载: 导出CSV
  • [1]

    Tiedemann R, Sarnthein M, Shackleton N J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659[J]. Paleoceanography, 1994, 9(4):619-638. doi: 10.1029/94PA00208

    [2]

    Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027

    [3]

    Griffin J J, Windom H, Goldberg E D. The distribution of clay minerals in the world ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1968, 15(4):433-459. doi: 10.1016/0011-7471(68)90051-X

    [4]

    Sebastian T, Nath B N, Mascarenhas-Pereira M B L, et al. A 50 kyr record of eolian sedimentation in the Eastern Arabian Sea-Dust deposition changes synchronous with the Northern Hemisphere Climatic Oscillations[J]. Marine Geology, 2023, 459:107046. doi: 10.1016/j.margeo.2023.107046

    [5] 陈忠, 颜文. 海洋沉积粘土矿物与古气候、古环境演化响应的研究进展[J]. 海洋科学, 2000, 24(2):25-27 doi: 10.3969/j.issn.1000-3096.2000.02.009

    CHEN Zhong, YAN Wen. Advances of the studies on clay minerals in marine sedimenis and its response to evolution of paleoclimate and paleoenvironment[J]. Marine Sciences, 2000, 24(2):25-27.] doi: 10.3969/j.issn.1000-3096.2000.02.009

    [6]

    Avinash K, Manjunath B R, Kurian P J. Glacial-interglacial productivity contrasts along the eastern Arabian Sea: dominance of convective mixing over upwelling[J]. Geoscience Frontiers, 2015, 6(6):913-925. doi: 10.1016/j.gsf.2015.03.003

    [7]

    Tripathy G R, Singh S K, Ramaswamy V. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 397:20-30. doi: 10.1016/j.palaeo.2013.04.012

    [8]

    Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446:45-55. doi: 10.1016/j.jpgl.2016.04.022

    [9]

    Li J R, Liu S F, Feng X L, et al. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance[J]. Acta Oceanologica Sinica, 2017, 36(3):82-90. doi: 10.1007/s13131-017-1041-z

    [10]

    Neelavannan K, Hussain S M, Nishath N M, et al. Paleoproductivity shifts since the last 130 ka off Lakshadweep, Southeastern Arabian Sea[J]. Regional Studies in Marine Science, 2021, 44:101776. doi: 10.1016/j.rsma.2021.101776

    [11]

    Chen H J, Xu Z K, Clift P D, et al. Orbital-scale evolution of the Indian summer monsoon since 1.2 Ma: Evidence from clay mineral records at IODP Expedition 355 Site U1456 in the eastern Arabian Sea[J]. Journal of Asian Earth Sciences, 2019, 174:11-22. doi: 10.1016/j.jseaes.2018.10.012

    [12]

    Garzanti E, Vezzoli G, Andò S, et al. Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis[J]. Earth and Planetary Science Letters, 2005, 229(3-4):287-302. doi: 10.1016/j.jpgl.2004.11.008

    [13]

    Limmer D R, Böning P, Giosan L, et al. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01008.

    [14]

    Rao V P, Rao B R. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India[J]. Continental Shelf Research, 1995, 15(14):1757-1771. doi: 10.1016/0278-4343(94)00092-2

    [15]

    Chauhan O S, Gujar A R. Surficial clay mineral distribution on the southwestern continental margin of India: evidence of input from the Bay of Bengal[J]. Continental Shelf Research, 1996, 16(3):321-333. doi: 10.1016/0278-4343(95)00015-S

    [16]

    Chauhan O S, Sukhija B S, Gujar A R, et al. Late-Quaternary variations in clay minerals along the SW continental margin of India: evidence of climatic variations[J]. Geo-Marine Letters, 2000, 20(2):118-122. doi: 10.1007/s003670000043

    [17]

    Kessarkar P M, Rao V P, Ahmad S M, et al. Clay minerals and Sr-Nd isotopes of the sediments along the western margin of India and their implication for sediment provenance[J]. Marine Geology, 2003, 202(1-2):55-69. doi: 10.1016/S0025-3227(03)00240-8

    [18]

    Chen H J, Xu Z K, Lim D, et al. Geochemical records of the provenance and silicate weathering/erosion from the eastern Arabian Sea and their responses to the Indian summer monsoon since the Mid-Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(4):e2019PA003732. doi: 10.1029/2019PA003732

    [19]

    Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1):L01702.

    [20]

    Nair R R, Ittekkot V, Manganini S J, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218):749-751. doi: 10.1038/338749a0

    [21]

    Cai M J, Colin C, Xu Z K, et al. Climate and sea level forcing of terrigenous sediments input to the eastern Arabian Sea since the last glacial period[J]. Marine Geology, 2022, 450:106860. doi: 10.1016/j.margeo.2022.106860

    [22]

    Jonell T N, Li Y T, Blusztajn J, et al. Signal or noise? Isolating grain size effects on Nd and Sr isotope variability in Indus delta sediment provenance[J]. Chemical Geology, 2018, 485:56-73. doi: 10.1016/j.chemgeo.2018.03.036

    [23]

    Thamban M, Rao V P, Schneider R R. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India[J]. Marine Geology, 2002, 186(3-4):527-539. doi: 10.1016/S0025-3227(02)00268-2

    [24]

    Aswini M A, Kumar A, Das S K. Quantification of long-range transported aeolian dust towards the Indian peninsular region using satellite and ground-based data: A case study during a dust storm over the Arabian Sea[J]. Atmospheric Research, 2020, 239:104910. doi: 10.1016/j.atmosres.2020.104910

    [25]

    Ferrier K L, Mitrovica J X, Giosan L, et al. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea[J]. Earth and Planetary Science Letters, 2015, 416:12-20. doi: 10.1016/j.jpgl.2015.01.026

    [26]

    Steinke S, Hanebuth T J J, Vogt C, et al. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17, 000 yr[J]. Marine Geology, 2008, 250(3-4):199-210. doi: 10.1016/j.margeo.2008.01.005

    [27]

    Blum M D, Hattier-Womack J. Climate change, sea-level change, and fluvial sediment supply to deepwater depositional systems[M]//Kneller B, Martinsen O J, McCaffrey B. External Controls of Deep-Water Depositional Systems. Tulsa, Oklahoma, USA: SEPM, 2009, 92: 15-39.

    [28]

    Bourget J, Zaragosi S, Ellouz-Zimmermann S, et al. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems[J]. Marine Geology, 2010, 274(1-4):187-208. doi: 10.1016/j.margeo.2010.04.005

    [29]

    Lathika N, Rahaman W, Tarique M, et al. Deep water circulation in the Arabian Sea during the last glacial cycle: Implications for paleo-redox condition, carbon sink and atmospheric CO2 variability[J]. Quaternary Science Reviews, 2021, 257:106853. doi: 10.1016/j.quascirev.2021.106853

    [30]

    Clift P D, Giosan L, Blusztajn J, et al. Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon[J]. Geology, 2008, 36(1):79-82. doi: 10.1130/G24315A.1

    [31]

    Prins M A, Postma G. Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea[J]. Geology, 2000, 28(4):375-378. doi: 10.1130/0091-7613(2000)28<375:EOCSLA>2.0.CO;2

    [32]

    Goswami V, Singh S K, Bhushan R, et al. Temporal variations in 87Sr/86Sr and ɛNd in sediments of the southeastern Arabian Sea: Impact of monsoon and surface water circulation[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01001.

    [33]

    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1):215-230. doi: 10.1017/S0033822200013904

    [34]

    Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778

    [35]

    Von Rad U, Schulz H, Riech V, et al. Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30, 000 years documented in laminated sediments off Pakistan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1-2):129-161. doi: 10.1016/S0031-0182(99)00042-5

    [36] 齐文菁, 李小艳, 范德江, 等. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义[J]. 海洋地质与第四纪地质, 2022, 42(2):92-100

    QI Wenjing, LI Xiaoyan, FAN Dejiang, et al. Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(2):92-100.]

    [37]

    Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7):803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    [38]

    Ehrmann W, Schmiedl G. Nature and dynamics of North African humid and dry periods during the last 200, 000 years documented in the clay fraction of Eastern Mediterranean deep-sea sediments[J]. Quaternary Science Reviews, 2021, 260:106925. doi: 10.1016/j.quascirev.2021.106925

    [39]

    Railsback L B, Gibbard P L, Head M J, et al. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages[J]. Quaternary Science Reviews, 2015, 111:94-106. doi: 10.1016/j.quascirev.2015.01.012

    [40]

    Evensen N M, Hamilton P J, O'Nions R K. Rare-earth abundances in chondritic meteorites[J]. Geochimica et Cosmochimica Acta, 1978, 42(8):1199-1212. doi: 10.1016/0016-7037(78)90114-X

    [41]

    Goldberg E D, Griffin J J. The sediments of the northern Indian Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(3):513-537. doi: 10.1016/0011-7471(70)90065-3

    [42]

    Kolla V, Kostecki J A, Robinson F, et al. Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea[J]. Journal of Sedimentary Petrology, 1981, 51(2):563-569.

    [43]

    McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1):169-200.

    [44]

    Cullers R L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 1994, 58(22):4955-4972. doi: 10.1016/0016-7037(94)90224-0

    [45] 毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4):337-348 doi: 10.3969/j.issn.1672-6561.2011.04.002

    MAO Guangzhou, LIU Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4):337-348.] doi: 10.3969/j.issn.1672-6561.2011.04.002

    [46]

    Um I K, Choi M S, Bahk J J, et al. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea[J]. Marine Geology, 2013, 346:208-219. doi: 10.1016/j.margeo.2013.09.007

    [47]

    Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance[J]. Marine Geology, 2014, 357:12-24. doi: 10.1016/j.margeo.2014.07.002

    [48]

    Mir I A, Mascarenhas M B L, Khare N. Geochemistry and granulometry as indicators of paleoclimate, weathering, and provenance of sediments for the past 1, 00, 000 years in the eastern Arabian Sea[J]. Journal of Asian Earth Sciences, 2022, 227:105102. doi: 10.1016/j.jseaes.2022.105102

    [49]

    Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Amsterdam: Elsevier, 2003, 3: 1-64.

    [50]

    Kurian S, Nath B N, Kumar N C, et al. Geochemical and isotopic signatures of surficial sediments from the western continental shelf of India: inferring provenance, weathering, and the nature of organic matter[J]. Journal of Sedimentary Research, 2013, 83(6):427-442. doi: 10.2110/jsr.2013.36

    [51]

    Babechuk M G, Widdowson M, Kamber B S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India[J]. Chemical Geology, 2014, 363:56-75. doi: 10.1016/j.chemgeo.2013.10.027

    [52]

    Moreno T, Querol X, Castillo S, et al. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor[J]. Chemosphere, 2006, 65(2):261-270. doi: 10.1016/j.chemosphere.2006.02.052

    [53]

    Suresh K, Singh U, Kumar A, et al. Provenance tracing of long-range transported dust over the Northeastern Arabian Sea during the southwest monsoon[J]. Atmospheric Research, 2021, 250:105377. doi: 10.1016/j.atmosres.2020.105377

    [54]

    Khonde N N, Maurya D M, Chamyal L S. Late Pleistocene-Holocene clay mineral record from the Great Rann of Kachchh basin, Western India: implications for palaeoenvironments and sediment sources[J]. Quaternary international, 2017, 443:86-98. doi: 10.1016/j.quaint.2016.07.024

    [55] 陈红瑾, 徐兆凯, 蔡明江, 等. 30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义[J]. 地球科学, 2019, 44(8):2803-2817

    CHEN Hongjin, XU Zhaokai, CAI Mingjiang, et al. Provenance of clay-sized detrital sediments and its paleoenvironmental implications at Site U1456 in the Eastern Arabian Sea since 30 ka[J]. Earth Science, 2019, 44(8):2803-2817.]

    [56]

    Pourmand A, Marcantonio F, Schulz H. Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka[J]. Earth and Planetary Science Letters, 2004, 221(1-4):39-54. doi: 10.1016/S0012-821X(04)00109-8

    [57]

    Turney C S M, Jones R T, Fogwill C, et al. A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years[J]. Climate of the Past, 2016, 12(2):189-200. doi: 10.5194/cp-12-189-2016

    [58]

    Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225, 000 years[J]. Paleoceanography, 1998, 13(6):607-621. doi: 10.1029/98PA02203

    [59]

    Middleton N J. Dust storms in the Middle East[J]. Journal of Arid Environments, 1986, 10(2):83-96. doi: 10.1016/S0140-1963(18)31249-7

    [60]

    Sirocko F, Sarnthein M. Wind-borne deposits in the northwestern Indian Ocean: Record of Holocene sediments versus modern satellite data[M]//Leinen M, Sarnthein M. Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Dordrecht: Springer, 1989: 401-433.

    [61]

    Prins M A, Postma G, Cleveringa J, et al. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan[J]. Marine Geology, 2000, 169(3-4):327-349. doi: 10.1016/S0025-3227(00)00086-4

    [62]

    Von Rad U, Tahir M. Late Quaternary sedimentation on the outer Indus shelf and slope (Pakistan): evidence from high-resolution seismic data and coring[J]. Marine Geology, 1997, 138(3-4):193-236. doi: 10.1016/S0025-3227(96)00090-4

    [63]

    Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265:228-231. doi: 10.1126/science.265.5169.228

图(8)  /  表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  9
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-11
  • 修回日期:  2024-01-29
  • 录用日期:  2024-01-29
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-04-23

目录

/

返回文章
返回